Pathway of Carbon Emissions Peak for Cement Industry in China
-
摘要: 水泥行业是主要的CO2排放行业,2020年我国水泥行业CO2排放占全国排放总量的12%,占全国工业过程排放的60%以上. 为开展水泥行业碳达峰路径研究,提出了基于社会、经济等影响因素的多因素拟合分析模型以及基于主要下游产业的需求预测方法,对2021—2035年我国水泥熟料及水泥产量进行预测;并通过对水泥行业碳排放特征的分析,考虑主要控制措施的可行性,构建我国水泥行业CO2排放情景,对2021—2035年水泥行业CO2排放趋势进行测算,在此基础上分析水泥行业碳达峰路径及相关政策建议. 结果表明:①中国水泥熟料消费量在“十四五”期间仍有一定上升空间,随着经济社会的绿色转型,水泥市场需求在“十五五”时期下降. ②在此基础上,通过全面加强产能控制、加大落后产能淘汰力度、推广高效节能技术、积极推进原燃料替代,可推动水泥行业碳排放于“十四五”中期达峰,峰值为13.8×108~14.2×108 t,经过2~3年的峰值平台期后呈持续下降趋势,2030年水泥行业碳排放量将较2020年下降15%~18%. ③2030年,水泥熟料及水泥产量的下降将带动水泥行业碳排放量较2020年减少1.4×108 t. 在各项技术措施中,节能改造是CO2减排潜力最大的措施,2030年能效提升可带动水泥行业CO2排放量较2020年减少0.38×108 t;其次是利用固体废物替代燃煤,可带动行业CO2排放量较2020年减少0.17×108 t. 研究显示,推动我国水泥行业碳达峰及碳减排,需在加强产量控制避免水泥过度消费的基础上,聚焦节能改造和原燃料替代措施.Abstract: The cement industry is one of the major CO2 emission industries. CO2 emissions of cement industry accounted for 12% of the total national emissions in China and over 60% of the national industrial process emissions. In order to study the pathway of carbon emissions peak of China′s cement industry, a multi-factor fitting analysis model based on social and economic factors and a demand forecasting method based on major downstream industries were proposed. The output of cement clinker and cement in China from 2021 to 2035 were predicted using the above methods. Based on the carbon emission characteristics of cement industry and considering the feasibility of main control measures, the CO2 emission scenarios of China′s cement industry were designed. The CO2 emissions of cement industry were calculated under different scenarios from 2021 to 2035. On this basis, the pathway of CO2 emissions peak for cement industry and relevant policy suggestions were analyzed. The results show that: (1) The consumption of cement clinker in China will have some upside during the ‘14th Five-Year Plan’ period. With the green transformation of economy and society, the demand of cement will decline during the ‘15th Five-Year Plan’ period. (2) On this basis, the carbon emissions of the cement industry will reach its peak in the middle of the ‘14th Five-Year Plan’ by strengthening capacity control, shutting down outdated capacity, promoting efficient and energy-saving technologies, and promoting the replacement of raw and fuel, and the peak value is 13.8×108-14.2×108 t. After a peak plateau period of 2-3 years, the carbon emissions will continue to decline. CO2 emissions of the cement industry will be reduced by 15%-18% by 2030 compared to 2020. (3) Only taking into account the changes of cement clinker and cement production, in 2030 CO2 emissions of the cement industry will be reduced by 1.4×108 t compared to 2020. Among the technical measures, energy conservation renovation is the biggest one to reduce CO2 emissions. By 2030, the promotion of energy efficiency can reduce CO2 emissions by about 0.38×108 t compared to 2020. Secondly, replacing coal with solid waste can reduce CO2 emissions by 0.17×108 t compared to 2020. The research shows that to promote cement industry carbon peak and emissions reduction in China, it is necessary to focus on the measures of energy saving, fuel substitution and raw material substitution based on strengthening production control and avoiding excessive consumption of cement.
