Degradation of Climbazole by Ozonation: Influencing Factors and Degradation Products
-
摘要: 唑类抗真菌剂广泛应用于药物和个人护理品(pharmaceutical and personal care products,PPCPs)中,常规污水处理工艺难以将其有效去除. 大量唑类抗真菌剂排入受纳环境后会对生态系统造成一系列负面影响. 为了解唑类抗真菌剂的臭氧氧化降解过程和机理,以氯咪巴唑(climbazole,CZ)为例,通过设置不同条件的对比试验,系统研究CZ在臭氧氧化过程中的影响因素及其去除规律,同时采用超高效液相色谱-飞行时间质谱联用仪UPLC-Q/TOF对其降解产物进行鉴定. 影响因素试验结果表明:①CZ起始浓度由1.0 mg/L增至4.0 mg/L时,臭氧氧化20 min下CZ的降解率从99.1%降至69.3%;②反应体系起始pH由5.0升至9.0时,CZ臭氧降解半衰期由1.38 min延长至7.18 min;③臭氧流速由0.1 L/min增至0.4 L/min时,臭氧氧化20 min时CZ的降解率从66.5%提至99.4%,但臭氧流速超过0.3 L/min以后,CZ降解率的增幅较小;④自然水体及其高浓度共存组分(碳酸氢根和腐殖酸)均会明显抑制CZ的臭氧氧化反应速率,CZ降解半衰期大多数超过6 min (空白对照组为1.99 min). 因此,在臭氧氧化降解新兴有机污染物或对臭氧氧化工艺进行优化时,应充分考虑起始污染负荷、pH、臭氧流速、水体水质状况等对处理效果的影响. 产物鉴定结果表明:臭氧氧化反应可将CZ碎裂重组形成两个主要降解产物——TP269和TP297,二者的产率分别为11.45%和8.90%. 研究显示,起始污染负荷、pH、臭氧流速、水体水质状况均会明显影响CZ的臭氧降解效果;两个CZ臭氧降解产物的产率虽不高,但其毒性有待进一步研究.Abstract: Azole antifungals are widely used in pharmaceutical and personal care products (PPCPs), and they are difficult to be removed by conventional wastewater treatment processes. A large amount of azole antifungals discharged into the receiving environment may cause a series of negative effects. In order to understand the degradation kinetics and mechanism of azole antifungals by ozonation, climbazole (CZ) was selected as the target compound, the influencing factors and removal law were systematically studied through setting comparative experiments under different ozonation conditions, and the degradation products were identified by UPLC-Q/TOF. The results showed that: (1) When the initial CZ concentration increased from 1.0 mg/L to 4.0 mg/L, the degradation of CZ at 20 min ozonation decreased from 99.1% to 69.3%. (2) The half-lives of CZ degradation by ozone increased from 1.38 min to 7.18 min with the increase of the initial pH from 5.0 to 9.0. (3) The degradation of CZ at 20 min ozonation increased from 66.5% to 99.4% when the ozone flow rate increased from 0.1 L/min to 0.4 L/min, but it increased very slow when the ozone flow rate exceeded 0.3 L/min. (4) Natural water and its coexisting components (high concentration of bicarbonate radical and humic acid) showed significant inhibition effects on the degradation of CZ in ozonation process, where the degradation half-lives of CZ were more than 6 min (1.99 min for blank controller) in most cases. Therefore, the influence factors such as initial pollution load, pH value, ozone flow rate and water quality should be considered when using ozonation as a treatment technology to remove emerging organic pollutants. Two main CZ degradation products (TP269 and TP297) were formed through fracturing and restructuring in the ozonation treatment, with the products yields of 11.45% and 8.90%, respectively. Above results reveals that ozone degradation effect of CZ can be influence obviously by initial pollution load, pH value, ozone flow rate and water quality etc. The yields of two CZ degradation products were very low, but their toxicity needs to be studied.
