China′s Iron and Steel Industry Carbon Emissions Peak Pathways
-
摘要: 钢铁行业是我国重要的CO2排放源. 作为典型的资源能源密集型产业,钢铁行业加快绿色低碳转型、尽早实现碳达峰并有效降碳,既是行业自身高质量发展的内在需要,也是支撑落实国家碳达峰、碳中和目标的客观要求. 本文综合考虑经济社会发展、资源能源利用、工艺结构调整、低碳技术应用等因素影响,开展了基于情景分析的钢铁行业CO2排放达峰路径研究,对不同情景下钢铁行业CO2的排放趋势进行测算,识别钢铁行业CO2减排的主要驱动因素,判断推动钢铁行业碳排放达峰的关键举措,为制定“双碳”目标背景下钢铁行业CO2排放控制策略提供参考. 测算结果表明,我国钢铁行业CO2总排放量有望在2020—2024年期间达到峰值;行业CO2总排放量峰值为18.1×108~18.5×108 t,达峰后到2030年降幅将超过3×108 t. 研究显示,粗钢产量是决定我国钢铁行业碳排放能否快速达峰的关键,加大废钢资源利用、推进外购电力清洁化以及提高系统能效水平是2030年前钢铁行业实现碳排放达峰并有效降碳的重要途径. 到2030年,粗钢产量降低、加大废钢资源利用、推进外购电力清洁化、提高系统能效水平以及氢能炼钢和二氧化碳捕集、利用与封存(CCUS)等前沿技术对钢铁行业CO2减排的贡献率分别为11%~52%、34%~52%、7%~20%、5%~13%和2%~3%.Abstract: The iron and steel industry is an important carbon dioxide (CO2) emission source in China. As a typical resource and energy-intensive industry, accelerating low-carbon transformation and peaking carbon emissions is not only the high-quality development demand for the industry, but also the objective requirements for achieving carbon peak and carbon neutrality. Considering the influence of economic and social development, resource and energy utilization, process structure adjustment, low-carbon technology application and other factors, we carried out an integrated scenario study on CO2 emission peak path of the iron and steel industry by calculating the CO2 emission trends of the industry under different scenarios, analyzing the main driving factors of CO2 emission reduction, and identifying the key measures to promote the carbon emission peak of the iron and steel industry. The research results can provide support for policy making on carbon emission control of the industry under the target of carbon peak and carbon neutrality. Based on the calculation results of this study, the total CO2 emissions of the iron and steel industry in China may reach an inflection point in 2020-2024. The peak values of total CO2 emissions of the industry are about 18.1×108-18.5×108 t. After reaching the peak, the total CO2 emissions of the industry may decrease by more than 3×108 t by 2030. The assessment results indicate that the production of crude steel is the key factor to determine whether the carbon emissions of China's iron and steel industry can peak quickly. Meanwhile, increasing the utilization of scrap resources, promoting cleanness of purchased electricity, and improving the energy efficiency of the system are important ways for the industry to peak carbon emissions and achieve emission mitigation effectively before 2030. Based on our estimates, by 2030, the contribution of decrease of crude steel production, increasing scrap resource utilization, promoting clean electricity use, improving energy efficiency, and applying cutting-edge low carbon technologies such as H2-DRI and CCUS will contribute to about 11%-52%, 34%-52%, 7%-20%, 5%-13% and 2%-3% of the CO2 emission reductions for the industry, respectively.
-
Key words:
- peak carbon emissions /
- scenario analysis /
- emission estimation /
- driving force /
- control strategy
-
表 1 我国粗钢产量预测相关经济社会发展参数取值
Table 1. Assumed values of economic and social development parameters related to crude steel production prediction in China
年份 人口数量/(108人) GDP增速/% 城镇化率/% 2025 14.25 5.5 65 2030 14.30 5.0 69 2035 14.30 4.2 72 表 2 钢铁行业碳排放情景设置原则
Table 2. Setting principles of the 8 emission scenarios for the iron and steel industry
钢铁行业碳排放情景 对应产量情景 对应排放控制情景 高需求-一般控排 高需求 一般排放控制 低需求-一般控排 低需求 一般排放控制 高需求-强化控产-一般控排 高需求-强化控产 一般排放控制 低需求-强化控产-一般控排 低需求-强化控产 一般排放控制 高需求-强化控排 高需求 强化排放控制 低需求-强化控排 低需求 强化排放控制 高需求-强化控产-强化控排 高需求-强化控产 强化排放控制 低需求-强化控产-强化控排 低需求-强化控产 强化排放控制 表 3 不同影响因素对钢铁行业碳排放影响的测算原则
Table 3. Estimation principle on the effect of CO2 emission mitigations of different factors for the iron and steel industry