-
Key words:
- cement industry /
- CO2 /
- pathway of carbon emissions peak /
- scenario analysis
-
表 1 水泥行业2021—2035年CO2排放情景设计
Table 1. Scenarios of CO2 emissions in cement industry from 2021 to 2035
项目 年份 基准情景(BAU) 高需求情景 低需求情景 水泥熟料产量 2025 多因素拟合分析+类比分析法
预测结果多因素拟合分析+类比分析法
预测结果下游需求预测法预测结果 2030 2035 控制
措施落后产能淘汰 2025 淘汰干法中空窑(除生产铝酸盐水
泥等特种水泥外)、水泥机立窑、
立波尔窑、湿法窑(现状要求)淘汰规模2 000 t/d以下硅酸盐水泥熟料生产线约5 000×104 t 2030 根据能耗水平淘汰低效产能 2035 根据能耗水平淘汰低效产能 熟料烧成系统节
能改造2025 单位熟料煤耗保持现状 对单位熟料煤耗大于112 kg/t (以标准煤计)的生产线实施技术改造 2030 对单位熟料煤耗大于109 kg/t (以标准煤计)的生产线实施技术改造 2035 对单位熟料煤耗大于105 kg/t (以标准煤计)的生产线实施技术改造 推广高效粉磨
技术2025 30%企业采用高效粉磨技术
(现状)40%企业采用高效粉磨技术 2030 60%企业采用高效粉磨技术 2035 80%企业采用高效粉磨技术 推进替代燃料
使用2025 5%生产线采用燃料替代技术
(现状)20%生产线采用燃料替代技术 2030 40%生产线采用燃料替代技术 2035 60%生产线采用燃料替代技术 工业废料替代石
灰质原料2025 — — 2030 工业固废在原料中的替代比例达5% 2035 工业固废在原料中的替代比例达5% -
[1] ANDRES R J,BODEN T A,BREON F M,et al.A synthesis of carbon dioxide emissions from fossil-fuel combustion[J].Biogeosciences Discussions,2012,9(1):1845-1871. [2] GAO T M, SHEN L, SHEN M, et al. Analysis on differences of carbon dioxide emission from cement production and their major determinants[J]. Journal of Cleaner Production, 2015, 103: 160-170. [3] KAJASTE R,HURME M.Cement industry greenhouse gas emissions: management options and abatement cost[J].Journal of Cleaner Production,2016,112:4041-4052. doi: 10.1016/j.jclepro.2015.07.055 [4] US Geological Survey.Mineral commodity summaries [EB/OL].Reston:US Geological Survey,(2021-02-04)[2021-09-08].https://pubs.usgs.gov/ periodicals/mcs2021/mcs2021-cement.pdf. [5] NAQI A,JANG J G.Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: a review[J].Sustainability,2019,11(2):537. doi: 10.3390/su11020537 [6] International Energy Agency. CO2 emissions from fuel combustion [R]. Paris: OECD Publishing, 2011. [7] XU J H,FLEITER T,EICHHAMMER W,et al.Energy consumption and CO2 emissions in China's cement industry: a perspective from LMDI decomposition analysis[J].Energy Policy,2012,50(11):821-832. [8] 杨楠,李艳霞,赵盟,等.水泥熟料生产企业CO2 直接排放核算模型的建立[J].气候变化研究进展,2021,17(1):79-87.YANG N,LI Y X,ZHAO M,et al.Establishment of a CO2 direct emission accounting model for cement clinker manufacturers[J].Climate Change Research,2021,17(1):79-87. [9] 王深,吕连宏,张保留,等.基于多目标模型的中国低成本碳达峰、碳中和路径[J].环境科学研究,2021,34(9):2044-2055.WANG S,LÜ L H,ZHANG B L,et al.Multi objective programming model of low-cost path for China's peaking carbon dioxide emissions and carbon neutrality[J].Research of Environmental Sciences,2021,34(9):2044-2055. [10] WEI J X,CEN K,GENG Y B.China's cement demand and CO2 emissions toward 2030: from the perspective of socioeconomic, technology and population[J].Environmental Science and Pollution Research,2019,26(7):6409-6423. doi: 10.1007/s11356-018-04081-2 [11] 昃向祯.关于中国水泥消费峰值的探讨[J].中国水泥,2009(5):14-19. doi: 10.3969/j.issn.1671-8321.2009.05.005 [12] KE J,ZHENG N,FRIDLEY D.Potential energy savings and CO2 emissions reduction of China's cement industry[J].Energy Policy,2012,45(6):739-751. [13] WEI J,CEN K.Empirical assessing cement CO2 emissions based on China′s economic and social development during 2001-2030[J].Science of the Total Environment,2019,653:200-211. doi: 10.1016/j.scitotenv.2018.10.371 [14] BENHELAL E,ZAHEDI G,SHAMSAEI E,et al.Global strategies and potentials to curb CO2 emissions in cement industry[J].Journal of Cleaner Production,2013,51(1):142-161. [15] XU J H,FLEITER T,FAN Y,et al.CO2 emissions reduction potential in China′s cement industry compared to IEA's cement technology roadmap up to 2050[J].Applied Energy,2014,130:592-602. doi: 10.1016/j.apenergy.2014.03.004 [16] 赵步,李杨,孙明星,等.