Pollution Characteristics and Risk Assessment of Psychoactive Substances in Aqueous Environment of Changzhou City
-
摘要: 为评估精神活性物质(psychoactive substances,PSs)在常州市水环境中的污染特征、潜在来源及生态风险,利用超高效液相色谱-质谱联用(UPLC-MS/MS)方法,检测了地表水(湖泊、河流及饮用水源水)中13种典型PSs的污染水平和分布特征. 结果表明:常州市湖泊、河流及饮用水源水三类地表水中甲基苯丙胺(methamphetamine,METH)、苯丙胺(amphetamine,AMP)、3,4-亚甲基二氧基苯丙胺(3,4-methylenedioxy amphetamine,MDA)、海洛因(heroin,HR)、氯胺酮(ketamine,KET)、美沙酮(methadone,MET)及麻黄碱(ephedrine,EPH)均有不同程度检出. ∑PSs (13种典型PSs)的检出浓度范围为0.67~39.03 ng/L,其中在河流中的检出频率和浓度较高,EPH (0.23~21.98 ng/L)和METH (nd~8.47 ng/L)是检出浓度和频率较高的单体目标物. 采用主成分分析对PSs的来源进行解析,发现医院、生活污水的直接排放以及污水处理厂出水可能是常州水体中PSs的主要来源. 对常州市水环境中PSs进行生态风险评估,发现新浮山水库及长荡湖中MET对水生生物具有低风险〔0.01<RQ(risk quotient)<0.1〕,其余采样点的RQ<0.01. 研究显示,常州市水环境中的主要滥用药物为EPH和METH,虽然PSs对水生生物产生的生态风险可忽略不计,但是PSs对水生生态系统的长期风险仍需引起关注.
-
关键词:
- 精神活性物质(PSs) /
- 污染特征 /
- 源解析 /
- 环境风险
Abstract: In order to assess the contamination characteristics, potential sources and ecological risks of psychoactive substances (PSs) in the water environment of Changzhou City, the contamination levels and distribution characteristics of 13 typical psychoactive substances in surface water (lakes, rivers and drinking water) in Changzhou were analyzed using ultra performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Methamphetamine, amphetamine, 3,4-methylenedioxy amphetamine, heroin, ketamine, methadone and ephedrine were detected to varying degrees. The detected concentrations of ∑PSs in the three types of surface waters ranged from 0.67 ng/L to 39.03 ng/L, and the frequency and concentration of ∑PSs in surface waters and rivers were higher than in drinking water. The monomer target with the highest detection concentration and frequency was EPH (0.23-21.98 ng/L), followed by METH (nd-8.47 ng/L). Among all sampling locations, the Wunan River located in the lower reaches of Gehu Lake had the highest detection concentration (EPH at 21.98 ng/L). Principal component analysis was used to analyze the sources of PSs, indicating that the direct discharge of hospitals and domestic sewage and the effluent from sewage treatment plants may be the main sources of PSs in Changzhou′s water bodies. The ecological risk assessment of PSs in the water environment of Changzhou City showed that MET in Xinfushan Reservoir and Changdang Lake had low risk to aquatic organisms (0.01<(risk quotient, RQ)<0.1), and the risk quotients in the remaining locations were less than 0.01. This research shows that the main drugs of abuse in the water environment of Changzhou City were EPH and METH. The ecological risks of PSs to aquatic organisms are negligible, but the long-term risks of PSs to aquatic ecosystems still need attention. -
表 1 PSs的理化性质
Table 1. Basic physicochemical properties of PSs
