留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国铝冶炼行业二氧化碳排放达峰路径研究

王丽娟 邵朱强 熊慧 李丹 杨富强 严刚

王丽娟, 邵朱强, 熊慧, 李丹, 杨富强, 严刚. 中国铝冶炼行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 377-384. doi: 10.13198/j.issn.1001-6929.2021.11.18
引用本文: 王丽娟, 邵朱强, 熊慧, 李丹, 杨富强, 严刚. 中国铝冶炼行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 377-384. doi: 10.13198/j.issn.1001-6929.2021.11.18
WANG Lijuan, SHAO Zhuqiang, XIONG Hui, LI Dan, YANG Fuqiang, YAN Gang. Pathway of Carbon Emissions Peak of Aluminum Industry[J]. Research of Environmental Sciences, 2022, 35(2): 377-384. doi: 10.13198/j.issn.1001-6929.2021.11.18
Citation: WANG Lijuan, SHAO Zhuqiang, XIONG Hui, LI Dan, YANG Fuqiang, YAN Gang. Pathway of Carbon Emissions Peak of Aluminum Industry[J]. Research of Environmental Sciences, 2022, 35(2): 377-384. doi: 10.13198/j.issn.1001-6929.2021.11.18

中国铝冶炼行业二氧化碳排放达峰路径研究

doi: 10.13198/j.issn.1001-6929.2021.11.18
基金项目: 国家自然科学基金项目(No.72140008);中国工程院战略研究与咨询项目(No.2021-HYZD-14);国家自然科学基金项目(No.72074154)
详细信息
    作者简介:

    王丽娟(1983-),女,山东滨州人,副研究员,博士,主要从事大气环境、碳达峰碳中和研究,wanglj@caep.org.cn

    通讯作者:

    ①邵朱强(1981-),男,山东成武人,高级工程师,主要从事有色金属节能环保、低碳研究,13683331089@126.com

    ②李丹(1985-),女,河北廊坊人,高级工程师,硕士,主要从事有色金属节能环保、低碳研究,feir8510@126.com

  • 中图分类号: X24

Pathway of Carbon Emissions Peak of Aluminum Industry

Funds: National Natural Science Foundation of China (No.72140008); Strategic Research and Consulting Project of Chinese Academy of Engineering (No.2021-HYZD-14); National Natural Science Foundation of China (No.72074154)
  • 摘要: 铝冶炼行业是高耗能、高排放行业,也是有色金属行业中CO2排放量最大的领域,在全国2030年碳达峰背景下,铝冶炼行业将面临巨大的减排压力. 统筹考虑社会经济发展、能源结构、工艺结构、技术进步、进出口影响等因素,采用回归分析和情景分析等方法,对2021—2035年我国铝冶炼行业碳排放趋势及影响因素进行分析,识别碳减排的主要驱动因素,提出推动碳达峰的关键举措,为制定碳达峰目标背景下的铝冶炼行业碳排放控制路径提供参考. 结果表明:①实现铝冶炼行业碳达峰任务艰巨,在严格落实电解铝产能总量控制以及多项措施实施的前提下,预计可实现铝冶炼行业“十四五”末期至“十五五”初期达峰,峰值在5.3×108~6.4×108 t之间,达峰后保持2年左右平台期,产能控制是削峰的关键. ②提高再生铝利用水平是决定铝冶炼行业能否快速达峰的关键,到2030年其对行业碳减排的贡献率为77.3%. ③推进清洁能源替代,鼓励电解铝产能向可再生电力富集地区转移是铝冶炼行业碳减排的重要手段,到2030年其对行业碳减排的贡献率为21.5%. ④提高短流程比例也是铝冶炼行业碳减排的重要方向,到2030年其对行业碳减排的贡献率为1.2%. 研究显示,铝冶炼行业碳减排工作重点聚焦于推进严控产能总量、调整优化产业结构、加强清洁能源替代、强化技术降碳等方面.

     

  • 图  1  技术路线

    Figure  1.  Technology framework

    图  2  铝冶炼行业碳排放流程

    注:括号中数值代表铝冶炼不同阶段CO2排放量占铝冶炼行业总排放量的比例.

    Figure  2.  Carbon emission flow chart in aluminum industry

    图  3  我国铝消费结构

    Figure  3.  Domestic aluminum consumption structure

    图  4  2010—2035年不同情景下我国铝需求量

    Figure  4.  Aluminum production from 2010 to 2035 under different scenarios in China

    图  5  2010—2035年我国铝冶炼行业不同情景下CO2排放量

    Figure  5.  CO2 emission trends of the aluminum industry under different scenarios in China

    表  1  铝冶炼行业不同措施设计原则

    Table  1.   Estimation principle on the effect of CO2 emission mitigations in aluminum industry for different factors

    措施设计原则
    提高再生铝利用率 铝需求量不变,提高再生铝利用量,替代电解铝生产量
    提高清洁能源使用比例 铝需求量不变,通过网电替换自备电,增加清洁能源使用量,降低自备电使用量
    提高短流程
    比例
    铝需求量不变,通过提高铝冶炼行业短流程比例,提高行业能源效率
    下载: 导出CSV

