Determination of 4 Bisphenol Environmental Hormone in Zebrafish Exposure System by Solid Phase Extraction-Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry
-
摘要: 为评估双酚类环境激素对水环境可能造成的环境影响,建立固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS)法测定斑马鱼暴露体系中的双酚C(BPC)、双酚F(BPF)、双酚S(BPS)、双酚Z(BPZ). 对前处理条件进行优化,斑马鱼样品依次采用6 mL乙腈溶液提取,30 min超声萃取及振荡混合,8 000 r/min下离心10 min,重复2次,于−80 ℃冷冻除脂48 h,过滤并用超纯水稀释至500 mL. 采用Generik H2P柱萃取上述鱼样及养殖水体样品,依次用10 mL 10%甲醇水溶液(V/V)淋洗,10 mL甲醇溶液洗脱. 优化参数确定最佳质谱条件,以甲醇-水溶液为流动相进行梯度洗脱,采用电喷雾电离、负离子选择反应监控(SRM)模式、同位素内标法进行测定. 结果表明:①固相萃取-超高效液相色谱-串联质谱法的检出限为0.019~0.60 μg/L,定量限为0.06~1.89 μg/L,BPS在0.5~100 μg/L范围内线性关系良好,相关系数为0.999 0,BPZ、BPF和BPC在1~100 μg/L范围内线性关系良好,相关系数在0.998 9~0.999 8范围内. ②在1.5、4.5、15 μg/L双酚类环境激素的添加浓度下,养殖水体中目标物的回收率为91.45%~102.91%,相对标准偏差为1.47%~11.04%,斑马鱼体内目标物的回收率为85.95%~97.45%,相对标准偏差为4.63%~16.36%. ③高浓度暴露组中,鱼体内BPF、BPS、BPC含量约是低浓度暴露组的10倍,而BPZ含量在两组间无明显差异. 研究显示,BPC、BPF、BPS、BPZ短时间内在斑马鱼体内产生了富集,通过分析斑马鱼全鱼样品、养殖水样及实际景观水体样品,证明固相萃取-超高效液相色谱-串联质谱法样品回收率高、检出限低、灵敏度高、重现性好,具有较好的实用性.
-
关键词:
- 固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS) /
- 双酚类环境激素 /
- 斑马鱼 /
- 养殖水体 /
- 暴露
Abstract: In order to evaluate the possible environmental impact of bisphenol environmental hormones on the water environment, a solid phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS) method was established for the sample pretreatment and determination of bisphenol C (BPC), bisphenol F (BPF), bisphenol S (BPS) and bisphenol Z (BPZ) in zebrafish exposure system. The optimum sample pretreatment conditions for zebrafish were established as follows: 6 mL of acetonitrile solution as extractant, 30 min of ultrasonic extraction and shaking, 10 min of centrifugal at 8000 r/min repeated twice, 48 h of degreasing at −80 ℃, filtration and dilution to 500 mL with ultra-pure water. Generik H2P column was used for solid phase extraction of zebrafish and culture water. 10 mL of 10% methanol-water (V/V) was used to rinse and 10 mL methanol solution was used to elute the target analyte. The optimum mass spectrometry conditions were determined through parameter optimization. Gradient elution was carried out with methanol aqueous solution as mobile phase. Electrospray ionization, negative ion selective reaction monitoring (SRM) mode and isotope internal standard method were used for determination of bisphenol hormones. The results show that: (1) The limits of detection and quantification of this method were 0.019-0.60 and 0.06-1.89 μg/L, respectively. The linearity of BPS ranged from 0.5 to 100 μg/L, and the correlation coefficient was 0.9990. The linearity of BPZ, BPF and BPC was in the range of 1-100 μg/L, and the correlation coefficients were in the range of 0.9989-0.9998. (2) When bisphenol concentration was 1.5, 4.5 and 15 μg/L, the recoveries of the target substances in aquaculture water were 91.45%-102.91%, with relative standard deviation of 1.47%-11.04%. The recoveries of target substances in zebrafish were 85.95%-97.45%. The