Efficient Degradation of Antibiotics by Flow-Through Electro-Fenton System Based on Modified Carbon Nanotubes Electrode: Performance and Mechanism
-
摘要: 为实现水中四环素类抗生素的高效降解,本文设计开发了一种基于电活性碳纳米管(CNT)电极的穿透式电芬顿系统,采用水热法制得纳米铁和二硫化钼共修饰的CNT阴极材料(Fe-MoS2@CNT),分析不同因素对电芬顿催化降解四环素性能的影响. 结果表明:基于改性CNT电极的穿透式电芬顿系统对四环素表现出良好的去除性能,电压和流速等对四环素的降解动力学具有显著影响. 该系统的最优试验条件:Fe掺杂量为0.3 mmol/L、外加电压为-2.5 V、流速为0.85 cm3/(min·cm2). 在最优试验条件下,反应60 min内四环素的降解率可达到95%,羟基自由基为主导的活性物种. 连续运行240 min后,该系统对四环素的降解率仍保持在85%以上,且在实际湖水环境水基质中对四环素降解率也可达到87.2%. 研究显示,Fe-MoS2@CNT膜电极具有优异的催化性能及可重复利用性,可以高效降解水中四环素类抗生素.Abstract: A flow-through electro-Fenton system based on an electroactive carbon nanotube (CNT) filter was designed and demonstrated for efficient degradation of antibiotic tetracycline. The key to this technology was a CNT cathode functionalized with iron and molybdenum disulfide (Fe-MoS2@CNT). The effects of different operational parameters on the degradation of tetracycline were systematically examined. The results showed that the flow-through electro-Fenton system had an excellent performance for tetracycline degradation. The applied voltage and flow rate significantly affected the degradation kinetics of tetracycline. The optimal experimental conditions of the system were Fe loading of 0.3 mmol/L, applied voltage of -2.5 V, and flow rate of 0.85 cm3/(min·cm2). Under these conditions, the degradation efficiency of tetracycline reached 95% after 60 min reaction, and HO· was identified as the dominant reactive species. After four continuous running cycles, the degradation efficiency of tetracycline was still >85%. A removal efficiency of 87.2% could be achieved in the tetracycline-spiked lake water sample. The findings in this study demonstrate that the Fe-MoS2@CNT filter has excellent catalytic performance and desirable reusability, and can be used to remove other refractory organic contaminants in water.
-
Key words:
- flow-through electro-Fenton /
- carbon nanotubes /
- hydroxyl radical /
- tetracycline
-
表 1 不同环境水基质的特性
Table 1. Specific information for the different water samples
环境水基质 pH 溶解氧浓度/(mmol/L) TOC浓度/(mg/L) 电导率/(μS/cm) 自来水 7.83 0.21 1.62 518.67 湖水 8.07 0.18 95.23 682.75 -
[1] SUN Haoran, GUO Feng, PAN Jingjing, et al. One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process[J]. Chemical Engineering Journal, 2021, 406: 126844. doi: 10.1016/j.cej.2020.126844 [2] LIU Ying, KONG Jijie, YUAN Julong, et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation[J]. Chemical Engineering Journal, 2018, 331: 242-254. doi: 10.1016/j.cej.2017.08.114 [3] ZHANG Qingchun, JIANG Lei, WANG Jun, et al. Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation[J]. Applied Catalysis B: Environmental, 2020, 277: 119122. doi: 10.1016/j.apcatb.2020.119122 [4] 李厚禹, 徐艳, 成卫民, 等. 好氧-厌氧两相堆肥过程中抗生素耐药基因的变化特征及影响因素研究[J]. 环境科学研究, 2021, 34(2): 431-438. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210221&flag=1LI Houyu, XU Yan, CHENG Weimin, et al. Change characteristics and influencing factors of antibiotic resistance genes in aerobicand anaerobic two-phase composting[J]. Research of Environmental Sciences, 2021, 34(2): 431-438. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210221&flag=1 [5] ZHANG Qianqian, YING Guangguo, PAN Changgui, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. http://europepmc.org/abstract/MED/25961663 [6] GUO Feng, HUANG Xiliu, CHEN Zhihao, et al. Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater[J]. Chemical Engineering Journal, 2020, 395: 125118. doi: 10.1016/j.cej.2020.125118 [7] PEI Chenyang, CHEN Yangang, WANG Lu, et al. Step-scheme WO3/CdIn2S4 hybrid system with high visible light activity for tetracycline hydrochloride photodegradation[J]. Applied Surface Science, 2021, 535: 147682. doi: 10.1016/j.apsusc.2020.147682 [8] 孟海玲, 刘庭蕾, 刘再亮, 等. 电-Fenton法降解低含盐量反渗透浓缩液中腐植酸[J]. 环境科学研究, 2018, 31(1): 154-160. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180120&flag=1MENG Hailing, LIU Tinglei, LIU Zailiang, et al. Highly efficient degradation of humic acid in low salinity reverse osmosis concentrate by electro-Fenton process[J]. Research of Environmental Sciences, 2018, 31(1): 154-160. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180120&flag=1 [9] 谢慧娜, 嵇斌, 李杰, 等. 响应面法优化Fenton预处理精细化工废水[J]. 环境科学研究, 2019, 32(8): 1419-1426. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190819&flag=1XIE Huina, JI Bin, LI Jie, et al. Optimization of Fenton process for pretreatment of refractory fine chemistry wastewater with response surface methodology[J]. Research of Environmental Sciences, 2019, 32(8): 1419-1426. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190819&flag=1 [10] GHANBARLOU H, NASERNEJAD B, NIKBAKHT F M, et al. Synthesis of an iron-graphene based particle electrode for pesticide removal in three-dimensional heterogeneous electro-Fenton water treatment system[J]. Chemical Engineering Journal, 2020, 395: 125025. doi: 10.1016/j.cej.2020.125025 [11] GAO Guandao, ZHANG Qiaoying, HAO Zhenwei, et al. Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton[J]. Environmental Science & Technology, 2015, 49(4): 2375-2383. http://www.onacademic.com/detail/journal_1000037385783410_b261.html [12] CRUZ D R S, DE J G K, SANTOS C A, et al. Magnetic nanostructured material as heterogeneous catalyst for degradation of AB210 dye in tannery wastewater by electro-Fenton process[J]. Chemosphere, 2021, 280: 130675. doi: 10.1016/j.chemosphere.2021.130675 [13] JIANG Hao, SUN Yabing, FENG Jingwei, et al. Heterogeneous electro-Fenton oxidation of azo dye methyl orange catalyzed by magnetic Fe3O4 nanoparticles[J]. Water Science and Technology, 2016, 74(5): 1116-1126. doi: 10.2166/wst.2016.300 [14] ROSALES E, BUFTIA G, PAZOS M, et al. Highly active based iron-carbonaceous cathodes for heterogeneous electro-Fenton process: application to degradation of parabens[J]. Process Safety and Environmental Protection, 2018, 117: 363-371. doi: 10.1016/j.psep.2018.05.014 [15] SINGH P, OJHA R P, KUMAR S, et al. Fe-doped MoS2 nanomaterials with amplified peroxidase mimetic activity for the colorimetric detection of glutathione in human serum[J]. Materials Chemistry and Physics, 2021, 267: 124684. doi: 10.1016/j.matchemphys.2021.124684 [16] LI Zizhen, SHEN Chensi, LIU Yanbiao, et al. Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton[J]. Applied Catalysis B: Environmental, 2020, 260: 118204. doi: 10.1016/j.apcatb.2019.118204 [17] ZHU Lingli, JI Jiahui, LIU Jun, et al. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control[J]. Angewandte Chemie International Edition, 2020, 59(33): 13968-13976. doi: 10.1002/anie.202006059 [18] CHEN Haijun, ZHANG Zhibin, ZHONG Xiao, et al. Constructing MoS2/Lignin-derived carbon nanocomposites for highly efficient removal of Cr(Ⅵ) from aqueous environment[J]. Journal of Hazardous Materials, 2021, 408: 124847. doi: 10.1016/j.jhazmat.2020.124847 [19] LIM K R G, HANDOKO A D, JOHNSON L R, et al. 2H-MoS2 on Mo2CTx MXene nanohybrid for efficient and durable electrocatalytic hydrogen evolution[J]. ACS Nano, 2020, 14(11): 16140-16155. doi: 10.1021/acsnano.0c08671 [20] LIU Zejun, WAN Jinquan, MA Yongwen, et al. In situ synthesis of FeOCl@MoS2 on graphite felt as novel electro-Fenton cathode for efficient degradation of antibiotic ciprofloxacin at mild pH[J]. Chemosphere, 2021, 273: 129747. doi: 10.1016/j.chemosphere.2021.129747 [21] YAN Qingyun, LIAN Cheng, HUANG Kai, et al. Constructing an acidic microenvironment by MoS2 in heterogeneous Fenton reaction for pollutant control[J]. Angewandte Chemie International Edition, 2021, 60: 2-11. doi: 10.1002/anie.202014556 [22] GUO Dongli, LIU Yanbiao, JI Haodong, et al. Silicate-enhanced heterogeneous flow-through electro-Fenton system using iron oxides under nanoconfinement[J]. Environmental Science & Technology, 2021, 55(6): 4045-4053. http://www.ncbi.nlm.nih.gov/pubmed/33625227 [23] GAO Guandao, VECITIS Chad D. Reactive depth and performance of an electrochemical carbon nanotube network as a function of mass transport[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6096-6103. http://www.onacademic.com/detail/journal_1000035848769310_7543.html [24] MA Liang, ZHOU Minghua, REN Gengbo, et al. A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation[J]. Electrochimica Acta, 2016, 200: 222-230. doi: 10.1016/j.electacta.2016.03.181 [25] SHAN Zhenzhen, HE Yusen, LIU Ning, et al. Spontaneously rooting carbon nanotube incorporated N-doped carbon nanofibers as efficient sulfur host toward high performance lithium-sulfur batteries[J]. Applied Surface Science, 2021, 539: 148209. doi: 10.1016/j.apsusc.2020.148209 [26] WANG Jing, CHEN Shuo, QUAN Xie, et al. Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation[J]. Chemosphere, 2018, 190: 135-143. doi: 10.1016/j.chemosphere.2017.09.119 [27] WANG Tian, YE Fei, WU Shuai, et al. Efficient light-driven fuel cell with simultaneous degradation of pollutants on a TiO2 photoanode and production of H2O2 on a gas diffusion electrode cathode[J]. ACS Environment Science & Technology Engineering, 2021, 1(7): 1122-1130. http://www.researchgate.net/publication/353139689_Efficient_Light-Driven_Fuel_Cell_with_Simultaneous_Degradation_of_Pollutants_on_a_TiO_2_Photoanode_and_Production_of_H_2_O_2_on_a_Gas_Diffusion_Electrode_Cathode [28] TANG Shoufeng, ZHAO Mengzhen, YUAN Deling, et al. Fe3O4 nanoparticles three-dimensional electro-peroxydisulfate for improving tetracycline degradation[J]. Chemosphere, 2021, 268: 129315. doi: 10.1016/j.chemosphere.2020.129315 [29] LIU Yong, ZHAO Yang, WANG Jianlong. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: advances and prospects[J]. Journal of Hazardous Materials, 2021, 404: 124191. doi: 10.1016/j.jhazmat.2020.124191 [30] OLVERA V H, GORE D N, GARCIA R O, et al. Electro-Fenton treatment of real pharmaceutical wastewater paired with a BDD anode: reaction mechanisms and respective contribution of homogeneous and heterogeneous OH[J]. Chemical Engineering Journal, 2021, 404: 126524. doi: 10.1016/j.cej.2020.126524 [31] LIU Fang, CAO Jiao, YANG Zhaohui, et al. Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53(Al) for efficient tetracycline degradation in water: coexistence of radical and non-radical reactions[J]. Journal of Colloid and Interface Science, 2021, 581: 195-204. doi: 10.1016/j.jcis.2020.07.100 -