化合物 结构式 分子式 分子量 CAS登记号 pKa 水溶性/(g/L) EPH C10H15NO 165 299-42-3 10.3[3] — AMP C9H13N 135 300-62-9 10.1[3] 28.03 METH C10H15N 149 4846-07-5 9.9[3] 4.28 MC C10H13NO 163 5650-44-2 8.0[3] — MDA C10H13NO2 179 4764-17-4 9.67[36] 15.87 MDMA C11H15NO2 193 42542-1-9 9.9[36] 7.03 NK C12H14ClNO 223 35211-10-0 — 1.80 KET C13H16ClNO 238 6740-88-1 7.5[3] 3.87 BE C16H19NO4 289 519-09-5 10.1[36] 1.61 COC C17H21NO4 303 50-36-2 8.61[36] 1.30 MET C21H27NO 309 76-99-3 8.94[36] — HR C21H23NO5 369 561-27-3 7.95[36] — COD C18H21NO3 299 76-57-3 8.21[36] 12.15 表 2 目标物质的洗脱梯度
Table 2. Elution gradient of target substance
时间/min 流速/
(mL/min)流动相/% 进样量/μL A(0.1%甲酸水) B(乙腈) 0 0.45 98 2 5 0~0.5 0.45 98 2 5 0.5~4.5 0.45 50 50 5 4.5~4.6 0.45 2 98 5 4.6~6.0 0.45 2 98 5 6.0~6.2 0.45 98 2 5 6.2~7.0 0.45 98 2 5 表 3 目标物质的特征选择离子及质谱条件
Table 3. Analyte ions for UPLC-MS /MS monitoring, and conditions of collision voltage and declustering potential
目标物 保留
时间/
min母离子
(m/z)去簇
电压/
V定量离子 定性离子 碰撞电
压/V子离子
(m/z)碰撞电
压/V子离子
(m/z)EPH 1.3 166.0 35 20 133.2 3 148.0 AMP 1.8 136.1 14 14 91.0 9 119.1 METH 2.0 150.1 22 16 91.0 10 119.1 MC 1.6 164.1 20 18 131.0 22 105.0 MDA 1.9 180.0 22 20 105.0 16 135.4 MDMA 2.0 194.1 22 12 163.0 24 105.0 NK 2.2 224.0 28 24 125.0 50 89.2 KET 2.3 232.0 16 24 125.0 16 179.0 BE 2.3 290.0 20 20 168.1 28 105.0 COC 2.7 304.1 6 18 182.1 28 82.1 MET 3.9 310.1 4 24 105.0 48 77.1 HR 2.6 370.0 34 48 165.1 26 268.1 COD 1.7 300.0 28 26 215.1 35 165.1 METH-d8 1.9 158.1 16 22 93.1 12 124.0 表 4 常州市水环境中PSs的LOD、LOQ、回收率以及入常州市水环境中其检出浓度
Table 4. LOD, LOQ, detection rates and concentrations of PSs in the water environment of Changzhou City
化合物 回收率/% LOD/
(ng/L)LOQ/
(ng/L)浓度/(ng/L) Milli-Q水 自来水 地表水 最小值 最大值 中值 AMP 101.5±7.7 98.7±18.3 85.6±24.0 0.010 0.015 nd 0.53 0.46 METH 107.2±24.1 107.5±27.7 105.5±13.4 0.005 0.010 nd 8.47 0.34 MC 87.4±28.5 85.0±25.9 100.3±12.7 0.400 0.450 nd 0.38 0.37 MDA 95.2±7.9 92.1±6.6 80.7±32.4 0.150 0.200 nd 7.96 0.15 MDMA 106.9±13.8 101.9±9.1 90.6±16.9 0.200 0.250 nd 0.20 0.19 NK 105.1±18.4 108.2±17.1 104.1±9.0 0.010 0.020 nd <LOD nd KET 107.0±28.0 101.4±26.2 105.3±23.6 0.020 0.050 nd 3.29 0.30 BE 100.0±35.8 103.0±25.1 105.6±21.2 0.005 0.010 nd nd nd COC 101.2±27.1 113.9±21.1 107.2±33.8 0.300 0.350 nd 0.34 0.28 MET 110.3±19.5 111.5±23.0 105.2±21.5 0.400 0.450 nd 4.67 0.48 HR 96.1±22.0 98.4±15.1 104.2±17.4 0.010 0.020 nd 3.83 0.29 COD 100.8±24.7 92.0±20.9 82.7±22.2 0.050 0.010 nd 0.15 nd EPH 105.5±9.7 112.0±16.9 94.5±12.5 0.010 0.015 0.23 21.98 0.41 ∑PSs — — — — — 0.23 51.80 3.27 注:LOD为检出限,LOQ为定量限,nd表示未检出. 下同. 表 5 国内外地表水中AMP、METH、MET和KET的浓度
Table 5. Concentrations of AMP, METH, MET and KET in surface water from different regions
