留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国钢铁行业二氧化碳排放达峰路径研究

汪旭颖 李冰 吕晨 管志杰 蔡博峰 雷宇 严刚

汪旭颖, 李冰, 吕晨, 管志杰, 蔡博峰, 雷宇, 严刚. 中国钢铁行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 339-346. doi: 10.13198/j.issn.1001-6929.2021.11.11
引用本文: 汪旭颖, 李冰, 吕晨, 管志杰, 蔡博峰, 雷宇, 严刚. 中国钢铁行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 339-346. doi: 10.13198/j.issn.1001-6929.2021.11.11
WANG Xuying, LI Bing, LÜ Chen, GUAN Zhijie, CAI Bofeng, LEI Yu, YAN Gang. China′s Iron and Steel Industry Carbon Emissions Peak Pathways[J]. Research of Environmental Sciences, 2022, 35(2): 339-346. doi: 10.13198/j.issn.1001-6929.2021.11.11
Citation: WANG Xuying, LI Bing, LÜ Chen, GUAN Zhijie, CAI Bofeng, LEI Yu, YAN Gang. China′s Iron and Steel Industry Carbon Emissions Peak Pathways[J]. Research of Environmental Sciences, 2022, 35(2): 339-346. doi: 10.13198/j.issn.1001-6929.2021.11.11

中国钢铁行业二氧化碳排放达峰路径研究

doi: 10.13198/j.issn.1001-6929.2021.11.11
基金项目: 中国工程院战略研究与咨询项目(No.2021-HYZD-14);国家自然科学基金项目(No.72074154)
详细信息
    作者简介:

    汪旭颖(1989-),女,河北唐山人,助理研究员,博士,主要从事排放清单开发、大气环境管理、温室气体与大气污染物协同控制等研究,wangxy@caep.org.cn

    通讯作者:

    ①李冰(1977-),女,辽宁沈阳人,正高级工程师,硕士,主要从事钢铁行业节能低碳研究,libing@mpi1972.com

    ②雷宇(1980-),男,四川攀枝花人,研究员,博士,主要从事大气环境规划、大气环境管理、能源及大气污染控制策略等研究,leiyu@caep.org.cn

  • 中图分类号: X22

China′s Iron and Steel Industry Carbon Emissions Peak Pathways

Funds: Strategic Research and Consulting Project of Chinese Academy of Engineering (No.2021-HYZD-14); National Natural Science Foundation of China (No.72074154)
  • 摘要: 钢铁行业是我国重要的CO2排放源. 作为典型的资源能源密集型产业,钢铁行业加快绿色低碳转型、尽早实现碳达峰并有效降碳,既是行业自身高质量发展的内在需要,也是支撑落实国家碳达峰、碳中和目标的客观要求. 本文综合考虑经济社会发展、资源能源利用、工艺结构调整、低碳技术应用等因素影响,开展了基于情景分析的钢铁行业CO2排放达峰路径研究,对不同情景下钢铁行业CO2的排放趋势进行测算,识别钢铁行业CO2减排的主要驱动因素,判断推动钢铁行业碳排放达峰的关键举措,为制定“双碳”目标背景下钢铁行业CO2排放控制策略提供参考. 测算结果表明,我国钢铁行业CO2总排放量有望在2020—2024年期间达到峰值;行业CO2总排放量峰值为18.1×108~18.5×108 t,达峰后到2030年降幅将超过3×108 t. 研究显示,粗钢产量是决定我国钢铁行业碳排放能否快速达峰的关键,加大废钢资源利用、推进外购电力清洁化以及提高系统能效水平是2030年前钢铁行业实现碳排放达峰并有效降碳的重要途径. 到2030年,粗钢产量降低、加大废钢资源利用、推进外购电力清洁化、提高系统能效水平以及氢能炼钢和二氧化碳捕集、利用与封存(CCUS)等前沿技术对钢铁行业CO2减排的贡献率分别为11%~52%、34%~52%、7%~20%、5%~13%和2%~3%.

