[1] |
TANG Y L,LONG X,WU M Y,et al.Bibliometric review of research trends on disinfection by-products in drinking water during 1975-2018[J].Separation and Purification Technology,2020,241:116741. doi: 10.1016/j.seppur.2020.116741
|
[2] |
DU Y J,ZHAO L A,BAN J E,et al.Cumulative health risk assessment of disinfection by-products in drinking water by different disinfection methods in typical regions of China[J].Science of the Total Environment,2021,770:144662. doi: 10.1016/j.scitotenv.2020.144662
|
[3] |
KALI S,KHAN M,GHAFFAR M S,et al.Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: a comprehensive review[J].Environmental Pollution,2021,281:116950. doi: 10.1016/j.envpol.2021.116950
|
[4] |
李晨,张建柱.氯化消毒剂对供水水质影响的探讨[J].供水技术,2017,11(4):43-44. doi: 10.3969/j.issn.1673-9353.2017.04.011LI C,ZHANG J Z.Discussion of the influence of chlorinated disinfectants on water quality[J].Water Technology,2017,11(4):43-44. doi: 10.3969/j.issn.1673-9353.2017.04.011
|
[5] |
LI X F,MITCH W A.Drinking water disinfection byproducts (DBPs) and human health effects: multidisciplinary challenges and opportunities[J].Environmental Science & Technology,2018,52(4):1681-1689.
|
[6] |
MARAIS S S,NCUBE E J,MSAGATI T A M,et al.Comparison of natural organic matter removal by ultrafiltration, granular activated carbon filtration and full scale conventional water treatment[J].Journal of Environmental Chemical Engineering,2018,6(5):6282-6289. doi: 10.1016/j.jece.2018.10.002
|
[7] |
LOU J X,WANG W,ZHU L Z.Transformation of emerging disinfection byproducts Halobenzoquinones to haloacetic acids during chlorination of drinking water[J].Chemical Engineering Journal,2021,418:129326. doi: 10.1016/j.cej.2021.129326
|
[8] |
QIAN Y K,CHEN Y N,HU Y E,et al.Formation and control of C-DBPs and N-DBPs during disinfection of filter backwash and sedimentation sludge water in drinking water treatment[J].Water Research,2021,194:116964. doi: 10.1016/j.watres.2021.116964
|
[9] |
肖融,楚文海.全球饮用水标准中消毒副产物管控指标对比与启示[J].环境科学研究,2021,34(6):1328-1337.XIAO R,CHU W H.Disinfection by-product regulatory compliance in global drinking water standards: comparison and enlightenment[J].Research of Environmental Sciences,2021,34(6):1328-1337.
|
[10] |
张瑞华,纪桂霞,楚文海.微生物对饮用水典型消毒副产物前体物的降解效能及其群落特征[J].环境科学研究,2019,32(4):700-708.ZHANG R H,JI G X,CHU W H.Degradation of precursors of typical disinfection byproducts in drinking water by microorganisms and its microbial communities[J].Research of Environmental Sciences,2019,32(4):700-708.
|
[11] |
朱红霞,薛荔栋,刘进斌,等.含氯消毒副产物的种类、危害与地表水污染现状[J].环境科学研究,2020,33(7):1640-1648.ZHU H X,XUE L D,LIU J B,et al.Types, hazards and pollution status of chlorinated disinfection by-products in surface water[J].Research of Environmental Sciences,2020,33(7):1640-1648.
|
[12] |
MAZHAR M A,KHAN N A,AHMED S,et al.Chlorination disinfection by-products in municipal drinking water: a review[J].Journal of Cleaner Production,2020,273:123159. doi: 10.1016/j.jclepro.2020.123159
|
[13] |
彭宏熙,李聪.中国和美国、日本饮用水水质标准的比较探究[J].中国给水排水,2018,34(10):26-31.PENG H X,LI C.Comparative study of drinking water quality standards among China, the United States and Japan[J].China Water & Wastewater,2018,34(10):26-31.
|
[14] |
WANG X M,MAO Y Q,TANG S,et al.Disinfection byproducts in drinking water and regulatory compliance: a critical review[J].Frontiers of Environmental Science & Engineering,2015,9(1):3-15.
