Pathway of Carbon Emission Peak of China's Building Sector
-
摘要: 实施建筑领域CO2排放控制是推动我国2030年前实现碳排放达峰的关键举措. 2020年我国建筑领域运行阶段CO2排放量为21.7×108 t,约占全国能源活动碳排放量的20%,其中直接排放6.9×108 t,间接排放14.8×108 t. 随着城镇化发展水平和居民生活消费水平的不断提升,建筑领域CO2排放仍呈刚性增长态势. 为明确建筑领域CO2排放达峰路径,综合考虑建筑领域发展现状和用能情况,以建筑运行中供暖、炊事等活动所需一次能源(煤炭、石油和天然气)消耗直接排放以及热电联产供暖、空调、照明、电梯、电器等外购热力和电力间接排放为核算范围,在预测不同阶段建筑发展规模、建筑能源消费、用能结构的基础上,分析未来碳排放变化趋势和达峰时间,提出达峰路径和重要政策举措. 结果表明:①2010—2020年,我国建筑领域CO2排放量从13.2×108 t增至21.7×108 t,其中直接排放已于2017年达峰,间接排放仍在持续增长. ②从建筑规模和节能降碳措施等角度分情景开展建筑领域碳排放达峰路径研究,预测建筑领域CO2排放将在2029—2030年左右达峰,峰值排放量为28.1×108~29.2×108 t,达峰后有2~3年的平台期. ③低碳清洁取暖、可再生能源应用、建筑节能改造和合理控制建筑规模4项措施是建筑领域实现碳排放达峰的重要举措,4项措施的减排贡献率分别达到40.7%、27.1%、17.7%和14.5%. 研究显示,2030年前,发展建筑可再生能源、强化建筑节能、合力控制建筑规模是建筑领域降碳的核心举措,而推动低碳清洁取暖是实现我国建筑领域降碳最主要的控制途径.Abstract: The implementation of carbon dioxide emission control in the building sector is a key measure to promote China's carbon emission peak by 2030. In 2020, the carbon dioxide emissions during the building operation phase were 2.17 billion tons, accounting for about 20% of China's total carbon dioxide emissions from energy activities, including 690 million tons of direct emissions and 1.48 billion tons of indirect emissions. With the acceleration of urbanization and increase in household consumption, indirect carbon emissions from building sector will continue to grow. In order to clarify the path of peaking carbon emissions of building sector, the current development status and energy use in the building sector are proposed in the paper. Carbon emissions accounting boundary in building sector is defined in this study, which is divided into indirect emissions and direct emissions two parts. Direct emissions are defined as carbon emissions from primary energy sources (coal, oil and natural gas) consumed in heating, cooking and other activities in building operation phase. Indirect emissions are defined as carbon emissions from the total outsourcing heat and power in building operation phase such as cogeneration heating, air conditioning, lighting, elevators and electrical appliances etc. This paper first proposes three key parameters related to the carbon emission predication: construction scale, energy consumption and energy construction. Then, article gives the main conclusions, including the time to CO2 peak, peaking pathway and necessary policy measures. The results show that: (1) From 2010 to 2020, China's carbon dioxide emissions during the building operation phase increase from 1.32 billion to 2.17 billion tons. Direct emissions reach a peak in 2017 and indirect emissions increase year by year. (2) Considering different building area and energy consumption in building sector, four analysis scenarios are proposed. Under different scenarios, the carbon emissions from building sector will peak around 2029-2030, with the peak emissions in the range of 2.81 billion to 2.92 billion tons, followed by a 2-3 year plateau period. (3) Low carbon and clean heating, renewable energy application, building energy saving renovation and moderate control of building area are the four important measures to achieve the peak of carbon emissions in the building sector. The contributions of the four measures are 40.7%, 27.1%, 17.7% and 14.5%, respectively. The research shows that developing the application of renewable energy in building sector, strengthening building energy conservation and controlling building scale are the core measures to reduce carbon emissions in the construction field before 2030. Promoting low-carbon and clean heating is the most prominent way to reduce carbon emissions in China's construction sector.
