留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反渗透技术对消毒副产物的去除效果、机理及影响因素研究进展

何欢 杨洁 陈白杨

何欢, 杨洁, 陈白杨. 反渗透技术对消毒副产物的去除效果、机理及影响因素研究进展[J]. 环境科学研究, 2022, 35(2): 452-461. doi: 10.13198/j.issn.1001-6929.2021.10.07
引用本文: 何欢, 杨洁, 陈白杨. 反渗透技术对消毒副产物的去除效果、机理及影响因素研究进展[J]. 环境科学研究, 2022, 35(2): 452-461. doi: 10.13198/j.issn.1001-6929.2021.10.07
HE Huan, YANG Jie, CHEN Baiyang. A Review of Disinfection Byproducts Removal Efficiency and Influencing Factors of Reverse Osmosis Technology[J]. Research of Environmental Sciences, 2022, 35(2): 452-461. doi: 10.13198/j.issn.1001-6929.2021.10.07
Citation: HE Huan, YANG Jie, CHEN Baiyang. A Review of Disinfection Byproducts Removal Efficiency and Influencing Factors of Reverse Osmosis Technology[J]. Research of Environmental Sciences, 2022, 35(2): 452-461. doi: 10.13198/j.issn.1001-6929.2021.10.07

反渗透技术对消毒副产物的去除效果、机理及影响因素研究进展

doi: 10.13198/j.issn.1001-6929.2021.10.07
基金项目: 国家自然科学基金项目(No.51978194);深圳市科技创新委员会项目(No.JCYJ20180306171820685)
详细信息
    作者简介:

    何欢(2000-),女,湖南衡阳人,HeHuan1197@163.com

    通讯作者:

    陈白杨(1976-),男,湖南娄底人,教授,博士,博导,主要从事饮用水安全与控制研究,poplar_chen@hotmail.com

  • 中图分类号: X1

A Review of Disinfection Byproducts Removal Efficiency and Influencing Factors of Reverse Osmosis Technology

Funds: National Natural Science Foundation of China (No.51978194); Shenzhen Science and Technology Innovation Commission, China (No.JCYJ20180306171820685)
  • 摘要: 反渗透(RO)技术因操作简便、无药剂添加等特点,被广泛应用于管网末端痕量污染物的去除. 为深入理解RO技术在去除饮用水中消毒副产物(DBP)的应用,总结了近20年来RO截留DBPs的效果、机理、影响因素及工艺. 结果表明:①空间位阻效应是RO膜去除DBPs的主要作用机制,静电排斥效应对带电小分子DBPs的去除更加明显. ② RO膜对疏水性DBPs也具有一定的吸附截留作用,适当提高pH、操作压力或膜改性(如使膜孔变小或增强膜的亲水性)能增强DBPs的去除,但升高温度不利于DBPs去除. ③在一定范围内DBPs浓度变化(0~200 μg/L)对RO膜截留影响不明显,目前尚存争议的是水中离子浓度和膜老化对RO膜截留的影响及各种RO工艺的优选. 建议未来深入探究DBPs在RO工艺中的吸附和穿透行为及规律,并致力于开发净水能力更强且更节能省水的RO工艺.

     

  • 图  1  不同离子浓度下RO膜对THMs去除率的变化[68]

    Figure  1.  The removal efficiency of THMs by RO membranes with different ion concentrations[68]

    图  2  循环RO过程中20种DBPs的总去除率[68]

    Figure  2.  Total removal efficiency of 20 DBPs during flexible reverse osmosis[68]

    表  1  各国DBPs浓度的限值[12-16]

    Table  1.   Concentration limits of DBPs by different countries[12-16]