|
[15] |
YANG L Y,CHEN X M,SHE Q H,et al.Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: a critical review[J].Environment International,2018,121:1039-1057. doi: 10.1016/j.envint.2018.10.024
|
[16] |
ALEXANDROU L,MEEHAN B J,JONES O A H.Regulated and emerging disinfection by-products in recycled waters[J].Science of the Total Environment,2018,637/638:1607-1616. doi: 10.1016/j.scitotenv.2018.04.391
|
[17] |
林明利,秦建明,张全斌.“从源头到龙头”的饮用水安全保障技术体系及其应用[J].环境工程技术学报,2019,9(4):362-367. doi: 10.12153/j.issn.1674-991X.2019.01.190LIN M L,QIN J M,ZHANG Q B.Establishment and application of drinking water insurance technology system from water source to tap[J].Journal of Environmental Engineering Technology,2019,9(4):362-367. doi: 10.12153/j.issn.1674-991X.2019.01.190
|
[18] |
FU J E,LEE W N,COLEMAN C,et al.Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment[J].Water Research,2017,123:224-235. doi: 10.1016/j.watres.2017.06.073
|
[19] |
ZHAO Y M,XIAO F,WANG D S,et al.Disinfection byproduct precursor removal by enhanced coagulation and their distribution in chemical fractions[J].Journal of Environmental Sciences,2013,25(11):2207-2213. doi: 10.1016/S1001-0742(12)60286-1
|
[20] |
SRIVASTAV A L,PATEL N,CHAUDHARY V K.Disinfection by-products in drinking water: occurrence, toxicity and abatement[J].Environmental Pollution,2020,267:115474. doi: 10.1016/j.envpol.2020.115474
|
[21] |
黄涛,刘硕.饮用水处理消毒副产物产生及控制研究进展[J].中国资源综合利用,2019,37(7):88-90. doi: 10.3969/j.issn.1008-9500.2019.07.028HUANG T,LIU S.Advances in research on production and control of disinfection by-products in drinking water treatment[J].China Resources Comprehensive Utilization,2019,37(7):88-90. doi: 10.3969/j.issn.1008-9500.2019.07.028
|
[22] |
MA S C,GAN Y Q,CHEN B Y,et al.Understanding and exploring the potentials of household water treatment methods for volatile disinfection by-products control: kinetics, mechanisms, and influencing factors[J].Journal of Hazardous Materials,2017,321:509-516. doi: 10.1016/j.jhazmat.2016.08.053
|
[23] |
SHI W D,WANG L,CHEN B Y.Kinetics, mechanisms, and influencing factors on the treatment of haloacetonitriles (HANs) in water by two household heating devices[J].Chemosphere,2017,172:278-285. doi: 10.1016/j.chemosphere.2017.01.017
|
[24] |
XIAO J N,YUE Q Y,GAO B Y,et al.Performance of activated carbon/nanoscale zero-valent iron for removal of trihalomethanes (THMs) at infinitesimal concentration in drinking water[J].Chemical Engineering Journal,2014,253:63-72. doi: 10.1016/j.cej.2014.05.030
|
[25] |
LEI X,LEI Y,ZHANG X R,et al.Treating disinfection byproducts with UV or solar irradiation and in UV advanced oxidation processes: a review[J].Journal of Hazardous Materials,2021,408:124435. doi: 10.1016/j.jhazmat.2020.124435
|
[26] |
DONG L X,HUANG X C,WANG Z,et al.A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles[J].Separation and Purification Technology,2016,166:230-239. doi: 10.1016/j.seppur.2016.04.043
|
[27] |
YIN J,DENG B L.Polymer-matrix nanocomposite membranes for water treatment[J].Journal of Membrane Science,2015,479:256-275. doi: 10.1016/j.memsci.2014.11.019
|
[28] |
BELLONA C,DREWES J E,XU P,et al.Factors affecting the rejection of organic solutes during NF/RO treatment: a literature review[J].Water Research,2004,38(12):2795-2809. doi: 10.1016/j.watres.2004.03.034
|
[29] |
GREENLEE L F,LAWLER D F,FREEMAN B D,et al.Reverse osmosis desalination: water sources, technology, and today's challenges[J].Water Research,2009,43(9):2317-2348. doi: 10.1016/j.watres.2009.03.010
|
[30] |
LIYANAARACHCHI S,SHU L,MUTHUKUMARAN S,et al.Problems in seawater industrial desalination processes and potential sustainable solutions: a review[J].Reviews in Environmental Science and Bio/Technology,2014,13(2):203-214. doi: 10.1007/s11157-013-9326-y
|
[31] |
WANG Jinwen.Transport and removal mechanisms of trace organic pollutants by nanofiltration and reverse osmosis membranes[D].Los Angeles:University of California,2014.
|
[32] |
TANG C Y,YANG Z,GUO H,et al.Potable water reuse through advanced membrane technology[J].Environmental Science & Technology,2018,52(18):10215-10223.
