留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米金属颗粒在土壤-植物系统中的迁移转化及生物效应研究进展

疏茂 汤岑鹏 赵峰娃 赵青

疏茂, 汤岑鹏, 赵峰娃, 赵青. 纳米金属颗粒在土壤-植物系统中的迁移转化及生物效应研究进展[J]. 环境科学研究, 2022, 35(2): 435-442. doi: 10.13198/j.issn.1001-6929.2021.11.15
引用本文: 疏茂, 汤岑鹏, 赵峰娃, 赵青. 纳米金属颗粒在土壤-植物系统中的迁移转化及生物效应研究进展[J]. 环境科学研究, 2022, 35(2): 435-442. doi: 10.13198/j.issn.1001-6929.2021.11.15
SHU Mao, TANG Cenpeng, ZHAO Fengwa, ZHAO Qing. Research Progress on Migration and Transformation of Nano Metallic Particles in Soil-Plant System and Their Bio-Effects on Plants[J]. Research of Environmental Sciences, 2022, 35(2): 435-442. doi: 10.13198/j.issn.1001-6929.2021.11.15
Citation: SHU Mao, TANG Cenpeng, ZHAO Fengwa, ZHAO Qing. Research Progress on Migration and Transformation of Nano Metallic Particles in Soil-Plant System and Their Bio-Effects on Plants[J]. Research of Environmental Sciences, 2022, 35(2): 435-442. doi: 10.13198/j.issn.1001-6929.2021.11.15

纳米金属颗粒在土壤-植物系统中的迁移转化及生物效应研究进展

doi: 10.13198/j.issn.1001-6929.2021.11.15
基金项目: 国家自然科学基金优秀青年基金项目(No.42022056);广东省科学院专项资金项目(No.2020GDASYL-20200101002)
详细信息
    作者简介:

    疏茂(1986-),男,安徽宣城人,shumao@conchventure.com

    通讯作者:

    赵青(1983-),男,浙江台州人,研究员,博士,博导,主要从事环境地球化学研究,happyzq2002@163.com

  • 中图分类号: X173

Research Progress on Migration and Transformation of Nano Metallic Particles in Soil-Plant System and Their Bio-Effects on Plants

Funds: National Natural Science Foundation of China (No.42022056); GDAS' Project of Science and Technology Development, China (No.2020GDASYL-20200101002)
  • 摘要: 纳米金属颗粒的安全性是我国纳米产业发展亟需解决的重要课题,认识纳米金属颗粒在土壤-植物系统中的迁移转化和生物效应是其安全性研究的重要内容. 本文系统阐述了纳米金属颗粒在土壤中的迁移转化、在植物中的运输过程和机制以及在植物中的生物转化及其对植物的生物学效应,并在此基础上提出未来研究展望. 结果表明:①复杂的土壤环境(pH、离子强度、离子价态、温度、溶解性有机质)能够影响纳米金属颗粒在土壤中的迁移及其形态转化(吸附/解吸、分散/沉降、解离和氧化/还原);②纳米金属颗粒首先吸附在植物的根部,再通过质外体或共质体途经向植物内部转移,由木质部和韧皮部组成的维管系统进行转运;③根际分泌物以及植物体内的蛋白质与有机酸等对纳米金属颗粒在植物中的生物转化起到重要作用;④纳米金属颗粒可以通过引起氧化应激或抑制营养元素吸收对植物产生毒性效应. 为此,提出未来研究展望:建议重点关注纳米金属颗粒在土壤中形态转变过程的耦合效应,以及各赋存形态在植物体内的运输途径、生物转化过程机制及其对植物生物效应的贡献等.