    消毒剂DBPs类型致癌性DBPs浓度限值/(mg/L)
    WHOUSEU日本中国印度
    液氯/氯胺三卤甲烷(THMs)氯仿2B0.30.080.060.060.2
    一溴二氯甲烷2B0.060.080.030.060.06
    二溴氯甲烷30.10.080.10.10.1
    三溴甲烷30.10.080.090.10.1
    总THMs*0.080.10.1*
    卤乙酸(HAAs)一氯乙酸0.20.060.02
    二氯乙酸2B0.050.060.030.05
    三氯乙酸2B0.20.060.030.1
    二溴乙酸2B
    溴氯乙酸2B
    总HAA0.060.06
    卤代乙腈(HAN)二氯乙腈30.020.04
    三氯乙腈3
    二溴乙腈2B0.07
    溴氯乙腈3
    二氧化氯氯酸盐类ClO230.70.250.60.7
    ClO30.71.00.250.60.7
    臭氧溴酸盐类(BrO3)/醛类BrO32B0.010.010.010.01
    甲醛10.080.9
    注:空白表示未设置致癌等级;1表示致癌物;2B表示可能为致癌物;3表示致癌度不确定;*表示各类化合物浓度中各种化合物的实测浓度与其各自限值比值之和不得超过1;—表示对DBPs浓度没有设定限值.
    下载: 导出CSV

    表  2  各种膜对DBPs的去除效果[38]

    Table  2.   DBPs removal efficiency of various membranes[38]

    膜类型去除率/%
    TCMDCANTCANDCAMTCAM
    商品膜26.229.460.855.166.5
    TFC膜32.137.382.27190.5
    ZIF/TFN膜38.445.395.58099.2
    注:TCM为三氯甲烷;DCAN为二氯乙腈;TCAN为三氯乙腈;DCAM为二氯乙酰胺;TCAM为三氯乙酰胺.
    下载: 导出CSV

    表  3  RO膜前处理工艺对DBPs的去除效果

    Table  3.   Removal effect of DBPs by RO membrane pretreatment

    DBPs的类型去除率技术类型数据来源
    THMs83.8%MF/活性炭/RO文献[88]
    60%~90%NF/RO文献[39]
    亚硝基二甲胺(NDMA)66%RO/UV文献[89]
    98%NF/RO文献[60]
    HAAs83.77%RO/UV文献[90]
    N-DBPs>99%RO/活性炭文献[87]
    溴化物70.48%RO/UV文献[90]
    下载: 导出CSV
  • [1] TANG Y L,LONG X,WU M Y,et al.Bibliometric review of research trends on disinfection by-products in drinking water during 1975-2018[J].Separation and Purification Technology,2020,241:116741. doi: 10.1016/j.seppur.2020.116741
    [2] DU Y J,ZHAO L A,BAN J E,et al.Cumulative health risk assessment of disinfection by-products in drinking water by different disinfection methods in typical regions of China[J].Science of the Total Environment,2021,770:144662. doi: 10.1016/j.scitotenv.2020.144662
    [3] KALI S,KHAN M,GHAFFAR M S,et al.Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: a comprehensive review[J].Environmental Pollution,2021,281:116950. doi: 10.1016/j.envpol.2021.116950
    [4] 李晨,张建柱.氯化消毒剂对供水水质影响的探讨[J].供水技术,2017,11(4):43-44. doi: 10.3969/j.issn.1673-9353.2017.04.011

    LI C,ZHANG J Z.Discussion of the influence of chlorinated disinfectants on water quality[J].Water Technology,2017,11(4):43-44. doi: 10.3969/j.issn.1673-9353.2017.04.011
    [5] LI X F,MITCH W A.Drinking water disinfection byproducts (DBPs) and human health effects: multidisciplinary challenges and opportunities[J].Environmental Science & Technology,2018,52(4):1681-1689.
    [6] MARAIS S S,NCUBE E J,MSAGATI T A M,et al.Comparison of natural organic matter removal by ultrafiltration, granular activated carbon filtration and full scale conventional water treatment[J].Journal of Environmental Chemical Engineering,2018,6(5):6282-6289. doi: 10.1016/j.jece.2018.10.002
    [7] LOU J X,WANG W,ZHU L Z.Transformation of emerging disinfection byproducts Halobenzoquinones to haloacetic acids during chlorination of drinking water[J].Chemical Engineering Journal,2021,418:129326. doi: 10.1016/j.cej.2021.129326
    [8] QIAN Y K,CHEN Y N,HU Y E,et al.Formation and control of C-DBPs and N-DBPs during disinfection of filter backwash and sedimentation sludge water in drinking water treatment[J].Water Research,2021,194:116964. doi: 10.1016/j.watres.2021.116964
    [9] 肖融,楚文海.全球饮用水标准中消毒副产物管控指标对比与启示[J].环境科学研究,2021,34(6):1328-1337.