|
[33] |
MAGARA Y,AIZAWA T,KUNIKANE S,et al.The behavior of inorganic constituents and disinfection by products in reverse osmosis water desalination process[J].Water Science and Technology,1996,34(9):141-148. doi: 10.2166/wst.1996.0196
|
[34] |
AGUS E,SEDLAK D L.Formation and fate of chlorination by-products in reverse osmosis desalination systems[J].Water Research,2010,44(5):1616-1626. doi: 10.1016/j.watres.2009.11.015
|
[35] |
石文栋.水中卤代乙腈去除方式及其影响因素的研究[D].哈尔滨:哈尔滨工业大学,2017.
|
[36] |
KARAKULSKI K,GRYTA M,MORAWSKI A W.Pilot plant studies on the removal of trihalomethanes by composite reverse osmosis membranes[J].Desalination,2001,140(3):227-234. doi: 10.1016/S0011-9164(01)00372-1
|
[37] |
FUJIOKA T,NGHIEM L D,KHAN S J,et al.Effects of feed solution characteristics on the rejection of N-nitrosamines by reverse osmosis membranes[J].Journal of Membrane Science,2012,409/410:66-74. doi: 10.1016/j.memsci.2012.03.035
|
[38] |
付一菲.基于ZIF-8的聚酰胺反渗透复合膜的制备与性能研究[D].哈尔滨:哈尔滨工业大学,2018.
|
[39] |
何忠,王志良,杨绍贵,等.纳滤、反渗透工艺深度处理饮用水研究[J].长江科学院院报,2016,33(4):11-15. doi: 10.11988/ckyyb.20141075HE Z,WANG Z L,YANG S G,et al.Advanced treatment of drinking water with NF and RO technology[J].Journal of Yangtze River Scientific Research Institute,2016,33(4):11-15. doi: 10.11988/ckyyb.20141075
|
[40] |
STEINLE-DARLING E,ZEDDA M,PLUMLEE M H,et al.Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA[J].Water Research,2007,41(17):3959-3967. doi: 10.1016/j.watres.2007.05.034
|
[41] |
FUJIOKA T,KODAMATANI H,NGHIEM L D,et al.Transport of N-nitrosamines through a reverse osmosis membrane: role of molecular size and nitrogen atoms[J].Environmental Science & Technology Letters,2019,6(1):44-48.
|
[42] |
YANG L Y,SHE Q H,WAN M P,et al.Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration[J].Water Research,2017,116:116-125. doi: 10.1016/j.watres.2017.03.025
|
[43] |
DOEDERER K,FARRÉ M J,PIDOU M,et al.Rejection of disinfection by-products by RO and NF membranes: influence of solute properties and operational parameters[J].Journal of Membrane Science,2014,467:195-205. doi: 10.1016/j.memsci.2014.05.029
|
[44] |
FANG C,OU T A,WANG X Y,et al.Effects of feed solution characteristics and membrane fouling on the removal of THMs by UF/NF/RO membranes[J].Chemosphere,2020,260:127625. doi: 10.1016/j.chemosphere.2020.127625
|
[45] |
CHEN B Y,JIANG J Y,YANG X,et al.Roles and knowledge gaps of point-of-use technologies for mitigating health risks from disinfection byproducts in tap water: a critical review[J].Water Research,2021,200:117265. doi: 10.1016/j.watres.2021.117265
|
[46] |
CHEN B Y,ZHANG C,WANG L,et al.Removal of disinfection byproducts in drinking water by flexible reverse osmosis: Efficiency comparison, fates, influencing factors, and mechanisms[J].Journal of Hazardous Materials,2021,401:123408. doi: 10.1016/j.jhazmat.2020.123408
|
[47] |
BEN-DAVID A,BASON S,JOPP J,et al.Partitioning of organic solutes between water and polyamide layer of RO and NF membranes: correlation to rejection[J].Journal of Membrane Science,2006,281(1/2):480-490.
|
[48] |
LIU Y L,WANG X M,YANG H W,et al.Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes[J].Chemosphere,2018,200:36-47. doi: 10.1016/j.chemosphere.2018.02.088
|
[49] |
NGHIEM L D,SCHÄFER A I,ELIMELECH M.Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane[J].Journal of Membrane Science,2006,286(1/2):52-59.