relative standard deviations were 4.63%-16.36%. (3) The BPF, BPS, and BPC in zebrafish in the high-concentration exposure group were almost 10 times that of the low-concentration exposure group. There was no significant difference in BPZ content between the two groups. The study shows that BPC, BPF, BPS, BPZ were enriched in zebrafish in a short time. The method is suitable for the determination of bisphenol environmental hormones in zebrafish, culture water, and actual landscape water samples, indicating that the proposed method has the advantages of good recovery, low detection limit, high sensitivity, good reproducibility, and practicality. -
表 1 4种双酚类环境激素及同位素内标的质谱参数
Table 1. MS parameters of the four BPs and isotopes
化合物 母离子m/z 子离子m/z 碰撞能量/eV 套管透镜电压/V ESI BPF 198.7 105.2(93.1) 35.0 34.45 - BPS 248.5 107.9(155.8) 46.0 45.60 - BPC 254.7 147.0(239.7) 46.0 33.47 - BPZ 266.9 93.0(172.8) 49.0 47.48 - BPA-13C12 238.6 99.1(139.1) 39.0 44.41 - BPS-13C12 260.3 113.9(161.6) 44.5 39.49 - 注:括号中数值为定量子离子的质荷比(m/z);-表示负离子. 表 2 4种BPs的线性范围、线性方程、相关系数、检出限和定量限
Table 2. Linear ranges, linear equations, correlation coefficient (R2), LOD and LOQ of the four BPs
化合物 内标物 线性范围/(μg/L) 线性方程 相关系数(R2) LOD/(μg/kg) LOQ/(μg/kg) BPF BPA-13C12 1~100 y=0.0568x−0.4246 0.9994 0.16 0.54 BPS BPS-13C12 0.5~100 y=0.0616x+0.3211 0.9990 0.019 0.06 BPC BPA-13C12 1~100 y=0.0478x−0.1008 0.9989 0.12 0.38 BPZ BPA-13C12 1~100 y=0.1044x+0.0142 0.9998 0.60 1.89 表 3 斑马鱼及养殖水体中BPs的加标回收率及精密度(n=6)
Table 3. Spiked recoveries and RSDs of the BPs in zebrafish and cultured water (n=6)
项目 化合物 添加量/(μg/kg) 回收率/% 相对标准差/% 斑马鱼 BPF 1.5 91.63 8.63 4.5 83.30 7.53 15 89.98 5.71 BPS 1.5 97.45 10.48 4.5 92.79 14.74 15 96.00 10.57 BPC 1.5 95.56 4.63 4.5 85.98 11.83 15 95.82 10.47 BPZ 1.5 87.92 9.32 4.5 89.94 14.20 15 92.08 16.36 养殖水体 BPF 1.5 98.23 4.30 4.5 95.96 6.34 15 93.17 1.47 BPS 1.5 97.74 6.77 4.5 98.41 4.27 15 102.91 5.19 BPC 1.5 100.10 9.81 4.5 93.93 4.80 15 96.30 8.56 BPZ 1.5 94.45 3.94 4.5 91.45 2.84 15 96.13 11.04 表 4 暴露8 d后养殖水体和斑马鱼体内4种BPs的浓度
Table 4. Concentrations of the four BPs in cultured water and zebrafish after exposure 8 d
化合物 养殖水体 斑马鱼 低浓度/
(mg/L)高浓度/
(mg/L)低浓度/
(mg/kg)高浓度/
(mg/kg)BPF 0.08 0.79 1.27 12.52 BPS 1.55 15.66 6.03 62.33 BPC 0.02 0.21 3.99 26.44 BPZ 0.02 0.20 20.47 257.65 -
[1] KITAMURA S,SUZUKI T,SANOH S,et al.Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds[J].Toxicological Sciences,2005,84(2):249-259. doi: 10.1093/toxsci/kfi074 [2] ROCHESTER J R,BOLDEN A L.Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes[J].Environmental Health Perspectives,2015,123(7):643-650. doi: 10.1289/ehp.1408989 [3] CHEN D,KANNAN K,TAN H L,et al.Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity:a review[J].Environmental Science & Technology,2016,50(11):5438-5453. [4] 刘兰兰,蒋煜峰,石磊平,等.施加牛粪熟肥对黄土吸附双酚A的影响[J].环境科学研究,2019,32(6):1063-1073.LIU L L,JIANG Y F,SHI L P,et al.Effect of decomposed dairy manure on adsorption of BPA onto loess soil[J].Research of Environmental Sciences,2019,32(6):1063-1073. [5] 艾舜豪,李霁,王晓南,等.