ng/L 采样区域 METH AMP COC BE HR KET MDA MDMA MET 中国鄱阳湖[12] 0.37 0.15 <LOD <LOD 0.31 0.55 <LOD 0.01 <LOD 中国巢湖[12] 0.90 <LOD <LOD <LOD <LOD 0.60 <LOD <LOD <LOD 中国太湖[12] 0.20 <LOD <LOD <LOD <LOD 0.70 <LOD <LOD <LOD 中国海河[14] 2.92 <LOD 3.62 2.82 <LOD 0.08 <LOD <LOD 0.04 中国黄河[14] 8.14 <LOD 202.00 206.00 <LOD 6.27 <LOD <LOD <LOD 西班牙[9] <LOD 2.34 2.47 31.33 <LOD <LOD 0.60 1.82 1.05 意大利[2] <LOD <LOD 16.20 64.60 <LOD <LOD 0.80 0.80 3.30 英国[2] 0.30 <LOD 4.40 19.00 <LOD 21.3 1.25 6.15 5.00 比利时[11] <LOD <LOD 15.30 96.00 <LOD <LOD <LOD <LOD <LOD 表 6 常州市水环境中PSs浓度的相关性
Table 6. Relevance of PSs concentrations in Changzhou City
项目 AMP
浓度METH
浓度MDA
浓度KET
浓度MET
浓度HR
浓度EPH
浓度AMP浓度 1 METH浓度 −0.38* 1 MDA浓度 −0.34 0.97** 1 KET浓度 0.12 0.09 −0.08 1 MET浓度 −0.02 −0.07 −0.13 −0.10 1 HR浓度 0.09 −0.09 −0.07 −0.08 0.20 1 EPH浓度 −0.39* 0.97** 0.98** −0.09 −0.08 −0.08 1 注:**表示在0.01水平上(双尾)显著相关;*表示在0.05水平上(双尾)显著相关. 表 7 12种PSs的半数致死(效应)浓度L(E)C50和PNEC值
Table 7. Half effect concentration L(E)C50 and PNEC values of 12 psychoactive substance
目标物 L(E)C50/(mg/L) AF PNEC/(mg/L) 数据来源 藻类 水溞 鱼类 COC 2.28 4.90 13.00 1 000 2.28×10−3 ECOSAR软件 BE 12 041.67 6 805.16 33 458.81 1 000 6.81×100 ECOSAR软件 EPH 3.91 3.62 56.00 1 000 3.62×10−3 文献[53] MDMA 2.30 0.22 24.18 1 000 2.20×10−4 ECOSAR 软件 AMP 3.80 2.22 28.80 1 000 2.22×10−3 ECOSAR 软件 METH 1.97 2.51 20.51 1 000 1.97×10−3 文献[54] HR 7.63 11.22 2.93 1 000 2.93×10−3 ECOSAR软件 MET 0.17 0.34 2.24 1 000 1.70×10−4 ECOSAR软件 COD 18.36 18.83 171.79 1 000 1.84×10−2 ECOSAR 软件 MC 4.00 — — 1 000 4.00×10−3 ECOSAR 软件 MDA 4.60 — — 1 000 4.60×10−3 ECOSAR 软件 KET 0.72 1.13 8.34 1 000 7.20×10−4 ECOSAR 软件 -
[1] The United Nations Office on Drugs and Crime (UNDC).World drug report 2014[R].New York:United Nations Publication,2014. [2] ZUCCATO E,CASTIGLIONI S,BAGNATI R,et al.Illicit drugs, a novel group of environmental contaminants[J].Water Research,2008,42(4/5):961-968. [3] 张艳,张婷婷,郭昌胜,等.北京市城市河流中精神活性物质的污染水平及环境风险[J].环境科学研究,2016,29(6):845-853.ZHANG Y,ZHANG T T,GUO C S,et al.Pollution status and environmental risks of illicit drugs in the urban rivers of Beijing[J].Research of Environmental Sciences,2016,29(6):845-853. [4] POSTIGO C,DE-ALDA M J L,BARCELÓ D.Fully automated determination in the low nanogram per liter level of different classes of drugs of abuse in sewage water by on-line solid-phase extraction-liquid chromatography-electrospray-tandem mass spectrometry[J].Analytical Chemistry,2008,80(9):3123-3134. doi: 10.1021/ac702060j [5] PAL R,MEGHARAJ M,KIRKBRIDE K P,et al.Illicit drugs and the environment: a review[J].Science of the Total Environment,2013,463/464:1079-1092. doi: 10.1016/j.scitotenv.2012.05.086 [6] POSTIGO C,LÓPEZ DE-ALDA M J,BARCELÓ D.Drugs of abuse and their metabolites in the Ebro River Basin: occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation[J].Environment International,2010,36(1):75-84. doi: 10.1016/j.envint.2009.10.004 [7] EVGENIDOU E N,KONSTANTINOU I K,LAMBROPOULOU D A.Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: a review[J].Science of the Total Environment,2015,505:905-926. doi: 10.1016/j.scitotenv.2014.10.021 [8] VALCÁRCEL Y,MARTÍNEZ F,GONZÁLEZ-ALONSO S,et al.Drugs of abuse in surface and tap waters of the Tagus River Basin: heterogeneous photo-Fenton process is effective in their degradation[J].Environment International,2012,41:35-43. doi: 10.1016/j.envint.2011.12.006 [9] ROSA BOLEDA M,HUERTA-FONTELA M,VENTURA F,et al.Evaluation of the presence of drugs of abuse in tap waters[J].Chemosphere,2011,84(11):1601-1607. doi: 10.1016/j.chemosphere.2011.05.033 [10] ZUCCATO E,CHIABRANDO C,CASTIGLIONI S,et al.Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse[J].Environmental Health,2005,4:14. doi: 10.1186/1476-069X-4-14 [11] VAN-NUIJS A L N,PECCEU B,THEUNIS L,et al.Spatial and temporal variations in the occurrence of cocaine and benzoylecgonine in waste- and surface water from Belgium and removal during wastewater treatment[J].Water Research,2009,43(5):1341-1349. doi: 10.1016/j.watres.2008.12.020 [12] LI K Y,DU P,XU Z Q,et al.Occurrence of illicit drugs in surface waters in China[J].Environmental Pollution,2016,213:395-402. doi: 10.1016/j.envpol.2016.02.036 [13] MASTROIANNI N,BLEDA M J,LÓPEZ-DE- ALDA M,et al.Occurrence of drugs of abuse in surface water from four Spanish river basins: spatial and temporal variations and environmental risk assessment[J].Journal of Hazardous Materials,2016,316:134-142. doi: 10.1016/j.jhazmat.2016.05.025 [14] WANG D G,ZHENG Q D,WANG X P,et al.Illicit drugs and their metabolites in 36 rivers that drain into the Bohai Sea and north Yellow Sea, North China[J].Environmental Science and Pollution Research,2016,23(16):16495-16503. doi: 10.1007/s11356-016-6824-9 [15] VAN-DER-AA M,BIJLSMA L,EMKE E,et al.Risk assessment for drugs of abuse in the Dutch watercycle[J].Water Research,2013,47(5):1848-1857. doi: 10.1016/j.watres.2013.01.013 [16] The United Nations Office on Drugs and Crime (UNDC).World drug report 2021[R].New York:United Nations Publication,2021. [17] BARTELT-HUNT S L,SNOW D D,DAMON T,et al.The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska[J].Environmental Pollution,2009,157(3):786-791. doi: 10.1016/j.envpol.2008.11.025 [18] BAKER D R,KASPRZYK-HORDERN B.Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography-positive electrospray ionisation tandem mass spectrometry[J].Journal of Chromatography A,2011,1218(12):1620-1631. [19] MENDOZA A,RODRÍGUEZ-GIL J L,GONZÁLEZ-ALONSO S,et al.Drugs of abuse and benzodiazepines in the Madrid Region (Central Spain): seasonal variation in river waters, occurrence in tap water and potential environmental and human risk[J].Environment International,2014,70:76-87. doi: 10.1016/j.envint.2014.05.009 [20] 国家禁毒委员会办公室.2019年中国毒品形势报告[R].