|
[50] |
FANG C,WANG X Y,XIAO R,et al.Rejection of chlorinated, brominated, and iodinated trihalomethanes by multi-stage reverse osmosis:efficiency and mechanisms[J].Chemosphere,2021,268:129307. doi: 10.1016/j.chemosphere.2020.129307
|
[51] |
LINGE K L,BLYTHE J W,BUSETTI F,et al.Formation of halogenated disinfection by-products during microfiltration and reverse osmosis treatment: implications for water recycling[J].Separation and Purification Technology,2013,104:221-228. doi: 10.1016/j.seppur.2012.11.031
|
[52] |
KIM D,AMY G L,KARANFIL T.Disinfection by-product formation during seawater desalination: a review[J].Water Research,2015,81:343-355. doi: 10.1016/j.watres.2015.05.040
|
[53] |
QIN J J,OO M H,WAI M N,et al.Effect of feed pH on an integrated membrane process for the reclamation of a combined rinse water from electroless nickel plating[J].Journal of Membrane Science,2003,217(1/2):261-268.
|
[54] |
WANG L,SUN Y N,CHEN B Y.Rejection of haloacetic acids in water by multi-stage reverse osmosis: efficiency, mechanisms, and influencing factors[J].Water Research,2018,144:383-392. doi: 10.1016/j.watres.2018.07.045
|
[55] |
FUJIOKA T,KHAN S J,POUSSADE Y,et al.N-nitrosamine removal by reverse osmosis for indirect potable water reuse: a critical review based on observations from laboratory-, pilot- and full-scale studies[J].Separation and Purification Technology,2012,98:503-515. doi: 10.1016/j.seppur.2012.07.025
|
[56] |
CHILDRESS A E,ELIMELECH M.Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics[J].Environmental Science & Technology,2000,34(17):3710-3716.
|
[57] |
OAK M S,KOBAYASHI T,WANG H Y,et al.pH effect on molecular size exclusion of polyacrylonitrile ultrafiltration membranes having carboxylic acid groups[J].Journal of Membrane Science,1997,123(2):185-195. doi: 10.1016/S0376-7388(96)00214-1
|
[58] |
汤钟. 水中典型卤代甲烷降解影响因素研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
|
[59] |
FUJIOKA T,KHAN S J,MCDONALD J A,et al.N-nitrosamine rejection by nanofiltration and reverse osmosis membranes: the importance of membrane characteristics[J].Desalination,2013,316:67-75. doi: 10.1016/j.desal.2013.01.028
|
[60] |
MIYASHITA Y,PARK S H,HYUNG H,et al.Removal of N-nitrosamines and their precursors by nanofiltration and reverse osmosis membranes[J].Journal of Environmental Engineering,2009,135(9):788-795. doi: 10.1061/(ASCE)EE.1943-7870.0000043
|
[61] |
WIJMANS J G,BAKER R W.The solution-diffusion model: a review[J].Journal of Membrane Science,1995,107(1/2):1-21.
|
[62] |
AVLONITIS S A,PAPPAS M,MOUTESIDIS K.A unified model for the detailed investigation of membrane modules and RO plants performance[J].Desalination,2007,203(1/2/3):218-228.
|
[63] |
FUJIOKA T,TAKEUCHI H,TANAKA H,et al.A surrogate-based approach for trace organic chemical removal by a high-rejection reverse osmosis membrane[J].Science of the Total Environment,2019,696:134002. doi: 10.1016/j.scitotenv.2019.134002
|
[64] |
SHARMA R R,AGRAWAL R,CHELLAM S.Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters[J].Journal of Membrane Science,2003,223(1/2):69-87.
|
[65] |
TSURU T,OGAWA K,KANEZASHI M,et al.Permeation characteristics of electrolytes and neutral solutes through titania nanofiltration membranes at high temperatures[J].Langmuir:the ACS Journal of Surfaces and Colloids,2010,26(13):10897-10905. doi: 10.1021/la100791j
|
[66] |
孙亚南.多级反渗透法去除水中典型消毒副产物影响因素的研究[D].哈尔滨:哈尔滨工业大学,2017.
|
[67] |
甘轶群.家庭常用设备对饮用水中卤代甲烷的去除研究[D].哈尔滨:哈尔滨工业大学,2015.
|
[68] |
张驰.水中典型消毒副产物在循环反渗透中去除效果和归趋研究[D].哈尔滨:哈尔滨工业大学,2019.
|
[69] |
ESCODA A,FIEVET P,LAKARD S,et al.Influence of salts on the rejection of polyethyleneglycol by an NF organic membrane: pore swelling and salting-out effects[J].Journal of Membrane Science,2010,347(1/2):174-182.
|
[70] |
LUO J Q,WAN Y H.Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes[J].Journal of Membrane Science,2011,372(1/2):145-153.