     

  • 图  1  纳米金属颗粒的形态转化

    Figure  1.  Morphological transformation of metal nanoparticles

    图  2  金属纳米颗粒在植物体内的运输途径及其在韧皮部胞间连丝内的积累[32]

    Figure  2.  Transport routes of metal nanoparticles in plant and accumulation of gold nanoparticles in the plasmodesma of the phloem complex in root cells[32]

    图  3  金属纳米颗粒对植物的生物效应[32]

    Figure  3.  Biological effects of metal nanoparticles on plants[32]

  • [1] MITCHELL M J,BILLINGSLEY M M,HALEY R M,et al.Engineering precision nanoparticles for drug delivery[J].Nature Reviews Drug Discovery,2021,20(2):101-124. doi: 10.1038/s41573-020-0090-8
    [2] YIN Y G,LIU J F,JIANG G B.Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter[J].ACS Nano,2012,6(9):7910-7919. doi: 10.1021/nn302293r
    [3] 罗丹,季凯,张建朋,等.Pt纳米颗粒改性活性炭的制备及其应用研究[J].环境工程技术学报,2018,8(1):23-27.

    LUO D,JI K,ZHANG J P,et al.Preparation of Pt nanoparticles modified activated carbon and its applications[J].Journal of Environmental Engineering Technology,2018,8(1):23-27.
    [4] 方蕾,赵晓丽,王珺瑜,等.具有不同粒径和相同表面结构纳米银颗粒的制备及表征[J].环境科学研究,2019,32(5):866-874.

    FANG L,ZHAO X L,WANG J Y,et al.Preparation and characterization of nano-silver with different particle sizes and uniform surface coating[J].Research of Environmental Sciences,2019,32(5):866-874.
    [5] 刘美丽, 牛其建, 俞洋洋, 等. 碳基材料负载纳米零价铁去除六价铬的研究进展[J]. 环境科学研究, 2021. doi: 10.13198/j.issn.1001-6929.2021.07.13.

    LIU M L, NIU Q J, YU Y Y, et al. Progress in removal of hexavalent chromium by carbon-based materials loaded with nano zero-valent iron[J]. Research of Environmental Sciences, 2021. doi: 10.13198/j.issn.1001-6929.2021.07.13.
    [6] 王侠,王欣,杜艳艳,等.改性纳米零价铁对稻田土壤As污染的修复效能[J]. 环境科学研究,2017,30(9): 1406-1414.

    WANG X,WANG X,DU Y Y,et al.Remediation efficiency of arsenic-contaminated paddy soil with modified nano-zero-valent iron[J].Research of Environmental Sciences,2017,30(9): 1406-1414.
    [7] LIN D H,XING B S.Root uptake and phytotoxicity of ZnO nanoparticles[J].Environmental Science & Technology,2008,42(15):5580-5585.
    [8] XIANG Q Q,WANG D,ZHANG J L,et al.Effect of silver nanoparticles on gill membranes of common carp: modification of fatty acid profile, lipid peroxidation and membrane fluidity[J].Environmental Pollution,2020,256:113504. doi: 10.1016/j.envpol.2019.113504
    [9] 严玉鹏,唐亚东,万彪,等.颗粒尺寸对纳米氧化物环境行为的影响[J].环境科学,2018,39(6):2982-2990.