水泥-电力行业的产业共生网络构建及区域案例研究[J].环境科学研究,2019,32(2):190-196.ZHAO B,LI Y,SUN M X,et al.Industrial symbiosis network construction between cement and coal-fired power industries and case study[J].Research of Environmental Sciences,2019,32(2):190-196. [17] FENG X Z,LUGOVOY O,QIN H,et al.Co-controlling CO2 and NOx emission in China′s cement industry: an optimal development pathway study[J].Advances in Climate Change Research,2018,9(1):34-42. doi: 10.1016/j.accre.2018.02.004 [18] 数字水泥网.数字水泥2020[J].中国水泥,2020(3):2. [19] 史伟,崔源声,武夷山.中国水泥需求量预测研究[J].中国建材,2011(1):100-105. [20] 高长明.世界各国水泥产能利用率及其熟料系数调研报告[J].水泥,2016(10):1-2. [21] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.水泥单位产品能源消耗限额:GB 16780—2012[S].北京:中国标准出版社,2013. [22] International Energy Agency.Technology roadmap low-carbon transition in the cement industry[R].Paris:OECD,2018. [23] THOMAS C,SEBASTIAN R,PATRICK S,et al.Laying the foundation for zero-carbon cement [EB/OL].Frankfurt:McKinsey & Company, (2020-05-14) [2021-08-20]. https://www.mckinsey.com/industries/chemicals/our-insights/laying-the-foundation-for-zero-carbon cement#. [24] 温宗国,李会芳.中国工业节能减碳潜力与路线图[J].财经智库,2018,3(6):93-106.WEN Z G,LI H F.Potential and roadmap of China′s industrial energy saving and carbon reduction[J].Financial Minds,2018,3(6):93-106. [25] IPCC.2006 IPCC guidelines for national greenhouse gas inventories [EB/OL].Kanagawa:Institute for Global Environmental Strategies,2006[2021-09-01].http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/3_Volume/V3_2_Ch2_Mineral_Industry.pdf,2006. [26] 国家发展和改革委员会.中国水泥生产企业温室气体排放核算方法与报告指南(试行)[EB/OL].北京:国家发展和改革委员会,(2013-10-15)[2021-08-20].http://www.gov.cn/gzdt/att/att/site1/20131104/001e3741a2cc13e13f 2f 08.pdf. [27] JORDA O,SINGH S R,TAYLOR A M.Longer-run economic consequences of pandemics[J].Federal Reserve Bank of San Francisco Working Paper,2020,9:1-19. [28] LIU Z, TANG Y. Chinas economic growth and macroeconomic policy options during the COVID-19 pandemic[J]. International Journal of Chinese Culture and Management, 2021, 5(1):1. [29] 李雪松,陆旸,汪红驹,等.未来15年中国经济增长潜力与“十四五”时期经济社会发展主要目标及指标研究[J].中国工业经济,2020(4):5-22. [30] 赵明轩,吕连宏,张保留,等.中国能源消费、经济增长与碳排放之间的动态关系[J].环境科学研究,2021,34(6):1509-1522.ZHAO M X,LÜ L H,ZHANG B L,et al.Dynamic relationship among energy consumption, economic growth and carbon emissions in China[J].Research of Environmental Sciences,2021,34(6):1509-1522. [31] 佟贺丰,崔源声,屈慰双,等.基于系统动力学的我国水泥行业CO2排放情景分析[J].中国软科学,2010(3):40-50. doi: 10.3969/j.issn.1002-9753.2010.03.006TONG H F,CUI Y S,QU W S,et al.System dynamic scenarios analysis of CO2 emissions of China's cement industry[J].China Soft Science,2010(3):40-50. doi: 10.3969/j.issn.1002-9753.2010.03.006 [32] 刘淑娟,高全胜,符敬慧.中国水泥主要应用领域分析及未来需求趋势预测[J].建材发展导向,2012,10(4):17-19. [33] 国家发展和改革委员会应对气候变化司.省级温室气体清单编制指南[EB/OL].北京:国家发展和改革委员会,2011[2021-08-20].https://wenku.baidu.com/view/8c3abc0bff0a79563c1ec5da50e2524de418d0f8.html. [34] 《水泥单位产能源消耗限额》国家标准制订小组.《水泥单位产品能源消耗限额》修订编制说明(征求意见稿)[EB/OL].北京:全国能源基础与管理标准化技术委员会,(2019-08-21)[2021-08-20].https://www.sohu.com/a/335462887_653352. [35] 王瑞,许义榕,孟渴欣,等.二氧化碳转化制取燃料及高值化学品研究进展[J].环境工程技术学报,2020,10(4):639-646.WANG R,XU Y R,MENG K X,et al.Development of research on the conversion of carbon dioxide into fuel and high value-added products[J].Journal of Environmental Engineering Technology,2020,10(4):639-646. -