|
[71] |
郭晓崎.饮用水消毒副产物三氯乙醛去除性质的研究[D].哈尔滨:哈尔滨工业大学,2014.
|
[72] |
KISO Y,MUROSHIGE K,OGUCHI T,et al.Pore radius estimation based on organic solute molecular shape and effects of pressure on pore radius for a reverse osmosis membrane[J].Journal of Membrane Science,2011,369(1/2):290-298.
|
[73] |
FREGER V.Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study[J].Environmental Science & Technology,2004,38(11):3168-3175.
|
[74] |
KWAK S Y,JUNG S G,KIM S H.Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films[J].Environmental Science & Technology,2001,35(21):4334-4340.
|
[75] |
FUJIOKA T,KHAN S J,MCDONALD J A,et al.Effects of membrane fouling on N-nitrosamine rejection by nanofiltration and reverse osmosis membranes[J].Journal of Membrane Science,2013,427:311-319. doi: 10.1016/j.memsci.2012.09.055
|
[76] |
ZAZOULI M A,NASSERI S,ULBRICHT M.Fouling effects of humic and alginic acids in nanofiltration and influence of solution composition[J].Desalination,2010,250(2):688-692. doi: 10.1016/j.desal.2009.05.021
|
[77] |
ZAZOULI M A,SUSANTO H,NASSERI S,et al.Influences of solution chemistry and polymeric natural organic matter on the removal of aquatic pharmaceutical residuals by nanofiltration[J].Water Research,2009,43(13):3270-3280. doi: 10.1016/j.watres.2009.04.038
|
[78] |
KIMURA K,AMY G,DREWES J E,et al.Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes[J].Journal of Membrane Science,2003,227(1/2):113-121.
|
[79] |
NGHIEM L D,SCHÄFER A I,ELIMELECH M.Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms[J].Environmental Science & Technology,2004,38(6):1888-1896.
|
[80] |
FUJIOKA T,ISHIDA K P,SHINTANI T,et al.High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors[J].Water Research,2018,131:45-51. doi: 10.1016/j.watres.2017.12.025
|
[81] |
FUJIOKA T,OSAKO M,ODA K,et al.Impact of heat modification conditions on the removal of N-nitrosodimethylamine by polyamide reverse osmosis membranes[J].Separation and Purification Technology,2020,247:116921. doi: 10.1016/j.seppur.2020.116921
|
[82] |
LIN S H,ELIMELECH M.Staged reverse osmosis operation: configurations, energy efficiency, and application potential[J].Desalination,2015,366:9-14. doi: 10.1016/j.desal.2015.02.043
|
[83] |
FUJIOKA T,KODAMATANI H,TAKEUCHI H,et al.Online monitoring of N-nitrosodimethylamine for the removal assurance of 1,4-dioxane and other trace organic compounds by reverse osmosis[J].Environmental Science:Water Research & Technology,2018,4(12):2021-2028.
|
[84] |
VAN-DER-BRUGGEN B,VERLIEFDE A,BRAEKEN L,et al.Assessment of a semi-quantitative method for estimation of the rejection of organic compounds in aqueous solution in nanofiltration[J].Journal of Chemical Technology & Biotechnology,2006,81(7):1166-1176.
|
[85] |
VERLIEFDE A R D,CORNELISSEN E R,HEIJMAN S G J,et al.The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration[J].Journal of Membrane Science,2008,322(1):52-66. doi: 10.1016/j.memsci.2008.05.022
|
[86] |
ZAZOULI M A,KALANKESH L R.Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water:a review[J].Journal of Environmental Health Science & Engineering,2017,15:25.
|
[87] |
郭学博.氨基酸类前体物生成含氮消毒副产物的形成过程及控制研究[D].合肥:合肥工业大学,2019.
|
[88] |
RAJAMOHAN R,VENUGOPALAN V P,DEBASIS M,et al.Efficiency of reverse osmosis in removal of total organic carbon and trihalomethane from drinking water[J].Research Journal of Chemistry and Environment,2014,18(12):1-6.
|
[89] |
PLUMLEE M H,LÓPEZ-MESAS M,HEIDLBERGER A,et al.N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS[J].Water Research,2008,42(1/2):347-355.
|
[90] |
杨哲,孙迎雪,石娜,等.海水淡化超滤-反渗透工艺沿程溴代消毒副产物变化规律[J].环境科学,2015,36(10):3706-3714.YANG Z,SUN Y X,SHI N,et al.Formation and variation of brominated disinfection by-products in a combined ultrafiltration and reverse osmosis process for seawater desalination[J].Environmental Science,2015,36(10):3706-3714.
|