留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

穿透式碳纳米管电极的制备及其高效降解水中抗生素的性能和机理

王致远 刘富强 沈忱思 李方 刘亚男 刘艳彪

王致远, 刘富强, 沈忱思, 李方, 刘亚男, 刘艳彪. 穿透式碳纳米管电极的制备及其高效降解水中抗生素的性能和机理[J]. 环境科学研究, 2021, 34(12): 2811-2819. doi: 10.13198/j.issn.1001-6929.2021.09.26
引用本文: 王致远, 刘富强, 沈忱思, 李方, 刘亚男, 刘艳彪. 穿透式碳纳米管电极的制备及其高效降解水中抗生素的性能和机理[J]. 环境科学研究, 2021, 34(12): 2811-2819. doi: 10.13198/j.issn.1001-6929.2021.09.26
WANG Zhiyuan, LIU Fuqiang, SHEN Chensi, LI Fang, LIU Yanan, LIU Yanbiao. Efficient Degradation of Antibiotics by Flow-Through Electro-Fenton System Based on Modified Carbon Nanotubes Electrode: Performance and Mechanism[J]. Research of Environmental Sciences, 2021, 34(12): 2811-2819. doi: 10.13198/j.issn.1001-6929.2021.09.26
Citation: WANG Zhiyuan, LIU Fuqiang, SHEN Chensi, LI Fang, LIU Yanan, LIU Yanbiao. Efficient Degradation of Antibiotics by Flow-Through Electro-Fenton System Based on Modified Carbon Nanotubes Electrode: Performance and Mechanism[J]. Research of Environmental Sciences, 2021, 34(12): 2811-2819. doi: 10.13198/j.issn.1001-6929.2021.09.26

穿透式碳纳米管电极的制备及其高效降解水中抗生素的性能和机理

doi: 10.13198/j.issn.1001-6929.2021.09.26
基金项目: 

国家自然科学基金项目 52170068

详细信息
    作者简介:

    王致远(1998-), 男, 江苏泰州人, 2202052@mail.dhu.edu.cn

    通讯作者:

    刘艳彪(1982-), 男, 上海人, 教授, 博士, 博导, 主要从事电活性分离膜净水技术研究, yanbiaoliu@dhu.edu.cn

  • 中图分类号: X703.1

Efficient Degradation of Antibiotics by Flow-Through Electro-Fenton System Based on Modified Carbon Nanotubes Electrode: Performance and Mechanism

Funds: 

National Natural Science Foundation of China 52170068

  • 摘要: 为实现水中四环素类抗生素的高效降解,本文设计开发了一种基于电活性碳纳米管(CNT)电极的穿透式电芬顿系统,采用水热法制得纳米铁和二硫化钼共修饰的CNT阴极材料(Fe-MoS2@CNT),分析不同因素对电芬顿催化降解四环素性能的影响. 结果表明:基于改性CNT电极的穿透式电芬顿系统对四环素表现出良好的去除性能,电压和流速等对四环素的降解动力学具有显著影响. 该系统的最优试验条件:Fe掺杂量为0.3 mmol/L、外加电压为-2.5 V、流速为0.85 cm3/(min·cm2). 在最优试验条件下,反应60 min内四环素的降解率可达到95%,羟基自由基为主导的活性物种. 连续运行240 min后,该系统对四环素的降解率仍保持在85%以上,且在实际湖水环境水基质中对四环素降解率也可达到87.2%. 研究显示,Fe-MoS2@CNT膜电极具有优异的催化性能及可重复利用性,可以高效降解水中四环素类抗生素.

     

  • 图  1  电过滤装置原理示意图以及反应器上部、内部和Fe-MoS2@CNT膜电极的实物图

    Figure  1.  Schematics of electroactive filtration apparatus and digital pictures of the filtration device and the Fe-MoS2@CNT cathode

    图  2  Fe-MoS2@CNT膜电极的表征

    Figure  2.  Characterization of the Fe-MoS2@CNT filter

    图  3  Fe-MoS2@CNT膜电极的XPS谱图

    Figure  3.  XPS survey pattern of the Fe-MoS2@CNT filter

    图  4  不同电压对H2O2通量的影响

    Figure  4.  Effects of different voltages on H2O2 flux

    图  5  不同影响因素对四环素降解效果的影响

    Figure  5.  Effects of different factors on tetracycline degradation

    图  6  Fe-MoS2@CNT膜电极的重复利用性和在环境水基质中对四环素的降解率

    Figure  6.  Reusability of the Fe-MoS2@CNT filter and degradation efficiency of tetracycline in environmental water

    图  7  四环素在Fe-MoS2@CNT膜电极中降解的可能机制

    Figure  7.  Possible degradation mechanism of tetracycline in the Fe-MoS2@CNT filter

    图  8  四环素在穿透式电芬顿系统中的降解路径

    Figure  8.  Proposed tetracycline degradation pathway in the electro-Fenton system