-
Key words:
- ozonation /
- climbazole /
- influencing factors /
- degradation rate /
- half-life /
- degradation products
-
表 1 臭氧氧化降解CZ的试验条件设置
Table 1. Experimental condition setting for the ozonation degradation of CZ
影响
因素起始CZ浓度/
(mg/L)起始pH 臭氧流速/
(L/min)碳酸氢钠添加浓度/
(mg/L)腐殖酸添加浓度/
(mg/L)自然水体类型 起始CZ浓度 1.0、2.0、3.0、4.0 7.0 0.2 0 0 纯水 起始pH 3.0 5.0、7.0、 9.0 0.2 0 0 纯水 臭氧流速 3.0 7.0 0.1、0.2、0.3、0.4 0 0 纯水 碳酸氢根浓度 3.0 7.0 0.2 0、10、20、50、100 0 纯水 腐殖酸浓度 3.0 7.0 0.2 0 0、1.0、3.0、6.0、9.0 纯水 自然水体类型 3.0 7.0 0.2 0 0 纯水、珠江河水、水厂二级进水、自来水 表 2 氯咪巴唑及其臭氧降解产物质谱测定信息汇总
Table 2. Information summary of mass spectrometry measurement for climbazole and its ozonation transformation products (TPs)
母体/产物 保留时
间/min准确质
量数加和离子
(+H或+Na)仪器测定的
质荷比(m/z)分子式 不饱和
度/Ω质量数
偏差/10−6匹配分析
置信度(i-FIT
confidence)/%MS/MS碎
片(m/z)氯咪巴唑(climbazole) 7.71 292.097 9 +H 293.104 20 C15H17ClN2O2 8 — — 197.071 90、129.008 32 TP269 8.41 269.081 9 +Na 292.071 76 C13H16ClNO3 6 -2.5 99.85 196.018 09、168.022 88、
164.069 45、141.011 21、
140.026 95、TP297 9.79 297.076 8 +Na 320.066 42 C14H16ClNO4 7 -2.6 97.42 320.066 42 -
[1] CALOGIURI G,GARVEY L H,NETTIS E,et al.Skin allergy to azole antifungal agents for systemic use: a review of the literature[J].Recent Patents on Inflammation & Allergy Drug Discovery,2019,13(2):144-157. [2] CHEN Z F,YING G G,MA Y B,et al.Occurrence and dissipation of three azole biocides climbazole, clotrimazole and miconazole in biosolid-amended soils[J].Science of the Total Environment,2013,452/453:377-383. doi: 10.1016/j.scitotenv.2013.03.004 [3] LIU W R,YANG Y Y,LIU Y S,et al.Biocides in wastewater treatment plants: mass balance analysis and pollution load estimation[J].Journal of Hazardous Materials,2017,329:310-320. doi: 10.1016/j.jhazmat.2017.01.057 [4] RICHTER E,WICK A,TERNES T A,et al.Ecotoxicity of climbazole, a fungicide contained in antidandruff shampoo[J].Environmental Toxicology and Chemistry,2013,32(12):2816-2825. doi: 10.1002/etc.2367 [5] YAO L,ZHAO J L,LIU Y S,et al.Personal care products in wild fish in two main Chinese rivers: bioaccumulation potential and human health risks[J].Science of the Total Environment,2018,621:1093-1102. doi: 10.1016/j.scitotenv.2017.10.117 [6] 颜世超.氯咪巴唑在斑马鱼体内的生物富集与代谢干扰效应研究[D].广州:广东工业大学,2019: 11-17. [7] TAXVIG C,VINGGAARD A M,HASS U,et al.Endocrine-disrupting properties in vivo of widely used azole fungicides[J].International Journal of Andrology,2008,31(2):170-177. doi: 10.1111/j.1365-2605.2007.00838.x [8] TERNES T A,STÜBER J,HERRMANN N,et al.Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater?[J].Water Research,2003,37(8):1976-1982. doi: 10.1016/S0043-1354(02)00570-5 [9] ZHANG Q Q,YING G G,CHEN Z F,et al.Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China[J].Science of the Total Environment,2015,520:39-48. doi: 10.1016/j.scitotenv.2015.03.038 [10] LIU W R,YANG Y Y,LIU Y S,et al.Biocides in the river system of a highly urbanized region: a systematic investigation involving runoff input[J].Science of the Total Environment,2018,624:1023-1030. doi: 10.1016/j.scitotenv.2017.12.225 [11] 金鑫,金鹏康,孔茜,等.