北京:国家禁毒委员会办公室,2019. [21] LI J,HOU L L,DU P,et al.Estimation of amphetamine and methamphetamine uses in Beijing through sewage-based analysis[J].Science of the Total Environment,2014,490:724-732. doi: 10.1016/j.scitotenv.2014.05.042 [22] ZHANG Y,ZHANG T T T,GUO C S,et al.Drugs of abuse and their metabolites in the urban rivers of Beijing, China: occurrence, distribution, and potential environmental risk[J].Science of the Total Environment,2017,579:305-313. doi: 10.1016/j.scitotenv.2016.11.101 [23] LIN A Y C,WANG X H,LIN C F.Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters[J].Chemosphere,2010,81(5):562-570. doi: 10.1016/j.chemosphere.2010.08.051 [24] JIANG J J,LEE C L,FANG M D.Emerging organic contaminants in coastal waters: anthropogenic impact, environmental release and ecological risk[J].Marine Pollution Bulletin,2014,85(2):391-399. doi: 10.1016/j.marpolbul.2013.12.045 [25] ONDARZA P M,HADDAD S P,AVIGLIANO E,et al.Pharmaceuticals, illicit drugs and their metabolites in fish from Argentina: implications for protected areas influenced by urbanization[J].Science of the Total Environment,2019,649:1029-1037. doi: 10.1016/j.scitotenv.2018.08.383 [26] de SOLLA S R,GILROY È A M,KLINCK J S,et al.Bioaccumulation of pharmaceuticals and personal care products in the unionid mussel Lasmigona costata in a river receiving wastewater effluent[J].Chemosphere,2016,146:486-496. doi: 10.1016/j.chemosphere.2015.12.022 [27] DU B W,HADDAD S P,SCOTT W C,et al.Pharmaceutical bioaccumulation by periphyton and snails in an effluent-dependent stream during an extreme drought[J].Chemosphere,2015,119:927-934. doi: 10.1016/j.chemosphere.2014.08.044 [28] ARNNOK P,SINGH R R,BURAKHAM R,et al.Selective uptake and bioaccumulation of antidepressants in fish from effluent-impacted Niagara River[J].Environmental Science & Technology,2017,51(18):10652-10662. [29] WANG Z L,MAO K,DU W,et al.Diluted concentrations of methamphetamine in surface water induce behavior disorder, transgenerational toxicity, and ecosystem-level consequences of fish[J].Water Research,2020,184:116164. doi: 10.1016/j.watres.2020.116164 [30] SANCHO-SANTOS M E,GRABICOVÁ K,STEINBACH C,et al.Environmental concentration of methamphetamine induces pathological changes in brown trout (Salmo trutta fario)[J].Chemosphere,2020,254:126882. doi: 10.1016/j.chemosphere.2020.126882 [31] 殷行行,郭昌胜,邓洋慧,等.麻黄碱在斑马鱼体内的器官特异性蓄积及毒代动力学[J].