-
Key words:
- building sector /
- carbon emission /
- peaking path /
- scenario analysis /
- building energy efficiency
-
表 1 我国建筑规模人口和城镇化影响因素的预测结果
Table 1. Assumed values of population and urbanization rate parameters related to construction scale prediction in China
年份 人口数量/
(108人)城镇化
率/%城镇人口数
量/(108人)农村人口数
量/(108人)2025 14.25 65.5 9.33 4.92 2030 约14.3 69.0 9.9 4.4 2035 约14.3 72.0 10.3 4.0 表 2 建筑用能强度不同情景条件设置
Table 2. Parameter values of building energy efficiency (I) under the two different scenarios
情景设置 节能措施 常规节能 新建建筑
节能水平以2020年不同类型新建建筑节能标准水平为基准,每10年分别提升30% 既有建筑
节能改造
面积城镇居住建筑节能改造1.7×108 m2/a,城镇公共建筑节能改造1.9×108 m2/a,农村建筑节能改造0.34×108 m2/a 强化节能 新建建筑
节能水平以2020年不同类型新建建筑节能标准水平为基准,每5年分别提升30% 既有建筑
节能改造
面积城镇居住建筑节能改造2×108 m2/a,城镇公共建筑节能改造2.2×108 m2/a,农村建筑节能改造0.4×108 m2/a 统一考虑
因素新建超低
能耗建筑
面积“十四五”“十五五”“十六五”新增城镇居住建筑中超低能耗建筑面积分别为1×108、4×108、20×108 m2,公共建筑中超低能耗建筑面积分别为0.2×108、1×108、5×108 m2 既有建筑
节能水平2035年前老旧管网、城镇居住建筑、城镇公共建筑、农村建筑改造后节能水平较2020年分别提升20%、50%、20%、15% 生活水平
提升带来
用能需求
增长2020—2035年生活水平提升带来城镇居住建筑用能需求,“十四五”期间提升50%,
“十五五”期间提升40%,“十六五”期间提升20%;城镇公共建筑用能需求,“十四五”期间提升40%,“十五五”期间提升30%,
“十六五”期间提升15%;农村建筑用能需求,“十四五”期间提升40%,“十五五”期间提升30%,“十六五”期间提升15% -
[1] 郭慧,杜琳琳,华贲.我国能源形势分析及其解决对策[J].广东化工,2005,32(6):1-3. doi: 10.3969/j.issn.1007-1865.2005.06.001GUO H,DU L L,HUA B.Energy situation analysis and countermeasures of China[J].Guangdong Chemical Industry,2005,32(6):1-3. doi: 10.3969/j.issn.1007-1865.2005.06.001 [2] 王宁.德国能源转型的经济分析及启示[D].长春:吉林大学,2019 [3] 国家统计局.中国统计年鉴2020[M].北京:中国统计出版社,2020. [4] 国家统计局.中华人民共和国2020年国民经济和社会发展统计公报[R].北京:国家统计局,2021. [5] ZHANG X C,WANG F L.Life-cycle carbon emission assessment and permit allocation methods: a multi-region case study of China's construction sector[J].Ecological Indicators,2017,72:910-920. doi: 10.1016/j.ecolind.2016.09.023 [6] 林波荣. 建筑行业碳中和挑战与实现路径探讨[J]. 可持续发展经济导刊, 2021(增刊1): 23-25.LIN B R. Challenges and implementation paths of carbon neutrality in construction industry[J]. China Sustainability Tribune, 2021(Suppl 1): 23-25. [7] 姚春妮,梁俊强.我国建筑领域碳达峰实践探索与行动[J].建设科技,2021(11):8-13.YAO C N,LIANG J Q.Practice exploration and action of carbon peak in China's construction sector[J].Construction Science and Technology,2021(11):8-13. [8] 中国建筑科学研究院.民用建筑节能设计标准(采暖居住建筑部分): JGJ 26—1986[S].北京: 中国建筑工业,1986. [9] 王艳.基于节能设计标准的京津冀地区农村节能住宅研究[D].邯郸: 河北工程大学,2021. [10] KOSSECKA E,KOSNY J.Influence of insulation configuration on heating and cooling loads in a continuously used building[J].Energy and Buildings,2002,34(4):321-331. doi: 10.1016/S0378-7788(01)00121-9 [11] RU Q J,FENG J D,LU Q.Application and prospects of prefabricated buildings in rural areas of China[J].Journal of Physics:Conference Series,2020,1637(1):012078. doi: 10.1088/1742-6596/1637/1/012078 [12] 许利峰.