太湖双酚A的水质基准研究及风险评价[J].环境科学研究,2020,33(3):581-588.AI S H,LI J,WANG X N,et al.Water quality criteria and risk assessment of bisphenol A in Taihu Lake[J].Research of Environmental Sciences,2020,33(3):581-588. [6] WARNER G R,FLAWS J A.Common bisphenol A replacements are reproductive toxicants[J].Nature Reviews Endocrinology,2018,14(12):691-692. doi: 10.1038/s41574-018-0113-2 [7] JIN H B,ZHU L Y.Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China[J].Water Research,2016,103:343-351. doi: 10.1016/j.watres.2016.07.059 [8] LALWANI D,RUAN Y F,TANIYASU S,et al.Nationwide distribution and potential risk of bisphenol analogues in Indian waters[J].Ecotoxicology and Environmental Safety,2020,200:110718. doi: 10.1016/j.ecoenv.2020.110718 [9] SIMONEAU C,VAN-DEN-EEDE L,VALZACCHI S.Identification and quantification of the migration of chemicals from plastic baby bottles used as substitutes for polycarbonate[J].Food Additives & Contaminants:Part A,2012,29(3):469-480. [10] GAVRILESCU M,DEMNEROVÁ K,AAMAND J,et al.Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation[J].New Biotechnology,2015,32(1):147-156. doi: 10.1016/j.nbt.2014.01.001 [11] MACEDA-VEIGA A,MAC NALLY R,DE-SOSTOA A.Water-quality impacts in semi-arid regions: can natural ‘green filters’ mitigate adverse effects on fish assemblages?[J].Water Research,2018,144:628-641. doi: 10.1016/j.watres.2018.07.077 [12] LIU J C,ZHANG L Y,LU G H,et al.Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment: a review[J].Ecotoxicology and Environmental Safety,2021,208:111481. doi: 10.1016/j.ecoenv.2020.111481 [13] XU G,MA S H,TANG L,et al.Occurrence, fate, and risk assessment of selected endocrine disrupting chemicals in wastewater treatment plants and receiving river of Shanghai, China[J].Environmental Science and Pollution Research,2016,23(24):25442-25450. doi: 10.1007/s11356-016-7669-y [14] GALLO P,DI-MARCO PISCIOTTANO I,ESPOSITO F,et al.Determination of BPA, BPB, BPF, BADGE and BFDGE in canned energy drinks by molecularly imprinted polymer cleaning up and UPLC with fluorescence detection[J].Food Chemistry,2017,220:406-412. doi: 10.1016/j.foodchem.2016.10.005 [15] GUO M M,HE M F,ZHONG J J,et al.High-performance liquid chromatography (HPLC)-fluorescence method for determination of bisphenol A diglycidyl ether (BADGE) and its derivatives in canned foods[J].Science of the Total Environment,2020,710:134975. doi: 10.1016/j.scitotenv.2019.134975 [16] ZHOU X L,KRAMER J P,CALAFAT A M,et al.Automated online column-switching high performance liquid chromatography isotope dilution tandem mass spectrometry method for the quantification of bisphenol A, bisphenol F, bisphenol S, and 11 other phenols in urine[J].Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences,2014,944:152-156. doi: 10.1016/j.jchromb.2013.11.009 [17] JUREK A,LEITNER E.Analytical determination of bisphenol A (BPA) and bisphenol analogues in paper products by GC-MS/MS[J].Food Additives & Contaminants:Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment,2017,34(7):1225-1238. [18] TU X J,WU S Y,LIU W Y,et al.Sugaring-out assisted liquid-liquid extraction combined with high-performance liquid chromatography-fluorescence detection for the determination of bisphenol A and bisphenol B in royal jelly[J].Food Analytical Methods,2019,12(3):705-711. doi: 10.1007/s12161-018-1398-4 [19] FAN Y Y,HU S B,LIU S H.Salting-out assisted liquid-liquid extraction coupled to dispersive liquid-liquid microextraction for the determination of chlorophenols in wine by high-performance liquid chromatography[J].Journal of Separation Science,2014,37(24):3662-3668. doi: 10.1002/jssc.201400869 [20] MARAGOU N C,THOMAIDIS N S,THEODORIDIS G A,et al.Determination of bisphenol A in canned food by microwave assisted extraction, molecularly imprinted polymer-solid phase extraction and liquid chromatography-mass spectrometry[J].Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences,2020,1137:121938. doi: 10.1016/j.jchromb.2019.121938 [21] ALNAIMAT A S,BARCIELA-ALONSO M C,BERMEJO-BARRERA P.Determination of bisphenol A in tea samples by solid phase extraction and liquid chromatography coupled to mass spectrometry[J].Microchemical Journal,2019,147:598-604. doi: 10.1016/j.microc.2019.03.026 [22] SHAO B,HAN H,TU X M,et al.Analysis of alkylphenol and bisphenol A in eggs and milk by matrix solid phase dispersion extraction and liquid chromatography with tandem mass spectrometry[J].Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences,2007,850(1/2):412-416. [23] 杨波.液液萃取、凝胶色谱、固相萃取三种前处理方法对测定植物油中苯并[a]芘含量的影响: 反相高效液相色谱法[J].科技信息,2014(13):394-395. doi: 10.3969/j.issn.1001-9960.2014.13.291 [24] 王丹丹,张婧,杨桂朋,等.药物及个人护理品的污染现状、分析技术及生态毒性研究进展[J].环境科学研究,2018,31(12):2013-2020.WANG D D,ZHANG Q,YANG G P,et al.Pollution status, analytical techniques and ecotoxicity of pharmaceuticals and personal care products[J].Research of Environmental Sciences,2018,31(12):2013-2020. [25] 张倬玮,于茵,吴昌永,等.二(2-乙基己基)己二酸酯检测方法研究进展[J].环境工程技术学报,2021,11(5):951-961. doi: 10.12153/j.issn.1674-991X.20200248ZHANG Z W,YU Y,WU C Y,et al.Research progress of the detection methods of di(2-ethyl hexyl) adipate[J].Journal of Environmental Engineering Technology,2021,11(5):951-961. doi: 10.12153/j.issn.1674-991X.20200248 [26] 王倩倩,王永花,汪贝贝,等.双酚F和双酚S联合暴露下的斑马鱼富集及神经毒性[J].中国环境科学,2020,40(2):865-873. doi: 10.3969/j.issn.1000-6923.2020.02.048WANG Q Q,WANG Y H,WANG B B,et al.Accumulation and neurotoxicity of bisphenol F and bisphenol S in zebrafish under combined exposure[J].China Environmental Science,2020,40(2):865-873. doi: 10.3969/j.issn.1000-6923.2020.02.048 [27] 徐建业,吕贞,茆永晶,等.在线固相萃取-液相色谱串联质谱法测定污水厂尾水中6种酸性药物[J].中国环境监测,2021,37(2):128-134.XU J Y,LYU Z,MAO Y J,et al.Determination of six acidic drugs in tailwater of wastewater treatment plant by large volume online-SPE coupled with liquid chromatography-tandem mass spectrometry[J].Environmental Monitoring in China,2021,37(2):128-134. [28] 林潇,邱天,张续,等.