环境科学,2021,42(3):1496-1502.YIN X X,GUO C S,DENG Y H,et al.Organ-specific accumulation and toxicokinetics of ephedrine in adult zebrafish (Danio rerio)[J].Environmental Sciences,2021,42(3):1496-1502. [32] 秦伯强.太湖水环境演化过程与机理[M].北京:科学出版社,2004:389. [33] 邓洋慧,郭昌胜,殷行行,等.太湖入湖河流中精神活性物质污染特征与生态风险[J].生态毒理学报,2020,15(1):119-130. doi: 10.7524/AJE.1673-5897.20191027001DENG Y H,GUO C S,YIN X X,et al.Pollution characteristics and ecological risks of psychoactive substances in rivers entering Taihu Lake[J].Asian Journal of Ecotoxicology,2020,15(1):119-130. doi: 10.7524/AJE.1673-5897.20191027001 [34] 张晓孟,李斌,单永平,等.辽河流域印染行业重点排污河段有机污染物的定性分析[J].环境工程技术学报,2013,3(6):519-526.ZHANG X M,LI B,SHAN Y P,et al.Qualitative analysis of organic pollutants in key receiving waterbody of effluents from printing and dyeing industries in Liaohe River Basin[J].Journal of Environmental Engineering Technology,2013,3(6):519-526. [35] 刘铮,曹婷,王璠,等.行业全过程水特征污染物和优控污染物清单筛选技术研究及其在常州市纺织染整业的应用[J].环境科学研究,2020,33(11):2540-2553.LIU Z,CAO T,WANG F,et al.Screening technology of water characteristic pollutants and priority pollutants list from whole-process of industry and its application in textile dyeing and finishing industry of Changzhou City[J].Research of Environmental Sciences,2020,33(11):2540-2553. [36] 谷得明,郭昌胜,冯启言,等.精神活性物质在北京市某污水处理厂中的污染特征与生态风险[J].环境科学研究,2020,33(3):659-667.GU D M,GUO C S,FENG Q Y,et al.Occurrence and ecological risk of psychoactive substances in a wastewater treatment plant in Beijing[J].Research of Environmental Sciences,2020,33(3):659-667. [37] 张琳,张福成,王朝虹,等.固相萃取-超高效液相色谱-电喷雾串联质谱法同时检测尿样中的麻黄碱和N-甲基麻黄碱[J].色谱,2013,31(9):898-902. doi: 10.3724/SP.J.1123.2013.02028ZHANG L,ZHANG F C,WANG Z H,et al.Simultaneous determination of ephedrine and N-methylephedrine in urine by solid phase extraction-ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry[J].Chinese Journal of Chromatography,2013,31(9):898-902. doi: 10.3724/SP.J.1123.2013.02028 [38] WANG Z L,XU Z Q,LI X Q.Impacts of methamphetamine and ketamine on C. elegans's physiological functions at environmentally relevant concentrations and eco-risk assessment in surface waters[J].Journal of Hazardous Materials,2019,363:268-276. doi: 10.1016/j.jhazmat.2018.09.020 [39] JIANG J J,LEE C L,FANG M D,et al.Impacts of emerging contaminants on surrounding aquatic environment from a youth festival[J].Environmental Science & Technology,2015,49(2):792-799. [40] MARTÍNEZ BUENO M J,UCLÉS S,HERNANDO M D,et al.Development of a solvent-free method for the simultaneous identification/quantification of drugs of abuse and their metabolites in environmental water by LC-MS/MS[J].Talanta,2011,85(1):157-166. doi: 10.1016/j.talanta.2011.03.051 [41] POSTIGO C,DE ALDA M J L,BARCELÓ D.Analysis of drugs of abuse and their human metabolites in water by LC-MS2: a non-intrusive tool for drug abuse estimation at the community level[J].TrAC Trends in Analytical Chemistry,2008,27(11):1053-1069. doi: 10.1016/j.trac.2008.10.002 [42] DU P,LI K Y,LI J,et al.Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology[J].Water Research,2015,84:76-84. doi: 10.1016/j.watres.2015.07.025 [43] BERSET J D,BRENNEISEN R,MATHIEU C.Analysis of llicit and illicit drugs in waste, surface and lake water samples using large volume direct injection high performance liquid chromatographyelectrospray tandem mass spectrometry (HPLC-MS/MS)[J].Chemosphere,2010,81(7):859-866. doi: 10.1016/j.chemosphere.2010.08.011 [44] 杜鹏.中国主要城市毒品滥用的污水流行病学研究[D].北京:北京大学,2016. [45] CASTIGLIONI S,BORSOTTI A,SENTA I,et al.Wastewater analysis to monitor spatial and temporal patterns of use of two synthetic recreational drugs, ketamine and mephedrone, in Italy[J].Environmental Science & Technology,2015,49(9):5563-5570. [46] 蔡金傍,孙旭,苏良湖,等.滆湖污染源调查与分析[J].江苏农业科学,2018,46(5):224-227.CAI J B,SUN X,SU L H,et al.Investigation and analysis of pollution sources of Gehu Lake[J].Jiangsu Agricultural Sciences,2018,46(5):224-227. [47] YAO T,FENG D,PAN M H,et al.Correlation between insufficient methadone dosage and morphine positive urine on drop out of treatment in patients with access to methadone maintenance treatment[J].Chinese Journal of Epidemiology,2017,38(5):646-650. [48] 沈九成,冯煜,孙新会,等.昆明市美沙酮维持治疗患者非法物质使用和生活质量状况调查分析[J].中国药物滥用防治杂志,2018,24(4):187-190.SHEN J C,FENG Y,SUN X H,et al.Concurrentdruguse and quality of life in drug users in methadone maintenance treatment in Kunming, Yunnan Province[J].Chinese Journal of Drug Abuse Prevention and Treatment,2018,24(4):187-190. [49] 尤华,钱燕华,夏娴,等.无锡市美沙酮维持治疗门诊患者药物滥用相关行为学特征调查[J].疾病控制杂志,2007,11(6):554-556. doi: 10.3969/j.issn.1674-3679.2007.06.006YOU H,QIAN Y H,XIA X,et al.Epidemiological survey on the behavior characteristics of patients in the MMT clinic of Wuxi[J].Chinese Journal of Disease Control & Prevention,2007,11(6):554-556. doi: 10.3969/j.issn.1674-3679.2007.06.006 [50] MCLEOD G A. Sympathomimetics[M]//Pharmacology for anaesthesia and intensive care. Cambridge: Cambridge University Press: 187-206. [51] 王丹,燕宇.以麻黄碱为原料合成甲基安非他明的合成路线解析[J].警察技术,2016(1):60-62. doi: 10.3969/j.issn.1009-9875.2016.01.015 [52] 国家禁毒委员会办公室.2020年中国毒品形势报告[R].北京:国家禁毒委员会办公室,2020. [53] SANDERSON H,JOHNSON D J,REITSMA T,et al.Ranking and prioritization of environmental risks of pharmaceuticals in surface waters[J].Regulatory Toxicology and Pharmacology,2004,39(2):158-183. doi: 10.1016/j.yrtph.2003.12.006 [54] LILIUS H,ISOMAA B,HOLMSTRÖM T.A comparison of the toxicity of 50 reference chemicals to freshly isolated rainbow trout hepatocytes and Daphnia magna[J].Aquatic Toxicology,1994,30(1):47-60. doi: 10.1016/0166-445X(94)90005-1 -