    表  1  不同环境水基质的特性

    Table  1.   Specific information for the different water samples

    环境水基质 pH 溶解氧浓度/(mmol/L) TOC浓度/(mg/L) 电导率/(μS/cm)
    自来水 7.83 0.21 1.62 518.67
    湖水 8.07 0.18 95.23 682.75
    下载: 导出CSV
  • [1] SUN Haoran, GUO Feng, PAN Jingjing, et al. One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process[J]. Chemical Engineering Journal, 2021, 406: 126844. doi: 10.1016/j.cej.2020.126844
    [2] LIU Ying, KONG Jijie, YUAN Julong, et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation[J]. Chemical Engineering Journal, 2018, 331: 242-254. doi: 10.1016/j.cej.2017.08.114
    [3] ZHANG Qingchun, JIANG Lei, WANG Jun, et al. Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation[J]. Applied Catalysis B: Environmental, 2020, 277: 119122. doi: 10.1016/j.apcatb.2020.119122
    [4] 李厚禹, 徐艳, 成卫民, 等. 好氧-厌氧两相堆肥过程中抗生素耐药基因的变化特征及影响因素研究[J]. 环境科学研究, 2021, 34(2): 431-438. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210221&flag=1

    LI Houyu, XU Yan, CHENG Weimin, et al. Change characteristics and influencing factors of antibiotic resistance genes in aerobicand anaerobic two-phase composting[J]. Research of Environmental Sciences, 2021, 34(2): 431-438. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210221&flag=1
    [5] ZHANG Qianqian, YING Guangguo, PAN Changgui, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. http://europepmc.org/abstract/MED/25961663
    [6] GUO Feng, HUANG Xiliu, CHEN Zhihao, et al. Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater[J]. Chemical Engineering Journal, 2020, 395: 125118. doi: 10.1016/j.cej.2020.125118
    [7] PEI Chenyang, CHEN Yangang, WANG Lu, et al. Step-scheme WO3/CdIn2S4 hybrid system with high visible light activity for tetracycline hydrochloride photodegradation[J]. Applied Surface Science, 2021, 535: 147682. doi: 10.1016/j.apsusc.2020.147682
    [8] 孟海玲, 刘庭蕾, 刘再亮, 等. 电-Fenton法降解低含盐量反渗透浓缩液中腐植酸[J]. 环境科学研究, 2018, 31(1): 154-160. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180120&flag=1

    MENG Hailing, LIU Tinglei, LIU Zailiang, et al. Highly efficient degradation of humic acid in low salinity reverse osmosis concentrate by electro-Fenton process[J]. Research of Environmental Sciences, 2018, 31(1): 154-160. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180120&flag=1
    [9] 谢慧娜, 嵇斌, 李杰, 等. 响应面法优化Fenton预处理精细化工废水[J]. 环境科学研究, 2019, 32(8): 1419-1426. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190819&flag=1