    XIAO R,CHU W H.Disinfection by-product regulatory compliance in global drinking water standards: comparison and enlightenment[J].Research of Environmental Sciences,2021,34(6):1328-1337.
    [10] 张瑞华,纪桂霞,楚文海.微生物对饮用水典型消毒副产物前体物的降解效能及其群落特征[J].环境科学研究,2019,32(4):700-708.

    ZHANG R H,JI G X,CHU W H.Degradation of precursors of typical disinfection byproducts in drinking water by microorganisms and its microbial communities[J].Research of Environmental Sciences,2019,32(4):700-708.
    [11] 朱红霞,薛荔栋,刘进斌,等.含氯消毒副产物的种类、危害与地表水污染现状[J].环境科学研究,2020,33(7):1640-1648.

    ZHU H X,XUE L D,LIU J B,et al.Types, hazards and pollution status of chlorinated disinfection by-products in surface water[J].Research of Environmental Sciences,2020,33(7):1640-1648.
    [12] MAZHAR M A,KHAN N A,AHMED S,et al.Chlorination disinfection by-products in municipal drinking water: a review[J].Journal of Cleaner Production,2020,273:123159. doi: 10.1016/j.jclepro.2020.123159
    [13] 彭宏熙,李聪.中国和美国、日本饮用水水质标准的比较探究[J].中国给水排水,2018,34(10):26-31.

    PENG H X,LI C.Comparative study of drinking water quality standards among China, the United States and Japan[J].China Water & Wastewater,2018,34(10):26-31.
    [14] WANG X M,MAO Y Q,TANG S,et al.Disinfection byproducts in drinking water and regulatory compliance: a critical review[J].Frontiers of Environmental Science & Engineering,2015,9(1):3-15.
    [15] YANG L Y,CHEN X M,SHE Q H,et al.Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: a critical review[J].Environment International,2018,121:1039-1057. doi: 10.1016/j.envint.2018.10.024
    [16] ALEXANDROU L,MEEHAN B J,JONES O A H.Regulated and emerging disinfection by-products in recycled waters[J].Science of the Total Environment,2018,637/638:1607-1616. doi: 10.1016/j.scitotenv.2018.04.391
    [17] 林明利,秦建明,张全斌.“从源头到龙头”的饮用水安全保障技术体系及其应用[J].环境工程技术学报,2019,9(4):362-367. doi: 10.12153/j.issn.1674-991X.2019.01.190

    LIN M L,QIN J M,ZHANG Q B.Establishment and application of drinking water insurance technology system from water source to tap[J].Journal of Environmental Engineering Technology,2019,9(4):362-367. doi: 10.12153/j.issn.1674-991X.2019.01.190
    [18] FU J E,LEE W N,COLEMAN C,et al.Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment[J].Water Research,2017,123:224-235. doi: 10.1016/j.watres.2017.06.073
    [19] ZHAO Y M,XIAO F,WANG D S,et al.Disinfection byproduct precursor removal by enhanced coagulation and their distribution in chemical fractions[J].Journal of Environmental Sciences,2013,25(11):2207-2213. doi: 10.1016/S1001-0742(12)60286-1
    [20] SRIVASTAV A L,PATEL N,CHAUDHARY V K.Disinfection by-products in drinking water: occurrence, toxicity and abatement[J].Environmental Pollution,2020,267:115474. doi: 10.1016/j.envpol.2020.115474
    [21] 黄涛,刘硕.饮用水处理消毒副产物产生及控制研究进展[J].中国资源综合利用,2019,37(7):88-90. doi: 10.3969/j.issn.1008-9500.2019.07.028