影响因素 碳排放影响测算原则 粗钢产量变化 行业排放因子和生产结构均保持2020年状态不变,粗钢产量变化对CO2排放的影响 加大废钢利用 与保持2020年炼钢废钢比水平相比,加大废钢资源利用、提高电炉钢生产比例对CO2排放的影响 能效水平提升 与保持2020年能效水平相比,通过优化燃料结构、推进余热余能利用等措施提高行业系统能效水平对CO2排放的影响 电力清洁化 从外购电角度出发,与保持2020年电力排放绩效水平相比,未来电力清洁低碳化发展对行业CO2间接排放的影响 氢能炼钢 与无氢能炼钢相比,实施氢能炼钢对行业CO2排放的影响 CCUS 与无CCUS相比,开展CCUS对行业CO2排放的影响 -
[1] 生态环境部.中华人民共和国气候变化第二次两年更新报告[EB/OL].北京:生态环境部,(2019-07-01)[2021-07-11].http://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf. [2] REN M,LU P T,LIU X R,et al.Decarbonizing China′s iron and steel industry from the supply and demand sides for carbon neutrality[J].Applied Energy,2021,298:117209. doi: 10.1016/j.apenergy.2021.117209 [3] 李新,路路,穆献中,等.基于LEAP模型的京津冀地区钢铁行业中长期减排潜力分析[J].环境科学研究,2019,32(3):365-371.LI X,LU L,MU X Z,et al.Emission reduction potential of pollutants emissions from iron and steel industry over Beijing-Tianjin-Hebei Region based on LEAP[J].Research of Environmental Sciences,2019,32(3):365-371. [4] 国家统计局.中华人民共和国2020年国民经济和社会发展统计公报[EB/OL].北京:国家统计局,(2021-02-28)[2021-07-11].http://www.stats.gov.cn/tjsj/zxfb/202102/t20210227_1814154.html. [5] World Steel Association.World Steel in Figures 2021[EB/OL].Brussels:Belgium,(2021-04-30)[2021-07-11].https://www.worldsteel.org/en/dam/jcr:976723ed-74b3-47b4-92f6-81b6a452b86e/World%2520Steel%2520in%2520Figures%25202021.pdf. [6] 李新,路路,穆献中,等.京津冀地区钢铁行业协同减排成本-效益分析[J].环境科学研究,2020,33(9):2226-2234.LI X,LU L,MU X Z,et al.Cost-benefit analysis of synergistic emission reduction in steel industry in Beijing-Tianjin-Hebei Region, China[J].Research of Environmental Sciences,2020,33(9):2226-2234. [7] YANG H Z,LIU J F,JIANG K J,et al.Multi-objective analysis of the co-mitigation of CO2 and PM2.5 pollution by China's iron and steel industry[J].Journal of Cleaner Production,2018,185:331-341 [8] WANG X Y,LEI Y,YAN L,et al.A unit-based emission inventory of SO2, NOx and PM for the Chinese iron and steel industry from 2010 to 2015[J].Science of the Total Environment,2019,676:18-30. doi: 10.1016/j.scitotenv.2019.04.241 [9] ZHANG Q,XU J,WANG Y J,et al.Comprehensive assessment of energy conservation and CO2 emissions mitigation in China′s iron and steel industry based on dynamic material flows[J].Applied Energy,2018,209:251-265. doi: 10.1016/j.apenergy.2017.10.084 [10] SUN J C,NA H M,YAN T Y,et al.A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry[J].Energy,2021,235:121429. doi: 10.1016/j.energy.2021.121429 [11] SHEN J L,ZHANG Q,XU L S,et al.Future CO2 emission trends and radical decarbonization path of iron and steel industry in China[J].Journal of Cleaner Production,2021,326:129354. doi: 10.1016/j.jclepro.2021.129354 [12] YIN X,CHEN W Y.Trends and development of steel demand in China: a bottom-up analysis[J].Resources Policy,2013,38(4):407-415. doi: 10.1016/j.resourpol.2013.06.007 [13] WANG P,JIANG Z Y,GENG X Y,et al.Quantification of Chinese steel cycle flow: historical status and future options[J].Resources, Conservation and Recycling,2014,87:191-199. doi: 10.1016/j.resconrec.2014.04.003 [14] KARALI N,XU T F,SATHAYE J.Developing long-term strategies to reduce energy use and CO2 emissions: analysis of three mitigation scenarios for iron and steel production in China[J].Mitigation and Adaptation Strategies for Global Change,2016,21(5):699-719. doi: 10.1007/s11027-014-9615-y [15] MA D,CHEN W Y,YIN X,et al.Quantifying the co-benefits of decarbonisation in China's steel sector: an integrated assessment approach[J].Applied Energy,2016,162:1225-1237. doi: 10.1016/j.apenergy.2015.08.005 [16] IEA.World Energy Outlook 2020[EB/OL].Paris:IEA publications,(2020-10-01)[2021-07-11].https://www.iea.org/reports/world-energy-outlook-2020. [17] 岳强,王鹤鸣,陆钟武.基于总物流分析的我国钢铁工业生态效率分析[J].