污水厂二级出水溶解性有机物臭氧化特性研究[J].中国环境科学,2015,35(10):2985-2990. doi: 10.3969/j.issn.1000-6923.2015.10.014JIN X,JIN P K,KONG Q,et al.Ozonation characteristics of dissolved effluent organic matter from the secondary effluent of WWTP[J].China Environmental Science,2015,35(10):2985-2990. doi: 10.3969/j.issn.1000-6923.2015.10.014 [12] 郑晓英,王俭龙,李鑫玮,等.臭氧氧化深度处理二级处理出水的研究[J].中国环境科学,2014,34(5):1159-1165.ZHENG X Y,WANG J L,LI X W,et al.Advanced treatment of secondary effluent by ozonation[J].China Environmental Science,2014,34(5):1159-1165. [13] 刘涛,沈志强,宋玉栋,等.2-丁烯醛生产废水的臭氧脱毒预处理[J].环境科学研究,2020,33(1):104-110.LIU T,SHEN Z Q,SONG Y D,et al.Detoxification of crotonaldehyde manufacture wastewater pretreated by ozone oxidation process[J].Research of Environmental Sciences,2020,33(1):104-110. [14] HUBER M M,GÖBEL A,JOSS A,et al.Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study[J].Environmental Science & Technology,2005,39(11):4290-4299. [15] 牙柳丁,王文龙,胡洪营,等.城市污水二级处理出水中不同种类PPCPs的臭氧氧化效果与机制研究[J].环境科学学报,2020,40(11):3868-3876.YA L D,WANG W L,HU H Y,et al.Comparative study on ozonation efficiency and mechanism of different types of PPCPs in secondary effluent from municipal wastewater[J].Acta Scientiae Circumstantiae,2020,40(11):3868-3876. [16] CASTRO G,CASADO J,RODRÍGUEZ I,et al.Time-of-flight mass spectrometry assessment of fluconazole and climbazole UV and UV/H2O2 degradability:kinetics study and transformation products elucidation[J].Water Research,2016,88:681-690. doi: 10.1016/j.watres.2015.10.053 [17] CAI W W,PENG T,ZHANG J N,et al.Degradation of climbazole by UV/chlorine process: kinetics, transformation pathway and toxicity evaluation[J].Chemosphere,2019,219:243-249. doi: 10.1016/j.chemosphere.2018.12.023 [18] WESTLUND P,ISAZADEH S,THERRIEN A,et al.Endocrine activities of pesticides during ozonation of waters[J].Bulletin of Environmental Contamination and Toxicology,2018,100(1):112-119. doi: 10.1007/s00128-017-2254-8 [19] 马晓雁,朱丽丹,贾佳,等.水环境中新型污染物糖精的臭氧降解研究[J].华中科技大学学报(自然科学版),2020,48(3):121-126.MA X Y,ZHU L D,JIA J,et al.Ozonation kinetics and influence of emerging contaminant saccharin degradation in aqueous system[J].Journal of Huazhong University of Science and Technology (Natural Science Edition),2020,48(3):121-126. [20] 乔子杰,曹飞,吴道琦,等.二氧化氯和臭氧对吉非贝齐的降解机制[J].环境化学,2020,39(9):2551-2558. doi: 10.7524/j.issn.0254-6108.2019062004QIAO Z J,CAO F,WU D Q,et al.Degradation mechanism of gemfibrozil by chlorine dioxide and ozone[J].Environmental Chemistry,2020,39(9):2551-2558. doi: 10.7524/j.issn.0254-6108.2019062004 [21] 张佳丽,魏健,任越中,等.臭氧氧化降解水中青霉素G特性和动力学特征[J].环境科学研究,2019,32(7):1231-1238.ZHANG J L,WEI J,REN Y Z,et al.Degradation characteristics and kinetics of penicillin G in water by ozone oxidation[J].Research of Environmental Sciences,2019,32(7):1231-1238. [22] TAY K S,RAHMAN N A,RADZI BIN ABAS M.Kinetic studies of the degradation of parabens in aqueous solution by ozone oxidation[J].Environmental Chemistry Letters,2010,8(4):331-337. doi: 10.1007/s10311-009-0229-7 [23] 穆瑞,杨慧中.O3/UV反应体系的有机物消解动力学模型[J].