    HUANG T,LIU S.Advances in research on production and control of disinfection by-products in drinking water treatment[J].China Resources Comprehensive Utilization,2019,37(7):88-90. doi: 10.3969/j.issn.1008-9500.2019.07.028
    [22] MA S C,GAN Y Q,CHEN B Y,et al.Understanding and exploring the potentials of household water treatment methods for volatile disinfection by-products control: kinetics, mechanisms, and influencing factors[J].Journal of Hazardous Materials,2017,321:509-516. doi: 10.1016/j.jhazmat.2016.08.053
    [23] SHI W D,WANG L,CHEN B Y.Kinetics, mechanisms, and influencing factors on the treatment of haloacetonitriles (HANs) in water by two household heating devices[J].Chemosphere,2017,172:278-285. doi: 10.1016/j.chemosphere.2017.01.017
    [24] XIAO J N,YUE Q Y,GAO B Y,et al.Performance of activated carbon/nanoscale zero-valent iron for removal of trihalomethanes (THMs) at infinitesimal concentration in drinking water[J].Chemical Engineering Journal,2014,253:63-72. doi: 10.1016/j.cej.2014.05.030
    [25] LEI X,LEI Y,ZHANG X R,et al.Treating disinfection byproducts with UV or solar irradiation and in UV advanced oxidation processes: a review[J].Journal of Hazardous Materials,2021,408:124435. doi: 10.1016/j.jhazmat.2020.124435
    [26] DONG L X,HUANG X C,WANG Z,et al.A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles[J].Separation and Purification Technology,2016,166:230-239. doi: 10.1016/j.seppur.2016.04.043
    [27] YIN J,DENG B L.Polymer-matrix nanocomposite membranes for water treatment[J].Journal of Membrane Science,2015,479:256-275. doi: 10.1016/j.memsci.2014.11.019
    [28] BELLONA C,DREWES J E,XU P,et al.Factors affecting the rejection of organic solutes during NF/RO treatment: a literature review[J].Water Research,2004,38(12):2795-2809. doi: 10.1016/j.watres.2004.03.034
    [29] GREENLEE L F,LAWLER D F,FREEMAN B D,et al.Reverse osmosis desalination: water sources, technology, and today's challenges[J].Water Research,2009,43(9):2317-2348. doi: 10.1016/j.watres.2009.03.010
    [30] LIYANAARACHCHI S,SHU L,MUTHUKUMARAN S,et al.Problems in seawater industrial desalination processes and potential sustainable solutions: a review[J].Reviews in Environmental Science and Bio/Technology,2014,13(2):203-214. doi: 10.1007/s11157-013-9326-y
    [31] WANG Jinwen.Transport and removal mechanisms of trace organic pollutants by nanofiltration and reverse osmosis membranes[D].Los Angeles:University of California,2014.
    [32] TANG C Y,YANG Z,GUO H,et al.Potable water reuse through advanced membrane technology[J].Environmental Science & Technology,2018,52(18):10215-10223.
    [33] MAGARA Y,AIZAWA T,KUNIKANE S,et al.The behavior of inorganic constituents and disinfection by products in reverse osmosis water desalination process[J].Water Science and Technology,1996,34(9):141-148. doi: 10.2166/wst.1996.0196
    [34] AGUS E,SEDLAK D L.Formation and fate of chlorination by-products in reverse osmosis desalination systems[J].Water Research,2010,44(5):1616-1626. doi: 10.1016/j.watres.2009.11.015
    [35] 石文栋.水中卤代乙腈去除方式及其影响因素的研究[D].哈尔滨:哈尔滨工业大学,2017.
    [36] KARAKULSKI K,GRYTA M,MORAWSKI A W.Pilot plant studies on the removal of trihalomethanes by composite reverse osmosis membranes[J].Desalination,2001,140(3):227-234. doi: 10.1016/S0011-9164(01)00372-1
    [37] FUJIOKA T,NGHIEM L D,KHAN S J,et al.Effects of feed solution characteristics on the rejection of N-nitrosamines by reverse osmosis membranes[J].Journal of Membrane Science,2012,409/410:66-74. doi: 10.1016/j.memsci.2012.03.035
    [38] 付一菲.基于ZIF-8的聚酰胺反渗透复合膜的制备与性能研究[D].哈尔滨:哈尔滨工业大学,2018.
    [39] 何忠,王志良,杨绍贵,等.纳滤、反渗透工艺深度处理饮用水研究[J].长江科学院院报,2016,33(4):11-15. doi: 10.11988/ckyyb.20141075