     

  • 图  1  我国钢铁行业达峰路径研究技术路线

    Figure  1.  Approach framework of the carbon peak pathway study for China's iron and steel industry

    图  2  2020年我国钢铁行业CO2排放构成

    Figure  2.  Distribution for CO2 emissions of China's iron and steel industry in 2020

    图  3  不同情景下我国粗钢产量预测结果

    Figure  3.  Prediction results of crude steel production under different scenarios in China

    图  4  不同情景下我国钢铁行业CO2总排放量变化趋势对比

    Figure  4.  CO2 emission trends of the iron and steel industry under different scenarios in China

    图  5  不同影响因素对钢铁行业CO2减排效果的动态评估

    Figure  5.  Dynamic evaluation results of CO2 emission mitigation effect of different factors on the iron and steel industry

    表  1  我国粗钢产量预测相关经济社会发展参数取值

    Table  1.   Assumed values of economic and social development parameters related to crude steel production prediction in China

    年份人口数量/(108人)GDP增速/%城镇化率/%
    202514.255.565
    203014.305.069
    203514.304.272
    下载: 导出CSV

    表  2  钢铁行业碳排放情景设置原则

    Table  2.   Setting principles of the 8 emission scenarios for the iron and steel industry

    钢铁行业碳排放情景对应产量情景对应排放控制情景
    高需求-一般控排 高需求 一般排放控制
    低需求-一般控排 低需求 一般排放控制
    高需求-强化控产-一般控排 高需求-强化控产 一般排放控制
    低需求-强化控产-一般控排 低需求-强化控产 一般排放控制
    高需求-强化控排 高需求 强化排放控制
    低需求-强化控排 低需求 强化排放控制
    高需求-强化控产-强化控排 高需求-强化控产 强化排放控制
    低需求-强化控产-强化控排 低需求-强化控产 强化排放控制
    下载: 导出CSV

    表  3  不同影响因素对钢铁行业碳排放影响的测算原则

    Table  3.   Estimation principle on the effect of CO2 emission mitigations of different factors for the iron and steel industry

    影响因素碳排放影响测算原则
    粗钢产量变化 行业排放因子和生产结构均保持2020年状态不变,粗钢产量变化对CO2排放的影响
    加大废钢利用 与保持2020年炼钢废钢比水平相比,加大废钢资源利用、提高电炉钢生产比例对CO2排放的影响
    能效水平提升 与保持2020年能效水平相比,通过优化燃料结构、推进余热余能利用等措施提高行业系统能效水平对CO2排放的影响
    电力清洁化 从外购电角度出发,与保持2020年电力排放绩效水平相比,未来电力清洁低碳化发展对行业CO2间接排放的影响
    氢能炼钢 与无氢能炼钢相比,实施氢能炼钢对行业CO2排放的影响
    CCUS 与无CCUS相比,开展CCUS对行业CO2排放的影响
    下载: 导出CSV
  • [1] 生态环境部.中华人民共和国气候变化第二次两年更新报告[EB/OL].北京:生态环境部,(2019-07-01)[2021-07-11].http://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf.
    [2] REN M,LU P T,LIU X R,et al.Decarbonizing China′s iron and steel industry from the supply and demand sides for carbon neutrality[J].Applied Energy,2021,298:117209. doi: 10.1016/j.apenergy.2021.117209
    [3] 李新,路路,穆献中,等.基于LEAP模型的京津冀地区钢铁行业中长期减排潜力分析[J].环境科学研究,2019,32(3):365-371.

    LI X,LU L,MU X Z,et al.Emission reduction potential of pollutants emissions from iron and steel industry over Beijing-Tianjin-Hebei Region based on LEAP[J].Research of Environmental Sciences,2019,32(3):365-371.
    [4] 国家统计局.中华人民共和国2020年国民经济和社会发展统计公报[EB/OL].北京:国家统计局,(2021-02-28)[2021-07-11].http://www.stats.gov.cn/tjsj/zxfb/202102/t20210227_1814154.html.
    [5] World Steel Association.World Steel in Figures 2021[EB/OL].Brussels:Belgium,(2021-04-30)[2021-07-11].https://www.worldsteel.org/en/dam/jcr:976723ed-74b3-47b4-92f6-81b6a452b86e/World%2520Steel%2520in%2520Figures%25202021.pdf.
    [6] 李新,路路,穆献中,等.京津冀地区钢铁行业协同减排成本-效益分析[J].环境科学研究,2020,33(9):2226-2234.