环境科学研究,2019,32(4):692-699.MU R,YANG H Z.Kinetic model of organic matter degradation based on O3/UV reaction system[J].Research of Environmental Sciences,2019,32(4):692-699. [24] 钟理,张浩,陈英,等.臭氧在水中的自分解动力学及反应机理[J].华南理工大学学报(自然科学版),2002,30(2):83-86.ZHONG L,ZHANG H,CHEN Y,et al.Investigation of kinetics and reaction mechanism for self-decomposition of ozone in water[J].Journal of South China University of Technology (Natural Science),2002,30(2):83-86. [25] 王培良,钱锋,宋永会等.臭氧氧化降解水中磺胺嘧啶的机理研究[J].环境工程技术学报,2017,7(4):451-456.WANG P L,QIAN F,SONG Y H,et al.Degradation mechanisms of sulfadiazine in aqueous solution by ozonation[J].Journal of Environmental Engineering Technology,2017,7(4):451-456. [26] 敖蒙蒙,刘利,魏健,等.β-内酰胺类抗生素臭氧氧化机理与降解途径[J].土木与环境工程学报,2021,43(6):187-196.AO M M,LIU L,WEI J,et al.Degradation mechanism and pathway of β-lactam antibiotics by ozone oxidation[J].Journal of Civil and Environmental Engineering,2021,43(6):187-196. [27] 史惠祥,赵伟荣,汪大翚.偶氮染料的臭氧氧化机理研究[J].浙江大学学报(工学版),2003,37(6):734-738. doi: 10.3785/j.issn.1008-973X.2003.06.022SHI H X,ZHAO W R,WANG D H.Ozonation mechanism of azo dye[J].Journal of Zhejiang University (Engineering Science),2003,37(6):734-738. doi: 10.3785/j.issn.1008-973X.2003.06.022 [28] 林晓璇,刘国光,李若白,等.臭氧作用下酮洛芬的降解行为及机理研究[J].中国环境科学,2017,37(2):598-605.LIN X X,LIU G G,LI R B,et al.Study on ketoprofen degradation behavior and mechanism under ozonation[J].China Environmental Science,2017,37(2):598-605. [29] LIU W R,YING G G,ZHAO J L,et al.Photodegradation of the azole fungicide climbazole by ultraviolet irradiation under different conditions: kinetics, mechanism and toxicity evaluation[J].Journal of Hazardous Materials,2016,318:794-801. doi: 10.1016/j.jhazmat.2016.06.033 [30] GAO M P,ZENG Z Q,SUN B C,et al.Ozonation of azo dye Acid Red 14 in a microporous tube-in-tube microchannel reactor: decolorization and mechanism[J].Chemosphere,2012,89(2):190-197. doi: 10.1016/j.chemosphere.2012.05.083 [31] BOUAIFI M,HEBRARD G,BASTOUL D,et al.A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns[J].Chemical Engineering and Processing:Process Intensification,2001,40(2):97-111. doi: 10.1016/S0255-2701(00)00129-X [32] 任健,何松波,孙承林.腐殖酸协同Mn2+催化臭氧氧化降解五氯苯酚[J].现代化工,2013,33(7):68-71. doi: 10.3969/j.issn.0253-4320.2013.07.017REN J,HE S B,SUN C L.Synergistic effect of Mn2+ and humic acid in catalytic ozonation of pentachlorophenol[J].Modern Chemical Industry,2013,33(7):68-71. doi: 10.3969/j.issn.0253-4320.2013.07.017 [33] 岳婵媛,缪恒锋,任洪艳,等.饮用水中甲羟孕酮的臭氧氧化降解研究[J].环境科学,2012,33(4):1227-1233.YUE C Y,MIAO H F,REN H Y,et al.Degradation of medroxyprogesterone in drinking water by ozone oxidation[J].Environmental Science,2012,33(4):1227-1233. [34] 林巍.常用预氧化剂降解两种典型PPCPs的效能和机理研究[D].哈尔滨:哈尔滨工业大学,2013:47-50. [35] TEKLE-RÖTTERING A,LIM S,REISZ E,et al.Reactions of pyrrole, imidazole, and pyrazole with ozone: kinetics and mechanisms[J].Environmental Science:Water Research & Technology,2020,6(4):976-992. [36] CAI W W,YE P,YANG B,et al.Biodegradation of typical azole fungicides in activated sludge under aerobic conditions[J].Journal of Environmental Sciences,2021,103:288-297. doi: 10.1016/j.jes.2020.11.007 -