    HE Z,WANG Z L,YANG S G,et al.Advanced treatment of drinking water with NF and RO technology[J].Journal of Yangtze River Scientific Research Institute,2016,33(4):11-15. doi: 10.11988/ckyyb.20141075
    [40] STEINLE-DARLING E,ZEDDA M,PLUMLEE M H,et al.Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA[J].Water Research,2007,41(17):3959-3967. doi: 10.1016/j.watres.2007.05.034
    [41] FUJIOKA T,KODAMATANI H,NGHIEM L D,et al.Transport of N-nitrosamines through a reverse osmosis membrane: role of molecular size and nitrogen atoms[J].Environmental Science & Technology Letters,2019,6(1):44-48.
    [42] YANG L Y,SHE Q H,WAN M P,et al.Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration[J].Water Research,2017,116:116-125. doi: 10.1016/j.watres.2017.03.025
    [43] DOEDERER K,FARRÉ M J,PIDOU M,et al.Rejection of disinfection by-products by RO and NF membranes: influence of solute properties and operational parameters[J].Journal of Membrane Science,2014,467:195-205. doi: 10.1016/j.memsci.2014.05.029
    [44] FANG C,OU T A,WANG X Y,et al.Effects of feed solution characteristics and membrane fouling on the removal of THMs by UF/NF/RO membranes[J].Chemosphere,2020,260:127625. doi: 10.1016/j.chemosphere.2020.127625
    [45] CHEN B Y,JIANG J Y,YANG X,et al.Roles and knowledge gaps of point-of-use technologies for mitigating health risks from disinfection byproducts in tap water: a critical review[J].Water Research,2021,200:117265. doi: 10.1016/j.watres.2021.117265
    [46] CHEN B Y,ZHANG C,WANG L,et al.Removal of disinfection byproducts in drinking water by flexible reverse osmosis: Efficiency comparison, fates, influencing factors, and mechanisms[J].Journal of Hazardous Materials,2021,401:123408. doi: 10.1016/j.jhazmat.2020.123408
    [47] BEN-DAVID A,BASON S,JOPP J,et al.Partitioning of organic solutes between water and polyamide layer of RO and NF membranes: correlation to rejection[J].Journal of Membrane Science,2006,281(1/2):480-490.
    [48] LIU Y L,WANG X M,YANG H W,et al.Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes[J].Chemosphere,2018,200:36-47. doi: 10.1016/j.chemosphere.2018.02.088
    [49] NGHIEM L D,SCHÄFER A I,ELIMELECH M.Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane[J].Journal of Membrane Science,2006,286(1/2):52-59.
    [50] FANG C,WANG X Y,XIAO R,et al.Rejection of chlorinated, brominated, and iodinated trihalomethanes by multi-stage reverse osmosis:efficiency and mechanisms[J].Chemosphere,2021,268:129307. doi: 10.1016/j.chemosphere.2020.129307
    [51] LINGE K L,BLYTHE J W,BUSETTI F,et al.Formation of halogenated disinfection by-products during microfiltration and reverse osmosis treatment: implications for water recycling[J].Separation and Purification Technology,2013,104:221-228. doi: 10.1016/j.seppur.2012.11.031
    [52] KIM D,AMY G L,KARANFIL T.Disinfection by-product formation during seawater desalination: a review[J].Water Research,2015,81:343-355. doi: 10.1016/j.watres.2015.05.040
    [53] QIN J J,OO M H,WAI M N,et al.Effect of feed pH on an integrated membrane process for the reclamation of a combined rinse water from electroless nickel plating[J].Journal of Membrane Science,2003,217(1/2):261-268.
    [54] WANG L,SUN Y N,CHEN B Y.Rejection of haloacetic acids in water by multi-stage reverse osmosis: efficiency, mechanisms, and influencing factors[J].Water Research,2018,144:383-392. doi: 10.1016/j.watres.2018.07.045
