Pathway of Carbon Emissions Peak of China′s Coal Chemical Industry
-
摘要: 煤化工行业是我国煤炭消费和CO2排放的主要贡献者之一,在2030年前实现碳达峰目标要求下,煤化工行业高碳排放的发展模式将不可持续且面临巨大挑战,开展煤化工行业CO2排放达峰路径研究、实现高碳能源的绿色低碳化利用成为亟待解决的问题. 基于煤化工各子行业发展现状分析,综合考虑经济社会发展、节能低碳技术应用、原料和燃料结构调整等因素,采用下游部门需求法和项目法分别预测传统煤化工与现代煤化工各子行业未来发展规模,采用碳排放系数法预测不同情景下2021—2035年行业碳排放量变化趋势,判断行业实现碳达峰的关键措施、达峰时间和峰值. 结果表明:①2019年我国煤化工行业碳排放量为5.4×108 t,占全国碳排放总量的4.8%. 其中,传统煤化工碳排放量为3.6×108 t,现代煤化工碳排放量为1.8×108 t. ②基准情景下,煤化工行业无法在2030年前实现碳达峰;强化控制情景下,通过采取一系列控碳措施,可推动煤化工行业在2025年左右提前达到碳排放峰值. ③控制现代煤化工规模、优化行业用能结构、优化甲醇原料结构等措施是煤化工行业碳减排的三项主要措施,到2030年可分别减少碳排放0.50×108、0.16×108和0.08×108 t. 研究显示,促进煤化工行业碳达峰应尽快实施控制现代煤化工发展规模、从源头减少传统煤化工产品需求、优化甲醇行业原料结构、优化煤化工用能结构、提高行业能效水平和促进产品固碳化等政策措施.Abstract: The coal chemical industry is one of the main contributors to China's coal consumption and CO2 emissions. Under the requirement of achieving a carbon peak by 2030, the development way of high carbon emissions of the coal chemical industry will be unsustainable and faces great challenges. It is urgent to carry out the research on the peak path of CO2 emissions from coal chemical industry and achieve green and low-carbon utilization of high-carbon energy. Based on the development status of coal chemical industry, comprehensively considering economic and social development, application of energy-saving and low-carbon technology, adjustment of raw material and fuel structure, the downstream sector demand method and project classification statistics method are used to predict the future development of traditional coal chemical industry and modern coal chemical industry respectively. The carbon emission coefficient method is used to predict the change trend of carbon emissions from 2021 to 2035 under different scenarios. On this basis, the key measures, carbon peak time and peak emissions of the coal chemical industry are determined. The results show that: (1) In 2019, the carbon emissions of coal chemical industry in China is 5.4×108 t, accounting for 4.8% of the national total. Among them, the carbon emissions of traditional and modern coal chemical industries are 3.6×108 and 1.8×108 t, respectively. (2) Under the baseline scenario, the coal chemical industry cannot achieve a carbon peak before 2030. Under the enhanced control scenario, by taking a series of carbon control measures, the coal chemical industry could reach the carbon peak around 2025. (3) Controlling the scale of modern coal chemical industry, optimizing the energy consumption structure, and optimizing the raw material structure of methanol industry are the three main measures for coal chemical industry to reduce carbon emissions. In 2030, the three measures can reduce carbon emissions by 0.50×108, 0.16×108 and 0.08×108 t, respectively. The research shows that policies and measures such as controlling the development scale of modern coal chemical industry, reducing the demand for traditional coal chemical products from the source, optimizing the raw material structure of methanol industry, optimizing the energy consumption structure, improving the energy efficiency, and promoting the carbonization of products should be implemented as soon as possible to promote the carbon peak of coal chemical industry.