    YAN Y P,TANG Y D,WAN B,et al.Impact of size on environmental behavior of metal oxide nanoparticles[J].Environmental Science,2018,39(6):2982-2990.
    [10] DU W C,SUN Y Y,JI R,et al.TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil[J].Journal of Environmental Monitoring,2011,13(4):822-828. doi: 10.1039/c0em00611d
    [11] FRANKLIN N M,ROGERS N J,APTE S C,et al.Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility[J].Environmental Science & Technology,2007,41(24):8484-8490.
    [12] BIBI M,ZHU X Y,MUNIR M,et al.Bioavailability and effect of α-Fe2O3 nanoparticles on growth, fatty acid composition and morphological indices of Chlorella vulgaris[J].Chemosphere,2021,282:131044. doi: 10.1016/j.chemosphere.2021.131044
    [13] DRUMMOND J D,DAVIES-COLLEY R J,STOTT R,et al.Retention and remobilization dynamics of fine particles and microorganisms in pastoral streams[J].Water Research,2014,66:459-472. doi: 10.1016/j.watres.2014.08.025
    [14] BRADFORD S A,MORALES V L,ZHANG W,et al.Transport and fate of microbial pathogens in agricultural settings[J].Critical Reviews in Environmental Science and Technology,2013,43(8):775-893. doi: 10.1080/10643389.2012.710449
    [15] ZHUANG J,MCCARTHY J F,TYNER J S,et al.In situ colloid mobilization in Hanford sediments under unsaturated transient flow conditions:  effect of irrigation pattern[J].Environmental Science & Technology,2007,41(9):3199-3204.
    [16] PHILIPPE A,SCHAUMANN G E.Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review[J].Environmental Science & Technology,2014,48(16):8946-8962.
    [17] YANG K,LIN D H,XING B S.Interactions of humic acid with nanosized inorganic oxides[J].Langmuir,2009,25(6):3571-3576. doi: 10.1021/la803701b
    [18] EL BADAWY A M,SCHECKEL K G,SUIDAN M,et al.The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles[J].Science of the Total Environment,2012,429:325-331. doi: 10.1016/j.scitotenv.2012.03.041
    [19] HUYNH K A,CHEN K L.Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions[J].Environmental Science & Technology,2011,45(13):5564-5571.
    [20] SCHAUMANN G E,PHILIPPE A,BUNDSCHUH M,et al.Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts[J].Science of the Total Environment,2015,535:3-19. doi: 10.1016/j.scitotenv.2014.10.035
    [21] 宋柯. 纳米氧化锌和氧化锌对大肠杆菌毒性影响的研究[D]. 南阳: 南阳师范学院, 2021.
    [22] WANG X G,SUN T S,ZHU H,et al.Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles[J].Journal of Environmental Management,2020,267:110656. doi: 10.1016/j.jenvman.2020.110656
    [23] YIN Y G,YU S J,LIU J F,et al.Thermal and photoinduced reduction of ionic Au(Ⅲ) to elemental Au nanoparticles by dissolved organic matter in water: possible source of naturally occurring Au nanoparticles[J].Environmental Science & Technology,2014,48(5):2671-2679.
    [24] 金季也, 吴甘霖, 党菲. 植物介导金属纳米颗粒合成的研究进展[J]. 农业资源与环境学报, 2021. doi: 10.13254/j.jare.2021.0250.