    [55] FUJIOKA T,KHAN S J,POUSSADE Y,et al.N-nitrosamine removal by reverse osmosis for indirect potable water reuse: a critical review based on observations from laboratory-, pilot- and full-scale studies[J].Separation and Purification Technology,2012,98:503-515. doi: 10.1016/j.seppur.2012.07.025
    [56] CHILDRESS A E,ELIMELECH M.Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics[J].Environmental Science & Technology,2000,34(17):3710-3716.
    [57] OAK M S,KOBAYASHI T,WANG H Y,et al.pH effect on molecular size exclusion of polyacrylonitrile ultrafiltration membranes having carboxylic acid groups[J].Journal of Membrane Science,1997,123(2):185-195. doi: 10.1016/S0376-7388(96)00214-1
    [58] 汤钟. 水中典型卤代甲烷降解影响因素研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [59] FUJIOKA T,KHAN S J,MCDONALD J A,et al.N-nitrosamine rejection by nanofiltration and reverse osmosis membranes: the importance of membrane characteristics[J].Desalination,2013,316:67-75. doi: 10.1016/j.desal.2013.01.028
    [60] MIYASHITA Y,PARK S H,HYUNG H,et al.Removal of N-nitrosamines and their precursors by nanofiltration and reverse osmosis membranes[J].Journal of Environmental Engineering,2009,135(9):788-795. doi: 10.1061/(ASCE)EE.1943-7870.0000043
    [61] WIJMANS J G,BAKER R W.The solution-diffusion model: a review[J].Journal of Membrane Science,1995,107(1/2):1-21.
    [62] AVLONITIS S A,PAPPAS M,MOUTESIDIS K.A unified model for the detailed investigation of membrane modules and RO plants performance[J].Desalination,2007,203(1/2/3):218-228.
    [63] FUJIOKA T,TAKEUCHI H,TANAKA H,et al.A surrogate-based approach for trace organic chemical removal by a high-rejection reverse osmosis membrane[J].Science of the Total Environment,2019,696:134002. doi: 10.1016/j.scitotenv.2019.134002
    [64] SHARMA R R,AGRAWAL R,CHELLAM S.Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters[J].Journal of Membrane Science,2003,223(1/2):69-87.
    [65] TSURU T,OGAWA K,KANEZASHI M,et al.Permeation characteristics of electrolytes and neutral solutes through titania nanofiltration membranes at high temperatures[J].Langmuir:the ACS Journal of Surfaces and Colloids,2010,26(13):10897-10905. doi: 10.1021/la100791j
    [66] 孙亚南.多级反渗透法去除水中典型消毒副产物影响因素的研究[D].哈尔滨:哈尔滨工业大学,2017.
    [67] 甘轶群.家庭常用设备对饮用水中卤代甲烷的去除研究[D].哈尔滨:哈尔滨工业大学,2015.
    [68] 张驰.水中典型消毒副产物在循环反渗透中去除效果和归趋研究[D].哈尔滨:哈尔滨工业大学,2019.
    [69] ESCODA A,FIEVET P,LAKARD S,et al.Influence of salts on the rejection of polyethyleneglycol by an NF organic membrane: pore swelling and salting-out effects[J].Journal of Membrane Science,2010,347(1/2):174-182.
    [70] LUO J Q,WAN Y H.Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes[J].Journal of Membrane Science,2011,372(1/2):145-153.
    [71] 郭晓崎.饮用水消毒副产物三氯乙醛去除性质的研究[D].哈尔滨:哈尔滨工业大学,2014.
    [72] KISO Y,MUROSHIGE K,OGUCHI T,et al.Pore radius estimation based on organic solute molecular shape and effects of pressure on pore radius for a reverse osmosis membrane[J].Journal of Membrane Science,2011,369(1/2):290-298.
    [73] FREGER V.Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study[J].Environmental Science & Technology,2004,38(11):3168-3175.
    [74] KWAK S Y,JUNG S G,KIM S H.Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films[J].Environmental Science & Technology,2001,35(21):4334-4340.