-
Key words:
- coal chemical /
- coal consumption /
- carbon emission /
- scenario analysis /
- peak path
-
表 1 煤化工各子行业单位产品碳排放系数
Table 1. Carbon emission coefficient of coal chemical industry
类别 子行业 单位产品碳排放系数/[t/t(以CO2计)] 原料煤 燃料煤 总计 传统煤化工 煤制合成氨 2.4 0.9 3.3 煤焦化 0.1 0.1 0.2 煤制甲醇 2.4 0.8 3.2 现代煤化工 煤直接液化 3.7 2.1 5.8 煤间接液化 4.4 2.0 6.4 煤制天然气 2.7 2.1 4.8 煤制烯烃 6.3 4.5 10.8 煤制乙二醇 3.2 1.9 5.1 表 2 煤焦化行业发展预测参数
Table 2. Development prediction parameters of coal coking industry
指标 2019年 2021年 2025年 2030年 2035年 吨铁综合焦比/(kg/t) 490 488 480 470 460 冶金焦炭需求量/(108 t) 3.96 4.44 4.18 3.2 2.44 其他行业焦炭需求量/(108 t) 0.75 0.75 0.75 0.75 0.75 焦炭产量/(108 t) 4.71 5.19 4.93 3.95 3.19 表 3 甲醇需求量和产量预测
Table 3. Methanol demand and output forecast
104 t 指标 2019年 2025年 2030年 2035年 甲醇需求量 传统消费 2 300 2 400 2 500 2 600 醇醚燃料 1 500 1 500 1 500 1 500 甲醇制烯烃 1 100 1 950 2 200 2 450 合计 4 900 5 850 6 200 6 550 甲醇净进口量 700 700 700 700 甲醇产量 4 200 5 150 5 500 5 850 -
[1] 项目综合报告编写组.《中国长期低碳发展战略与转型路径研究》综合报告[J].中国人口·资源与环境,2020,30(11):1-25. [2] LI J J,ZHANG Y L,TIAN Y J,et al.Reduction of carbon emissions from China′s coal-fired power industry: insights from the Province-level data[J].Journal of Cleaner Production,2020,242:118518. doi: 10.1016/j.jclepro.2019.118518 [3] SCHNEIDER M.The cement industry on the way to a low-carbon future[J].Cement and Concrete Research,2019,124:105792. doi: 10.1016/j.cemconres.2019.105792 [4] 王深,吕连宏,张保留,等.基于多目标模型的中国低成本碳达峰、碳中和路径[J].环境科学研究,2021,34(9):2044-2055.WANG S,LÜ L H,ZHANG B L,et al.Multi objective programming model of low-cost path for China′s peaking carbon dioxide emissions and carbon neutrality[J].Research of Environmental Sciences,2021,34(9):2044-2055. [5] 李继峰,郭焦锋,高世楫,等.我国实现2060年前碳中和目标的路径分析[J].发展研究,2021,38(4):37-47. doi: 10.3969/j.issn.1003-0670.2021.04.007 [6] 蔡博峰,曹丽斌,雷宇,等.中国碳中和目标下的二氧化碳排放路径[J].中国人口·资源与环境,2021,31(1):7-14.CAI B F,CAO L B,LEI Y,et al.China′s carbon emission pathway under the carbon neutrality target[J].China Population, Resources and Environment,2021,31(1):7-14. [7] 赵明轩,吕连宏,王深,等.中国碳达峰路径的Meta回归分析[J].环境科学研究,2021,34(9):2056-2064.ZHAO M X,LÜ L H,WANG S,et al.Meta regression analysis of pathway of peak carbon emissions in China[J].Research of Environmental Sciences,2021,34(9):2056-2064. [8] 闵楠,黄昊英.“碳达峰·碳中和”背景下的煤化工产业发展[J].化工管理,2021(11):83-84.MIN N,HUANG H Y.Development of coal chemical industry under carbon peak and carbon neutralization[J].Chemical Enterprise Management,2021(11):83-84. [9] 张建胜.煤化工行业碳减排路径及煤气化技术对碳达峰碳中和的作用[C].成都:第四届能源转化化学与技术研讨会论文集,2021:44-45. [10] 霍婧,赵卫东.用政策倒逼现代煤化工减碳[N].北京:中国能源报,2021-04-12(3). [11] 霍婧,赵卫东.对黄河流域现代煤化工产业绿色低碳发展的建议[J].科技中国,2021(8):22-24. [12] 王钰,温倩,尚建壮,等.传统化工行业“十三五”回顾和“十四五”发展展望(一)[J].化学工业,2020,38(4):15-26. doi: 10.3969/j.issn.1673-9647.2020.04.004WANG Y,WEN Q A,SHANG J Z,et al.Guide to the ‘13th Five-Year Plan’ of traditional chemical industry and development prospect of ‘14th Five-Year Plan’[J].Chemical Industry,2020,38(4):15-26. doi: 10.3969/j.issn.1673-9647.2020.04.004 [13] 王赫婧,牟滨子,李军,等.