    LI X,LU L,MU X Z,et al.Cost-benefit analysis of synergistic emission reduction in steel industry in Beijing-Tianjin-Hebei Region, China[J].Research of Environmental Sciences,2020,33(9):2226-2234.
    [7] YANG H Z,LIU J F,JIANG K J,et al.Multi-objective analysis of the co-mitigation of CO2 and PM2.5 pollution by China's iron and steel industry[J].Journal of Cleaner Production,2018,185:331-341
    [8] WANG X Y,LEI Y,YAN L,et al.A unit-based emission inventory of SO2, NOx and PM for the Chinese iron and steel industry from 2010 to 2015[J].Science of the Total Environment,2019,676:18-30. doi: 10.1016/j.scitotenv.2019.04.241
    [9] ZHANG Q,XU J,WANG Y J,et al.Comprehensive assessment of energy conservation and CO2 emissions mitigation in China′s iron and steel industry based on dynamic material flows[J].Applied Energy,2018,209:251-265. doi: 10.1016/j.apenergy.2017.10.084
    [10] SUN J C,NA H M,YAN T Y,et al.A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry[J].Energy,2021,235:121429. doi: 10.1016/j.energy.2021.121429
    [11] SHEN J L,ZHANG Q,XU L S,et al.Future CO2 emission trends and radical decarbonization path of iron and steel industry in China[J].Journal of Cleaner Production,2021,326:129354. doi: 10.1016/j.jclepro.2021.129354
    [12] YIN X,CHEN W Y.Trends and development of steel demand in China: a bottom-up analysis[J].Resources Policy,2013,38(4):407-415. doi: 10.1016/j.resourpol.2013.06.007
    [13] WANG P,JIANG Z Y,GENG X Y,et al.Quantification of Chinese steel cycle flow: historical status and future options[J].Resources, Conservation and Recycling,2014,87:191-199. doi: 10.1016/j.resconrec.2014.04.003
    [14] KARALI N,XU T F,SATHAYE J.Developing long-term strategies to reduce energy use and CO2 emissions: analysis of three mitigation scenarios for iron and steel production in China[J].Mitigation and Adaptation Strategies for Global Change,2016,21(5):699-719. doi: 10.1007/s11027-014-9615-y
    [15] MA D,CHEN W Y,YIN X,et al.Quantifying the co-benefits of decarbonisation in China's steel sector: an integrated assessment approach[J].Applied Energy,2016,162:1225-1237. doi: 10.1016/j.apenergy.2015.08.005
    [16] IEA.World Energy Outlook 2020[EB/OL].Paris:IEA publications,(2020-10-01)[2021-07-11].https://www.iea.org/reports/world-energy-outlook-2020.
    [17] 岳强,王鹤鸣,陆钟武.基于总物流分析的我国钢铁工业生态效率分析[J].环境科学研究,2014,27(8):915-921.

    YUE Q,WANG H M,LU Z W.Ecological efficiency of iron and steel industry in China based on bulk material flow analysis[J].Research of Environmental Sciences,2014,27(8):915-921.
    [18] REN L,ZHOU S,PENG T D,et al.A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China[J].Renewable and Sustainable Energy Reviews,2021,143:110846. doi: 10.1016/j.rser.2021.110846
    [19] YUN S,JANG M G,KIM J K.Techno-economic assessment and comparison of absorption and membrane CO2 capture processes for iron and steel industry[J].Energy,2021,229:120778. doi: 10.1016/j.energy.2021.120778
    [20] ONARHEIM K,ARASTO A,TSUPARI E,et al.Techno-economic comparison of CO2 emission reduction concepts for an integrated iron and steel mill[C/OL].Finland:VTT Publications Register,13th International Conference on Greenhouse Gas Control Technologies, (2017-01-01) [2021-08-25]. https://www.researchgate.net/profile/Kristin-Onarheim/publication/306502219_Techno-economic_comparison_of_CO2_emission_reduction_concepts_for_an_integrated_iron_and_steel_mill/links/57beae2908aeda1ec386450d/Techno-economic-comparison-of-CO2-emission-reduction-concepts-for-an-integrated-iron-and-steel-mill.pdf.
    [21] CORMOS A M,DRAGAN S,PETRESCU L,et al.Techno-economic and environmental evaluations of decarbonized fossil-intensive industrial processes by reactive absorption & adsorption CO2 capture systems[J].Energies,2020,13(5):1268. doi: 10.3390/en13051268
    [22] ZHANG X Y, JIAO K X, ZHANG J L, et al. A review on low carbon emissions projects of steel industry in the World[J]. Journal of Cleaner Production, 2021, 306: 127259.
    [23] TANG J,CHU M S,LI F,et al.Development and progress on hydrogen metallurgy[J].International Journal of Minerals, Metallurgy and Materials,2020,27(6):713-723. doi: 10.1007/s12613-020-2021-4
    [24] WANG P,RYBERG M,YANG Y,et al.Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts[J].Nature Communications,2021,12:2066. doi: 10.1038/s41467-021-22245-6
    [25] 王深,吕连宏,张保留,等.基于多目标模型的中国低成本碳达峰、碳中和路径[J].环境科学研究,2021,34(9):2044-2055.