    [75] FUJIOKA T,KHAN S J,MCDONALD J A,et al.Effects of membrane fouling on N-nitrosamine rejection by nanofiltration and reverse osmosis membranes[J].Journal of Membrane Science,2013,427:311-319. doi: 10.1016/j.memsci.2012.09.055
    [76] ZAZOULI M A,NASSERI S,ULBRICHT M.Fouling effects of humic and alginic acids in nanofiltration and influence of solution composition[J].Desalination,2010,250(2):688-692. doi: 10.1016/j.desal.2009.05.021
    [77] ZAZOULI M A,SUSANTO H,NASSERI S,et al.Influences of solution chemistry and polymeric natural organic matter on the removal of aquatic pharmaceutical residuals by nanofiltration[J].Water Research,2009,43(13):3270-3280. doi: 10.1016/j.watres.2009.04.038
    [78] KIMURA K,AMY G,DREWES J E,et al.Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes[J].Journal of Membrane Science,2003,227(1/2):113-121.
    [79] NGHIEM L D,SCHÄFER A I,ELIMELECH M.Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms[J].Environmental Science & Technology,2004,38(6):1888-1896.
    [80] FUJIOKA T,ISHIDA K P,SHINTANI T,et al.High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors[J].Water Research,2018,131:45-51. doi: 10.1016/j.watres.2017.12.025
    [81] FUJIOKA T,OSAKO M,ODA K,et al.Impact of heat modification conditions on the removal of N-nitrosodimethylamine by polyamide reverse osmosis membranes[J].Separation and Purification Technology,2020,247:116921. doi: 10.1016/j.seppur.2020.116921
    [82] LIN S H,ELIMELECH M.Staged reverse osmosis operation: configurations, energy efficiency, and application potential[J].Desalination,2015,366:9-14. doi: 10.1016/j.desal.2015.02.043
    [83] FUJIOKA T,KODAMATANI H,TAKEUCHI H,et al.Online monitoring of N-nitrosodimethylamine for the removal assurance of 1,4-dioxane and other trace organic compounds by reverse osmosis[J].Environmental Science:Water Research & Technology,2018,4(12):2021-2028.
    [84] VAN-DER-BRUGGEN B,VERLIEFDE A,BRAEKEN L,et al.Assessment of a semi-quantitative method for estimation of the rejection of organic compounds in aqueous solution in nanofiltration[J].Journal of Chemical Technology & Biotechnology,2006,81(7):1166-1176.
    [85] VERLIEFDE A R D,CORNELISSEN E R,HEIJMAN S G J,et al.The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration[J].Journal of Membrane Science,2008,322(1):52-66. doi: 10.1016/j.memsci.2008.05.022
    [86] ZAZOULI M A,KALANKESH L R.Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water:a review[J].Journal of Environmental Health Science & Engineering,2017,15:25.
    [87] 郭学博.氨基酸类前体物生成含氮消毒副产物的形成过程及控制研究[D].合肥:合肥工业大学,2019.
    [88] RAJAMOHAN R,VENUGOPALAN V P,DEBASIS M,et al.Efficiency of reverse osmosis in removal of total organic carbon and trihalomethane from drinking water[J].Research Journal of Chemistry and Environment,2014,18(12):1-6.
    [89] PLUMLEE M H,LÓPEZ-MESAS M,HEIDLBERGER A,et al.N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS[J].Water Research,2008,42(1/2):347-355.
    [90] 杨哲,孙迎雪,石娜,等.海水淡化超滤-反渗透工艺沿程溴代消毒副产物变化规律[J].环境科学,2015,36(10):3706-3714.

    YANG Z,SUN Y X,SHI N,et al.Formation and variation of brominated disinfection by-products in a combined ultrafiltration and reverse osmosis process for seawater desalination[J].Environmental Science,2015,36(10):3706-3714.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  23
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 修回日期:  2021-10-13
  • 网络出版日期:  2022-03-07

目录

    /

    返回文章
    返回