    表  2  铝冶炼行业碳排放类型、定义及应用范围

    Table  2.   Types, definitions and application scope of carbon emissions from the aluminum industry

    碳排放类型定义应用范围
    燃料燃烧排放 煤炭、燃气、柴油等燃料在各种类型的固定或移动燃烧设备
    (如锅炉、窑炉、内燃机等)中与氧气充分燃烧产生的CO2排放
    氧化铝生产过程中煤
    气/天然气;再生铝生产过程中天然气消耗排放
    能源作为原材料用途的排放 能源作为原材料被消耗,发生物理或化学变化而产生的温室气体排放 电解铝电解过程中碳阳极消耗排放
    过程排放 工业生产中,除能源之外的原材料发生化学反应造成的温室气体排放
    净购入电力产生的排放 企业净购入的电力、热力(蒸汽、热水)消费所对应的电力或热力生产环节产生的CO2排放 铝电解及其他过程中的电力消耗排放;氧化铝生产过程中电力/热力消耗排放
    下载: 导出CSV

    表  3  2020年我国铝冶炼行业CO2排放量

    Table  3.   CO2 emissions from the aluminum   industry in 2020 in China 108 t

    排放环节电力排放一次能源排放碳阳极排放合计
    电解铝 3.70 0.50 4.20
    氧化铝 0.10 0.70 0.80
    再生铝 0.01 0.01
    总计 3.80 0.71 0.50 5.01
    下载: 导出CSV

    表  4  碳排放控制关键措施参数取值

    Table  4.   Parameter values of key measures for carbon emission   control in the aluminum industry %

    年份清洁能源使用比例再生铝利用率短流程比例
    2020371770
    2025412291
    2030503495
    2035554095
    下载: 导出CSV

    表  5  不同因素对铝冶炼行业碳减排贡献率

    Table  5.   Impact of different factors on carbon emission reduction in aluminum industry

    年份CO2减排量贡献率/%
    提高再生铝利用率提高清洁能源使用比例提高短流程比例
    202574.423.22.4
    203077.321.51.2
    203579.219.90.9
    下载: 导出CSV
  • [1] PARASKEVAS D,INGARAO G,DENG Y,et al.Evaluating the material resource efficiency of secondary aluminium production: a Monte Carlo-based decision-support tool[J].Journal of Cleaner Production,2019,215:488-496. doi: 10.1016/j.jclepro.2019.01.097
    [2] ASHKENAZI D.How aluminum changed the world: a metallurgical revolution through technological and cultural perspectives[J].Technological Forecasting and Social Change,2019,143:101-113. doi: 10.1016/j.techfore.2019.03.011
    [3] KERMELI K,WEER P H,CRIJNS-GRAUS W,et al.Energy efficiency improvement and GHG abatement in the global production of primary aluminium[J].Energy Efficiency,2015,8(4):629-666. doi: 10.1007/s12053-014-9301-7
    [4] 王深,吕连宏,张保留,等.基于多目标模型的中国低成本碳达峰、碳中和路径[J].环境科学研究,2021,34(9):2044-2055.

    WANG S,LÜ L H,ZHANG B H,et al.Multi objective programming model of low-cost path for China's peaking carbon dioxide emissions and carbon neutrality[J].Research of Environmental Sciences,2021,34(9):2044-2055.
    [5] 翁智雄,马忠玉,葛察忠,等.差异化碳减排目标对区域产业部门经济与碳减排的影响[J].环境科学研究,2019,32(8):1264-1274.

    WENG Z X,MA Z Y,GE C Z,et al.Economic and mitigating impacts of differential carbon reduction targets on regional industries[J].Research of Environmental Sciences,2019,32(8):1264-1274.
    [6] DAS S.Achieving carbon neutrality in the global aluminum industry[J].JOM,2012,64(2):285-290. doi: 10.1007/s11837-012-0237-0
    [7] 张文娟,李会泉,陈波,等.我国原铝冶炼行业温室气体排放模型[J].环境科学研究,2013,26(10):1132-1138.