    WANG S,LÜ L H,ZHANG B L,et al.Multi objective programming model of low-cost path for China′s peaking carbon dioxide emissions and carbon neutrality[J].Research of Environmental Sciences,2021,34(9):2044-2055.
    [26] 张利娜,李辉,程琳,等.国外钢铁行业低碳技术发展概况[J].冶金经济与管理,2018(5):30-33. doi: 10.3969/j.issn.1002-1779.2018.05.009
    [27] 李新创,李冰.全球温控目标下中国钢铁工业低碳转型路径[J].钢铁,2019,54(8):224-231.

    LI X C,LI B.Low carbon transition path of China′s iron and steel industry under global temperature-control target[J].Iron & Steel,2019,54(8):224-231.
    [28] 陈程,管志杰,刘琦,等.我国钢材需求预测研究[J].冶金经济与管理,2019(2):12-16. doi: 10.3969/j.issn.1002-1779.2019.02.005
    [29] CHEN W Y,YIN X,MA D.A bottom-up analysis of China′s iron and steel industrial energy consumption and CO2 emissions[J].Applied Energy,2014,136:1174-1183. doi: 10.1016/j.apenergy.2014.06.002
    [30] “黑色金属矿产资源强国战略研究”专题组.我国黑色金属资源发展形势研判[J].中国工程科学,2019,21(1):97.
    [31] 董丽伟,邢奕,刘景洋,等.我国社会废钢回收量预测[J].环境科学研究,2011,24(11):1325-1330.

    DONG L W,XING Y,LIU J Y,et al.Forecast of society′s scrap steel recovery amount in China[J].Research of Environmental Sciences,2011,24(11):1325-1330.
    [32] 王丽娟, 张剑, 王雪松, 等. 中国电力行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 2021. doi: 10.13198/j.issn.1001-6929.2021.11.24.

    WANG L, ZHANG J, WANG X, et al. Pathway of carbon emissions peak for in China′s electric power industry[J]. Research of Environmental Sciences, 2021. doi: 10.13198/j.issn.1001-6929.2021.11.24.
    [33] Intergovernmental Panel on Climate Change (IPCC).2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventory [R/OL]. Geneva: IPCC, (2019-05-12)[2021-08-30].https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories.
    [34] EFDB-Emission Factor Database.IPCC排放因子数据库[EB/OL].Switzerland:IPCC,(2020-12-03)[2021-07-15].http://www.ipcc-nggip.iges.or.jp/EFDB/main.php.
    [35] 蔡博峰, 姚波, 刘晓曼, 等. 中国工艺过程和产品使用(IPPU)温室气体排放清单方法[M]. 北京: 中国环境出版集团, 2020.
    [36] 国家发展和改革委员会.国家发展改革委办公厅关于印发首批10个行业企业温室气体排放核算方法与报告指南(试行)的通知[EB/OL].北京:国家发展和改革委员会,(2013-10-15)[2021-07-11].https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=1776.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1403
  • HTML全文浏览量:  172
  • PDF下载量:  688
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2021-11-04
  • 网络出版日期:  2022-03-07

目录

    /

    返回文章
    返回