    JIN J Y, WU G L, DANG F. Formation of metallic nanoparticles within plants[J]. Journal of Agricultural Resources and Environment, 2021. doi: 10.13254/j.jare.2021.0250.
    [25] MA C X,WHITE J C,DHANKHER O P,et al.Metal-based nanotoxicity and detoxification pathways in higher plants[J].Environmental Science & Technology,2015,49(12):7109-7122.
    [26] RAJPUT V,MINKINA T,MAZARJI M,et al.Accumulation of nanoparticles in the soil-plant systems and their effects on human health[J].Annals of Agricultural Sciences,2020,65(2):137-143. doi: 10.1016/j.aoas.2020.08.001
    [27] ZHAO L J,HUANG Y X,HU J,et al.1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress[J].Environmental Science & Technology,2016,50(4):2000-2010.
    [28] LV J,CHRISTIE P,ZHANG S Z.Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges[J].Environmental Science:Nano,2019,6(1):41-59. doi: 10.1039/C8EN00645H
    [29] ZHAO L J,PERALTA-VIDEA J R,VARELA-RAMIREZ A,et al.Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil:insight into the uptake mechanism[J].Journal of Hazardous Materials,2012,225/226:131-138. doi: 10.1016/j.jhazmat.2012.05.008
    [30] MA Y H,HE X,ZHANG P,et al.Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus)[J].Nanotoxicology,2011,5(4):743-753. doi: 10.3109/17435390.2010.545487
    [31] GHAFARIYAN M H,MALAKOUTI M J,DADPOUR M R,et al.Effects of magnetite nanoparticles on soybean chlorophyll[J].Environmental Science & Technology,2013,47(18):10645-10652.
    [32] ZHAI G S,WALTERS K S,PEATE D W,et al.Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar[J].Environmental Science & Technology Letters,2014,1(2):146-151.
    [33] KOELMEL J,LELAND T,WANG H H,et al.Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry[J].Environmental Pollution,2013,174:222-228. doi: 10.1016/j.envpol.2012.11.026
    [34] ZHU J H,WANG J,ZHAN X H,et al.Role of charge and size in the translocation and distribution of zinc oxide particles in wheat cells[J].ACS Sustainable Chemistry & Engineering,2021,9(34):11556-11564.
    [35] BORGATTA J R,LOCHBAUM C A,ELMER W H,et al.Biomolecular Corona formation on CuO nanoparticles in plant xylem fluid[J].Environmental Science:Nano,2021,8(4):1067-1080. doi: 10.1039/D1EN00140J
    [36] QIN Q,LI X M,WU H Y,et al.Characterization of cadmium (108Cd) distribution and accumulation in Tagetes erecta L. seedlings: effect of split-root and of remove-xylem/phloem[J].Chemosphere,2013,93(10):2284-2288. doi: 10.1016/j.chemosphere.2013.07.084
    [37] ZHANG P,MA Y H,ZHANG Z Y,et al.Biotransformation of ceria nanoparticles in cucumber plants[J].ACS Nano,2012,6(11):9943-9950. doi: 10.1021/nn303543n
    [38] LIU J Y,WANG Z Y,LIU F D,et al.Chemical transformations of nanosilver in biological environments[J].ACS Nano,2012,6(11):9887-9899. doi: 10.1021/nn303449n
    [39] WANG Z Y,XIE X Y,ZHAO J,et al.Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L. )[J].Environmental Science & Technology,2012,46(8):4434-4441.
    [40] HERNANDEZ-VIEZCAS J A, CASTILLO-MICHEL H, SERVIN A D, et al.Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles[J].Chemical Engineering Journal,2011,170(2/3): 346-352.
    [41] 杨新萍,赵方杰.植物对纳米颗粒的吸收、转运及毒性效应[J].环境科学,2013,34(11):4495-4502.

    YANG X P,ZHAO F J.A review of uptake, translocation and phytotoxicity of engineered nanoparticles in plants[J].Environmental Science,2013,34(11):4495-4502.
    [42] ARORA S,SHARMA P,KUMAR S,et al.Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea[J].Plant Growth Regulation,2012,66(3):303-310. doi: 10.1007/s10725-011-9649-z
    [43] PANDA K K,ACHARY V M M,KRISHNAVENI R,et al.In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants[J].Toxicology in Vitro,2011,25(5):1097-1105. doi: 10.1016/j.tiv.2011.03.008
    [44] MUKHERJEE A,POKHREL S,BANDYOPADHYAY S,et al.A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe@ZnO) in green peas (Pisum sativum L. )[J].Chemical Engineering Journal,2014,258:394-401. doi: 10.1016/j.cej.2014.06.112
    [45] SERVIN A D,MORALES M I,CASTILLO-MICHEL H,et al.Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain[J].Environmental Science & Technology,2013,47(20):11592-11598.
    [46] ZHAO L J,PENG B,HERNANDEZ-VIEZCAS J A,et al.Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation[J].ACS Nano,2012,6(11):9615-9622. doi: 10.1021/nn302975u
    [47] RICO C M,HONG J,MORALES M I,et al.Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging[J].Environmental Science & Technology,2013,47(11):5635-5642.
    [48] PRIESTER J H, GE Y, MIELKE R E, et al. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption[J]. PNAS, 2012. doi: 10.1073/pnas.1205431109.
    [49] SCHWABE F,SCHULIN R,LIMBACH L K,et al.Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture[J].Chemosphere,2013,91(4):512-520. doi: 10.1016/j.chemosphere.2012.12.025
    [50] TAYLOR A F,RYLOTT E L,ANDERSON C W N,et al.Investigating the toxicity,uptake,nanoparticle formation and genetic response of plants to gold[J].PLoS One,2014,9(4):e93793
  • 加载中
图(3)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  47
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-06
  • 修回日期:  2021-11-13
  • 网络出版日期:  2022-03-07

目录

    /

    返回文章
    返回