    ZHANG W J,LI H Q,CHEN B,et al.Calculation model for greenhouse gas emission of primary aluminum industry in China[J].Research of Environmental Sciences,2013,26(10):1132-1138.
    [8] WESTON R E.Possible greenhouse effects of tetrafluoromethane and carbon dioxide emitted from aluminum production[J].Atmospheric Environment,1996,30(16):2901-2910. doi: 10.1016/1352-2310(95)00499-8
    [9] HAO H,GENG Y,HANG W.GHG emissions from primary aluminum production in China: regional disparity and policy implications[J].Applied Energy,2016,166:264-272. doi: 10.1016/j.apenergy.2015.05.056
    [10] LIU Z,GENG Y,ADAMS M,et al.Uncovering driving forces on greenhouse gas emissions in China' aluminum industry from the perspective of life cycle analysis[J].Applied Energy,2016,166:253-263. doi: 10.1016/j.apenergy.2015.11.075
    [11] GUO Y,ZHU W,YANG Y,et al.Carbon reduction potential based on life cycle assessment of China's aluminium industry: a perspective at the province level[J].Journal of Cleaner Production,2019,239:1-10.
    [12] PENG T D,OU X M,YAN X Y G,et al.Life-cycle analysis of energy consumption and GHG emissions of aluminum production in China[J].Energy Procedia,2019,158:3937-3943. doi: 10.1016/j.egypro.2019.01.849
    [13] LI S P,ZHANG T G,NIU L P,et al.Analysis of the development scenarios and greenhouse gas (GHG) emissions in China's aluminum industry till 2030[J].Journal of Cleaner Production,2021,290:1-12.
    [14] BROUGH D,JOUHARA H.The aluminium industry: a review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery[J].International Journal of Thermofluids,2020,1/2:1-38.
    [15] JOUHARA H,KHORDEHGAH N,ALMAHMOUD S,et al.Waste heat recovery technologies and applications[J].Thermal Science and Engineering Progress,2018,6:268-289. doi: 10.1016/j.tsep.2018.04.017
    [16] ELSHKAKI A,LEI S,CHEN W Q.Material-energy-water nexus: modelling the long term implications of aluminium demand and supply on global climate change up to 2050[J].Environmental Research,2020,181:108964. doi: 10.1016/j.envres.2019.108964
    [17] LIU G,BANGS C E,MULLER D B.Stock dynamics and emission pathways of the global aluminum cycle[J].Nature Climate Change,2013,3:338-342. doi: 10.1038/nclimate1698
    [18] International Aluminium Institute (IAI). Aluminium sector greenhouse gas pathways to 2050[R]. Kingston: International Aluminium Institute, 2021
    [19] 孔佑花,王丽,郭志玲,等.基于系统动力学的甘肃省碳排放峰值预测[J].环境工程技术学报,2018,8(3):309-318. doi: 10.3969/j.issn.1674-991X.2018.03.041

    KONG Y H,WANG L,GUO Z L,et al.Carbon emissions peak prediction in Gansu Province based on system dynamics[J].Journal of Environmental Engineering Technology,2018,8(3):309-318. doi: 10.3969/j.issn.1674-991X.2018.03.041
    [20] CHEN W Q,SHI L.Analysis of aluminum stocks and flows in mainland China from 1950 to 2009: exploring the dynamics driving the rapid increase in China's aluminum production[J].Resources Conservation Recycling,2012,65:18-28. doi: 10.1016/j.resconrec.2012.05.003
    [21] LIU S,LIANG Y.Quantifying aluminum scrap generation from seven end-use sectors to support sustainable development in China[J].Ecology and Environmental Research,2017,17(4):7821-7835.
    [22] GUO Y,YU Y,REN H,et al.Scenario-based DEA assessment of energy-saving technological combinations in aluminum industry[J].Journal of Cleaner Production,2020,260:121010. doi: 10.1016/j.jclepro.2020.121010
    [23] 丁宁,高峰,王志宏,等.原铝与再生铝生产的能耗和温室气体排放对比[J].中国有色金属学报,2012,22(10):2908-2915.

    DING N,GAO F,WANG Z H,et al.Comparative analysis of primary aluminum and recycled aluminum on energy consumption and greenhouse gas emission China[J].The Chinese Journal of Nonferrous Metals,2012,22(10):2908-2915.
    [24] XUE J,LIU G,BROWN M T,et al.Trash or treasure?prospects for full aluminum chain in China based on the recycling options[J].Journal of Cleaner Production,2018,193:217-227. doi: 10.1016/j.jclepro.2018.05.075
    [25] 国家发展和改革委员会.中国电解铝生产企业温室气体排放核算方法与报告指南(试行)[EB/OL].北京: 国家发展和改革委员会, (2013-11-04)[2021-11-04].http://www.gov.cn/gzdt/att/att/site1/20131104/001e3741a2cc13e13f2105.pdf.
    [26] 中国有色金属工业协会.2019年中国有色金属工业年鉴[M].北京:中国有色金属工业协会,2020.
    [27] International Aluminium Institute (IAI).Primary aluminium production[EB/OL].Kingston:International Aluminium Institute,2021[2021-11-04].https://international-aluminium.org/statistics/primary-aluminium-production
    [28] 国家统计局.中国能源统计年鉴2020[M].北京:中国统计出版社,2021.
    [29] 王丽娟, 张剑, 王雪松, 等. 中国电力行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 2021. doi: 10.13198/j.issn.1001-6929.2021.11.24.

    WANG L J, ZHANG J, WANG X S, et al. Pathway of carbon emissions peak for China's electric power industry[J]. Research of Environmental Sciences, 2021. doi: 10.13198/j.issn.1001-6929.2021.11.24.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  966
  • HTML全文浏览量:  200
  • PDF下载量:  525
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2021-11-05
  • 网络出版日期:  2022-03-07

目录

    /

    返回文章
    返回