典型干煤粉气流床气化全过程污染管控分析[J].环境工程技术学报,2019,9(2):133-138. doi: 10.12153/j.issn.1674-991X.2018.11.080WANG H J,MU B Z,LI J,et al.Pollution whole-process control analysis of typical dry pulverized coal bed gasification[J].Journal of Environmental Engineering Technology,2019,9(2):133-138. doi: 10.12153/j.issn.1674-991X.2018.11.080 [14] 张绍强.统筹推进煤炭行业节能减碳, 积极应对碳达峰、碳中和挑战[J].煤炭加工与综合利用,2021(5):1-6.ZHANG S Q.Coordinate and push industry energy-saving and carbon reduction, actively deal with carbon peak, and carbon neutrality challenge[J].Coal Processing & Comprehensive Utilization,2021(5):1-6. [15] 张媛媛,王永刚,田亚峻.典型现代煤化工过程的二氧化碳排放比较[J].化工进展,2016,35(12):4060-4064.ZHANG Y Y,WANG Y G,TIAN Y J.Comparative studies on carbon dioxide emissions of typical modern coal chemical processes[J].Chemical Industry and Engineering Progress,2016,35(12):4060-4064. [16] 蔡涛,刘宏卫,包兴.煤化工行业二氧化碳利用技术的分析研究[J].中国煤炭,2018,44(1):98-105. doi: 10.3969/j.issn.1006-530X.2018.01.019CAI T,LIU H W,BAO X.Analysis and research on carbon dioxide utilization technology in coal chemical industry[J].China Coal,2018,44(1):98-105. doi: 10.3969/j.issn.1006-530X.2018.01.019 [17] DING Y J,HAN W J,CHAI Q H,et al.Coal-based synthetic natural gas (SNG): a solution to China's energy security and CO2 reduction?[J].Energy Policy,2013,55:445-453. doi: 10.1016/j.enpol.2012.12.030 [18] ZHOU W J,ZHU B,CHEN D J,et al.How policy choice affects investment in low-carbon technology: the case of CO2 capture in indirect coal liquefaction in China[J].Energy,2014,73:670-679. doi: 10.1016/j.energy.2014.06.068 [19] BURMISTRZ P,CHMIELNIAK T,CZEPIRSKI L,et al.Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification[J].Journal of Cleaner Production,2016,139:858-865. doi: 10.1016/j.jclepro.2016.08.112 [20] QIN Z,ZHAI G F,WU X M,et al.Carbon footprint evaluation of coal-to-methanol chain with the hierarchical attribution management and life cycle assessment[J].Energy Conversion and Management,2016,124:168-179. doi: 10.1016/j.enconman.2016.07.005 [21] LI J,HU S Y.History and future of the coal and coal chemical industry in China[J].Resources, Conservation and Recycling,2017,124:13-24. doi: 10.1016/j.resconrec.2017.03.006 [22] ZHANG L Y,SHEN Q,WANG M Q,et al.Driving factors and predictions of CO2 emission in China′s coal chemical industry[J].Journal of Cleaner Production,2019,210:1131-1140. doi: 10.1016/j.jclepro.2018.10.352 [23] HUANG Y,YI Q,KANG J X,et al.Investigation and optimization analysis on deployment of China coal chemical industry under carbon emission constraints[J].Applied Energy,2019,254:113684. doi: 10.1016/j.apenergy.2019.113684 [24] GONG M H,YI Q,HUANG Y,et al.Coke oven gas to methanol process integrated with CO2 recycle for high energy efficiency, economic benefits and low emissions[J].Energy Conversion and Management,2017,133:318-331. doi: 10.1016/j.enconman.2016.12.010 [25] XIE K C,LI W Y,ZHAO W.Coal chemical industry and its sustainable development in China[J].Energy,2010,35(11):4349-4355. doi: 10.1016/j.energy.2009.05.029 [26] ZHOU W J,ZHU B,LI Q A,et al.CO2 emissions and mitigation potential in China′s ammonia industry[J].Energy Policy,2010,38(7):3701-3709. [27] ZHU B,ZHOU W J,HU S Y,et al.CO2 emissions and reduction potential in China′s chemical industry[J].Energy,2010,35(12):4663-4670. [28] 宋名秀,孙洪志,阿布都拉江·那斯尔,等.二氧化碳减排技术路线探讨[J].现代化工,2013,33(8):5-8.SONG M X,SUN H Z,ABUDOULAJIANG N S E,et al.Discussion on carbon dioxide emission reduction technologies[J].Modern Chemical Industry,2013,33(8):5-8. [29] LI W,LU C,DING Y,et al.The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China[J].Applied Energy,2017,204:509-524. doi: 10.1016/j.apenergy.2017.07.017 [30] ZHANG C,WANG Q W,SHI D,et al.Scenario-based potential effects of carbon trading in China:an integrated approach[J].Applied Energy,2016,182:177-190. doi: 10.1016/j.apenergy.2016.08.133 [31] 刘殿栋,王钰.现代煤化工产业碳减排、碳中和方案探讨[J].煤炭加工与综合利用,2021(5):67-72.LIU D D,WANG Y.Discussion on scheme of carbon reduction and carbon neutralization in modern coal chemical industry[J].Coal Processing & Comprehensive Utilization,2021(5):67-72. [32] 韩红梅,朱彬彬,龚华俊,等.现代煤化工行业“十三五”回顾和“十四五”发展展望(二)[J].化学工业,2021,39(1):17-20.HAN H M,ZHU B B,GONG H J,et al.Summary of ‘13th Five-Year Plan’ operation of modern coal chemical industry and development prospect of ‘14th Five-Year Plan’[J].Chemical Industry,2021,39(1):17-20. [33] 胡迁林,赵明.“十四五”时期现代煤化工发展思考[J].中国煤炭,2021,47(3):2-8.HU Q L,ZHAO M.Thinking on the development of modern coal chemical industry during the ‘14th Five-Year Plan’ period[J].China Coal,2021,47(3):2-8. [34] 魏宁,刘胜男,李小春.中国煤化工行业开展CO2强化深部咸水开采技术的潜力评价[J].气候变化研究进展,2021,17(1):70-78.WEI N,LIU S N,LI X C.Evaluation on potential of CO2 enhanced water recovery deployment in China′s coal chemical industry[J].Climate Change Research,2021,17(1):70-78. [35] 靳国忠,张晓,朱汉雄,等.应对碳减排挑战 现代煤化工多能融合创新发展研究[J].中国煤炭,2021,47(3):15-20. doi: 10.3969/j.issn.1006-530X.2021.03.003JIN G Z,ZHANG X,ZHU H X,et al.Research on multi-energy and innovation integration development of modern coal chemical industry to meet the challenge of carbon emission reduction[J].China Coal,2021,47(3):15-20. doi: 10.3969/j.issn.1006-530X.2021.03.003 [36] 王瑞,许义榕,孟渴欣,等.二氧化碳转化制取燃料及高值化学品研究进展[J].环境工程技术学报,2020,10(4):639-646. doi: 10.12153/j.issn.1674-991X.20190179WANG R,XU Y R,MENG K X,et al.Development of research on the conversion of carbon dioxide into fuel and high value-added products[J].Journal of Environmental Engineering Technology,2020,10(4):639-646. doi: 10.12153/j.issn.1674-991X.20190179 [37] 汪旭颖,李冰,吕晨,等.中国钢铁行业二氧化碳排放达峰路径研究[J].环境科学研究,2022.doi: 10.13198/j.issn.1001-6929.2021.11.11WANG X,LI B,LÜ C,et al. China's iron and steel industry carbon emissions peak pathway[J].Research of Environmental Sciences,2022.doi: 10.13198/j.issn.1001-6929.2021.11.11. -