“十三五”以来北方采暖地区居住建筑节能改造进展与启示[J].住宅产业,2020(8):36-40.XU L F.Progress and enlightenment on energy efficiency renovation of existing residential buildings in northern heating area since the ‘13th Five-Year Plan’[J]. Housing Industry,2020(8):36-40. [13] WANG Z H,LI H,ZHANG B,et al.The greater the investment, the greater the loss?resource traps in Building energy efficiency retrofit (BEER) market[J].Resources, Conservation and Recycling,2021,168:105459. doi: 10.1016/j.resconrec.2021.105459 [14] 陈广超,袁闪闪,孙峙峰,等.北方清洁取暖试点城市建设推进方法研究[J].建设科技,2020(2):20-25.CHEN G C,YUAN S S,SUN Z F,et al.Study on the promotion method of clean heating pilot city in northern China[J].Construction Science and Technology,2020(2):20-25. [15] 杜晓林,冯相昭,王敏,等.京津冀大气传输通道城市清洁取暖现状及影响因素分析[J].环境与可持发展,2020,45(1):155-159.DU X L,FENG X Z,WANG M,et al.Analysis on the status quo and influencing factors of clean heating in the atmospheric transmission channel cities in Beijing-Tianjin-Hebei[J].Environment and Sustainable Development,2020,45(1):155-159. [16] 郝春旭,璩爱玉,董战峰,等.北方地区清洁取暖环境补贴政策研究[J].生态经济,2020,36(4):150-155.HAO C X,QU A Y,DONG Z F,et al.Study on subsidy policy of clean heating environment in North China[J].Ecological Economy,2020,36(4):150-155. [17] 张保留,王健,吕连宏,等.对资源型城市能源转型的思考: 以太原市为例[J].环境工程技术学报,2021,11(1):181-186. doi: 10.12153/j.issn.1674-991X.20200093ZHANG B L,WANG J,LÜ L H,et al.Thoughts on energy transformation of resource-based cities: taking Taiyuan City as an example[J].Journal of Environmental Engineering Technology,2021,11(1):181-186. doi: 10.12153/j.issn.1674-991X.20200093 [18] 孙园园, 白璐, 张玥, 等. 工业行业源头-过程-末端全过程减排潜力评估研究[J]. 环境科学研究, 2021. doi: 10.13198/j.issn.1001-6929.2021.08.15.SUN Y Y, BAI L, ZHANG Y, et al. Evaluation of emission reduction potentials of the source-process-end processes of the industrial industry[J]. Research of Environmental Sciences, 2021. doi: 10.13198/j.issn.1001-6929.2021.08.15. [19] 张保留,吕连宏,吴静,等.农村居民生活碳达峰路径及对策[J].环境科学研究,2021,34(9):2065-2075.ZHANG B L,LÜ L H,WU J,et al.Rural household carbon-peak path and countermeasures[J].Research of Environmental Sciences,2021,34(9):2065-2075. [20] 侯静.我国城镇公共建筑能耗预测及能效提升路径研究[D].北京: 北京交通大学,2017. [21] 胡姗, 张洋, 燕达, 等. 中国建筑领域能耗与碳排放的界定与核算[J]. 建筑科学, 2020, 36(增刊2): 288-297.HU S, ZHANG Y, YAN D, et al. Definition and modelling of energy consumption and carbon emissions in China's building sector[J]. Building Science, 2020, 36(Suppl 2): 288-297. [22] 杨秀,魏庆芃,江亿.建筑能耗统计方法探讨[J].建筑节能,2007,35(1):7-10.YANG X,WEI Q P,JIANG Y.Study on statistical method for building energy consumption[J].Construction Conserves Energy,2007,35(1):7-10. [23] 王庆一.中国建筑能耗统计和计算研究[J].