    XIE Huina, JI Bin, LI Jie, et al. Optimization of Fenton process for pretreatment of refractory fine chemistry wastewater with response surface methodology[J]. Research of Environmental Sciences, 2019, 32(8): 1419-1426. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190819&flag=1
    [10] GHANBARLOU H, NASERNEJAD B, NIKBAKHT F M, et al. Synthesis of an iron-graphene based particle electrode for pesticide removal in three-dimensional heterogeneous electro-Fenton water treatment system[J]. Chemical Engineering Journal, 2020, 395: 125025. doi: 10.1016/j.cej.2020.125025
    [11] GAO Guandao, ZHANG Qiaoying, HAO Zhenwei, et al. Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton[J]. Environmental Science & Technology, 2015, 49(4): 2375-2383. http://www.onacademic.com/detail/journal_1000037385783410_b261.html
    [12] CRUZ D R S, DE J G K, SANTOS C A, et al. Magnetic nanostructured material as heterogeneous catalyst for degradation of AB210 dye in tannery wastewater by electro-Fenton process[J]. Chemosphere, 2021, 280: 130675. doi: 10.1016/j.chemosphere.2021.130675
    [13] JIANG Hao, SUN Yabing, FENG Jingwei, et al. Heterogeneous electro-Fenton oxidation of azo dye methyl orange catalyzed by magnetic Fe3O4 nanoparticles[J]. Water Science and Technology, 2016, 74(5): 1116-1126. doi: 10.2166/wst.2016.300
    [14] ROSALES E, BUFTIA G, PAZOS M, et al. Highly active based iron-carbonaceous cathodes for heterogeneous electro-Fenton process: application to degradation of parabens[J]. Process Safety and Environmental Protection, 2018, 117: 363-371. doi: 10.1016/j.psep.2018.05.014
    [15] SINGH P, OJHA R P, KUMAR S, et al. Fe-doped MoS2 nanomaterials with amplified peroxidase mimetic activity for the colorimetric detection of glutathione in human serum[J]. Materials Chemistry and Physics, 2021, 267: 124684. doi: 10.1016/j.matchemphys.2021.124684
    [16] LI Zizhen, SHEN Chensi, LIU Yanbiao, et al. Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton[J]. Applied Catalysis B: Environmental, 2020, 260: 118204. doi: 10.1016/j.apcatb.2019.118204
    [17] ZHU Lingli, JI Jiahui, LIU Jun, et al. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control[J]. Angewandte Chemie International Edition, 2020, 59(33): 13968-13976. doi: 10.1002/anie.202006059
    [18] CHEN Haijun, ZHANG Zhibin, ZHONG Xiao, et al. Constructing MoS2/Lignin-derived carbon nanocomposites for highly efficient removal of Cr(Ⅵ) from aqueous environment[J]. Journal of Hazardous Materials, 2021, 408: 124847. doi: 10.1016/j.jhazmat.2020.124847
    [19] LIM K R G, HANDOKO A D, JOHNSON L R, et al. 2H-MoS2 on Mo2CTx MXene nanohybrid for efficient and durable electrocatalytic hydrogen evolution[J]. ACS Nano, 2020, 14(11): 16140-16155. doi: 10.1021/acsnano.0c08671
    [20] LIU Zejun, WAN Jinquan, MA Yongwen, et al. In situ synthesis of FeOCl@MoS2 on graphite felt as novel electro-Fenton cathode for efficient degradation of antibiotic ciprofloxacin at mild pH[J]. Chemosphere, 2021, 273: 129747. doi: 10.1016/j.chemosphere.2021.129747
    [21] YAN Qingyun, LIAN Cheng, HUANG Kai, et al. Constructing an acidic microenvironment by MoS2 in heterogeneous Fenton reaction for pollutant control[J]. Angewandte Chemie International Edition, 2021, 60: 2-11. doi: 10.1002/anie.202014556
    [22] GUO Dongli, LIU Yanbiao, JI Haodong, et al. Silicate-enhanced heterogeneous flow-through electro-Fenton system using iron oxides under nanoconfinement[J]. Environmental Science & Technology, 2021, 55(6): 4045-4053. http://www.ncbi.nlm.nih.gov/pubmed/33625227
    [23] GAO Guandao, VECITIS Chad D. Reactive depth and performance of an electrochemical carbon nanotube network as a function of mass transport[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6096-6103. http://www.onacademic.com/detail/journal_1000035848769310_7543.html
    [24] MA Liang, ZHOU Minghua, REN Gengbo, et al. A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation[J]. Electrochimica Acta, 2016, 200: 222-230. doi: 10.1016/j.electacta.2016.03.181
    [25] SHAN Zhenzhen, HE Yusen, LIU Ning, et al. Spontaneously rooting carbon nanotube incorporated N-doped carbon nanofibers as efficient sulfur host toward high performance lithium-sulfur batteries[J]. Applied Surface Science, 2021, 539: 148209. doi: 10.1016/j.apsusc.2020.148209
    [26] WANG Jing, CHEN Shuo, QUAN Xie, et al. Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation[J]. Chemosphere, 2018, 190: 135-143. doi: 10.1016/j.chemosphere.2017.09.119
    [27] WANG Tian, YE Fei, WU Shuai, et al. Efficient light-driven fuel cell with simultaneous degradation of pollutants on a TiO2 photoanode and production of H2O2 on a gas diffusion electrode cathode[J]. ACS Environment Science & Technology Engineering, 2021, 1(7): 1122-1130. http://www.researchgate.net/publication/353139689_Efficient_Light-Driven_Fuel_Cell_with_Simultaneous_Degradation_of_Pollutants_on_a_TiO_2_Photoanode_and_Production_of_H_2_O_2_on_a_Gas_Diffusion_Electrode_Cathode
    [28] TANG Shoufeng, ZHAO Mengzhen, YUAN Deling, et al. Fe3O4 nanoparticles three-dimensional electro-peroxydisulfate for improving tetracycline degradation[J]. Chemosphere, 2021, 268: 129315. doi: 10.1016/j.chemosphere.2020.129315
    [29] LIU Yong, ZHAO Yang, WANG Jianlong. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: advances and prospects[J]. Journal of Hazardous Materials, 2021, 404: 124191. doi: 10.1016/j.jhazmat.2020.124191
    [30] OLVERA V H, GORE D N, GARCIA R O, et al. Electro-Fenton treatment of real pharmaceutical wastewater paired with a BDD anode: reaction mechanisms and respective contribution of homogeneous and heterogeneous OH[J]. Chemical Engineering Journal, 2021, 404: 126524. doi: 10.1016/j.cej.2020.126524
    [31] LIU Fang, CAO Jiao, YANG Zhaohui, et al. Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53(Al) for efficient tetracycline degradation in water: coexistence of radical and non-radical reactions[J]. Journal of Colloid and Interface Science, 2021, 581: 195-204. doi: 10.1016/j.jcis.2020.07.100
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  77
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-16
  • 修回日期:  2021-09-24

目录

    /

    返回文章
    返回