环境科学研究,2014,27(8):915-921.YUE Q,WANG H M,LU Z W.Ecological efficiency of iron and steel industry in China based on bulk material flow analysis[J].Research of Environmental Sciences,2014,27(8):915-921. [18] REN L,ZHOU S,PENG T D,et al.A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China[J].Renewable and Sustainable Energy Reviews,2021,143:110846. doi: 10.1016/j.rser.2021.110846 [19] YUN S,JANG M G,KIM J K.Techno-economic assessment and comparison of absorption and membrane CO2 capture processes for iron and steel industry[J].Energy,2021,229:120778. doi: 10.1016/j.energy.2021.120778 [20] ONARHEIM K,ARASTO A,TSUPARI E,et al.Techno-economic comparison of CO2 emission reduction concepts for an integrated iron and steel mill[C/OL].Finland:VTT Publications Register,13th International Conference on Greenhouse Gas Control Technologies, (2017-01-01) [2021-08-25]. https://www.researchgate.net/profile/Kristin-Onarheim/publication/306502219_Techno-economic_comparison_of_CO2_emission_reduction_concepts_for_an_integrated_iron_and_steel_mill/links/57beae2908aeda1ec386450d/Techno-economic-comparison-of-CO2-emission-reduction-concepts-for-an-integrated-iron-and-steel-mill.pdf. [21] CORMOS A M,DRAGAN S,PETRESCU L,et al.Techno-economic and environmental evaluations of decarbonized fossil-intensive industrial processes by reactive absorption & adsorption CO2 capture systems[J].Energies,2020,13(5):1268. doi: 10.3390/en13051268 [22] ZHANG X Y, JIAO K X, ZHANG J L, et al. A review on low carbon emissions projects of steel industry in the World[J]. Journal of Cleaner Production, 2021, 306: 127259. [23] TANG J,CHU M S,LI F,et al.Development and progress on hydrogen metallurgy[J].International Journal of Minerals, Metallurgy and Materials,2020,27(6):713-723. doi: 10.1007/s12613-020-2021-4 [24] WANG P,RYBERG M,YANG Y,et al.Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts[J].Nature Communications,2021,12:2066. doi: 10.1038/s41467-021-22245-6 [25] 王深,吕连宏,张保留,等.基于多目标模型的中国低成本碳达峰、碳中和路径[J].环境科学研究,2021,34(9):2044-2055.WANG S,LÜ L H,ZHANG B L,et al.Multi objective programming model of low-cost path for China′s peaking carbon dioxide emissions and carbon neutrality[J].Research of Environmental Sciences,2021,34(9):2044-2055. [26] 张利娜,李辉,程琳,等.国外钢铁行业低碳技术发展概况[J].冶金经济与管理,2018(5):30-33. doi: 10.3969/j.issn.1002-1779.2018.05.009 [27] 李新创,李冰.全球温控目标下中国钢铁工业低碳转型路径[J].钢铁,2019,54(8):224-231.LI X C,LI B.Low carbon transition path of China′s iron and steel industry under global temperature-control target[J].Iron & Steel,2019,54(8):224-231. [28] 陈程,管志杰,刘琦,等.我国钢材需求预测研究[J].冶金经济与管理,2019(2):12-16. doi: 10.3969/j.issn.1002-1779.2019.02.005 [29] CHEN W Y,YIN X,MA D.A bottom-up analysis of China′s iron and steel industrial energy consumption and CO2 emissions[J].Applied Energy,2014,136:1174-1183. doi: 10.1016/j.apenergy.2014.06.002 [30] “黑色金属矿产资源强国战略研究”专题组.我国黑色金属资源发展形势研判[J].中国工程科学,2019,21(1):97. [31] 董丽伟,邢奕,刘景洋,等.我国社会废钢回收量预测[J].环境科学研究,2011,24(11):1325-1330.DONG L W,XING Y,LIU J Y,et al.Forecast of society′s scrap steel recovery amount in China[J].Research of Environmental Sciences,2011,24(11):1325-1330. [32] 王丽娟, 张剑, 王雪松, 等. 中国电力行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 2021. doi: 10.13198/j.issn.1001-6929.2021.11.24.WANG L, ZHANG J, WANG X, et al. Pathway of carbon emissions peak for in China′s electric power industry[J]. Research of Environmental Sciences, 2021. doi: 10.13198/j.issn.1001-6929.2021.11.24. [33] Intergovernmental Panel on Climate Change (IPCC).2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventory [R/OL]. Geneva: IPCC, (2019-05-12)[2021-08-30].https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories. [34] EFDB-Emission Factor Database.IPCC排放因子数据库[EB/OL].Switzerland:IPCC,(2020-12-03)[2021-07-15].http://www.ipcc-nggip.iges.or.jp/EFDB/main.php. [35] 蔡博峰, 姚波, 刘晓曼, 等. 中国工艺过程和产品使用(IPPU)温室气体排放清单方法[M]. 北京: 中国环境出版集团, 2020. [36] 国家发展和改革委员会.国家发展改革委办公厅关于印发首批10个行业企业温室气体排放核算方法与报告指南(试行)的通知[EB/OL].北京:国家发展和改革委员会,(2013-10-15)[2021-07-11].https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=1776. -