节能与环保,2007(8):9-10. [24] HUO T F,REN H,ZHANG X L,et al.China's energy consumption in the building sector: a statistical yearbook-energy balance sheet based splitting method[J].Journal of Cleaner Production,2018,185:665-679. doi: 10.1016/j.jclepro.2018.02.283 [25] 翁智雄,马忠玉,葛察忠,等.差异化碳减排目标对区域产业部门经济与碳减排的影响[J].环境科学研究,2019,32(8):1264-1274.WENG Z X,MA Z Y,GE C Z,et al.Economic and mitigating impacts of differential carbon reduction targets on regional industries[J].Research of Environmental Sciences,2019,32(8):1264-1274. [26] 洪竞科,李沅潮,蔡伟光.多情景视角下的中国碳达峰路径模拟: 基于RICE-LEAP模型[J].资源科学,2021,43(4):639-651.HONG J K,LI Y C,CAI W G.Simulating China's carbon emission peak path under different scenarios based on RICE-LEAP model[J].Resources Science,2021,43(4):639-651. [27] HUANG L Z,KRIGSVOLL G,JOHANSEN F,et al.Carbon emission of global construction sector[J].Renewable and Sustainable Energy Reviews,2018,81:1906-1916. doi: 10.1016/j.rser.2017.06.001 [28] 李小冬,朱辰.我国建筑碳排放核算及影响因素研究综述[J].安全与环境学报,2020,20(1):317-327.LI X D,ZHU C.Summary of research on account of carbon emission in building industry and analysis of its influential factors[J].Journal of Safety and Environment,2020,20(1):317-327. [29] 戚仁广,凡培红,丁洪涛.碳中和背景下我国建筑面积预测[J].建设科技,2021(11):14-18.QI R G,FAN P H,DING H T.Forecast of China's building area under background of carbon neutrality[J].Construction Science and Technology,2021(11):14-18. [30] 龙惟定,梁浩.我国城市建筑碳达峰与碳中和路径探讨[J].暖通空调,2021,51(4):1-17.LONG W D,LIANG H.Discussion on paths of carbon peak and carbon neutrality of urban buildings in China[J].Heating Ventilating & Air Conditioning,2021,51(4):1-17. [31] 江亿,胡姗.中国建筑部门实现碳中和的路径[J].暖通空调,2021,51(5): 1-13.JIANG Y,HU S.Paths to carbon neutrality in China's building sector[J].Heating Ventilating & Air Conditioning,2021,51(5): 1-13 [32] ZHANG S C,FU Y J,YANG X Y,et al.Assessment of mid-to-long term energy saving impacts of nearly zero energy building incentive policies in cold region of China[J].Energy and Buildings,2021,241:110938. doi: 10.1016/j.enbuild.2021.110938 [33] ZHANG S C,XU W,WANG K,et al.Scenarios of energy reduction potential of zero energy building promotion in the Asia-Pacific region to year 2050[J].Energy,2020,213:118792. doi: 10.1016/j.energy.2020.118792 [34] HUO H M,XU W,LI A G,et al.Sensitivity analysis and prediction of shading effect of external Venetian blind for nearly zero-energy buildings in China[J].Journal of Building Engineering,2021,41:102401. doi: 10.1016/j.jobe.2021.102401 [35] 清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2020: 农村住宅专题[M].北京: 中国建筑工业出版社,2020. [36] 蔡伟光,蔡彦鹏.全国建筑碳排放计算方法研究与数据分析[J].建设管理研究,2019(2):61-76.CAI W G,CAI Y P.Study on the calculation method of national building carbon emission and data analysis[J].Research on Construction Management,2019(2):61-76. -