高通量固相萃取-超高效液相色谱-串联质谱法测定人尿中8种环境酚类内分泌干扰物[J].色谱,2020,38(12):1456-1464.LIN X,QIU T,ZHANG X,et al.Determination of eight environmental phenols in human urine samples by high-throughput solid-phase extraction-ultra-performance liquid chromatography- tandem mass spectrometry[J].Chinese Journal of Chromatography,2020,38(12):1456-1464. [29] HAN Y,FEI Y M,WANG M X,et al.Study on the joint toxicity of BPZ, BPS, BPC and BPF to zebrafish[J].Molecules,2021,26(14):4180. doi: 10.3390/molecules26144180 [30] 高梦婕,邓晓军,曲栗,等.同位素稀释-固相萃取-LC/MS/MS法测定婴幼儿配方食品中双酚类化合物[J].分析化学,2015,43(3):371-378.GAO M J,DENG X J,QU L,et al.Determination of bisphenol substances migration in infant food by isotope dilution-solid phase extraction liquid chromatography-tandem mass spectrometry[J].Chinese Journal of Analytical Chemistry,2015,43(3):371-378. [31] 张朝晖,罗生亮,吴少林,等.鱼肉类罐头中双酚-二环氧甘油醚的固相萃取/HPLC-MS/MS法检测[J].分析测试学报,2009,28(6):714-719. doi: 10.3969/j.issn.1004-4957.2009.06.017ZHANG Z H,LUO S L,WU S L,et al.Determination of bisphenol diglycidyl ethers in fish canned foodstuffs by solid-phase extraction/HPLC-MS/MS[J].Journal of Instrumental Analysis,2009,28(6):714-719. doi: 10.3969/j.issn.1004-4957.2009.06.017 [32] 丁红春,李建林,徐逸云,等.婴幼儿奶瓶中迁移双酚A的高效液相色谱-电喷雾串联质谱检测方法研究[J].化学分析计量,2010,19(5):42-45. doi: 10.3969/j.issn.1008-6145.2010.05.012DING H C,LI J L,XU Y Y,et al.Study on the migration of bisphenol a from baby bottles by liquid chromatography-tandem mass spectrometry[J].Chemical Analysis and Meterage,2010,19(5):42-45. doi: 10.3969/j.issn.1008-6145.2010.05.012 [33] 励炯,郑锌,王红青,等.分散固相萃取-超高效液相色谱-串联质谱法测定禽蛋中氟虫腈及其代谢产物[J].色谱,2017,35(12):1211-1215. doi: 10.3724/SP.J.1123.2017.08018LI J,ZHENG X,WANG H Q,et al.Determination of fipronil and its metabolites in bird eggs by ultra-performance liquid chromatography-tandem mass spectrometry with dispersive solid phase extraction[J].Chinese Journal of Chromatography,2017,35(12):1211-1215. doi: 10.3724/SP.J.1123.2017.08018 [34] 徐炎炎,李森,张芹,等.气质联用和液质联用中基质效应的分析和总结[J].农药,2017,56(3):162-167.XU Y Y,LI S,ZHANG Q,et al.Analysis and summary of matrix effects in GC-MS and LC-MS[J].Agrochemicals,2017,56(3):162-167. [35] 张卓娜,朱英,林少彬,等.固相萃取/超高效液相色谱-串联质谱法测定尿液中6种双酚类及烷基酚类物质[J].分析测试学报,2020,39(3):371-376. doi: 10.3969/j.issn.1004-4957.2020.03.012ZHANG Z N,ZHU Y,LIN S B,et al.Determination of 6 bisphenols and alkylphenols in human urine by solid phase extraction/ultra high performance liquid chromatography-tandem mass spectrometry[J].Journal of Instrumental Analysis,2020,39(3):371-376. doi: 10.3969/j.issn.1004-4957.2020.03.012 [36] 吴春英,陆文龙,白鹭,等.超高效液相色谱-串联质谱法同时检测环境水体中27种EDCs[J].分析试验室,2015,34(11):1300-1305.WU C Y,LU W L,BAI L,et al.Simultaneous and rapid determination of 27 EDCs in environmental water using ultra-high performance liquid chromatography-tandem mass spectrometry[J].Chinese Journal of Analysis Laboratory,2015,34(11):1300-1305. [37] 华永有,林麒,卢翠英.全自动固相萃取-超高效液相色谱-串联质谱法同时测定江水中8种酚类内分泌干扰物[J].理化检验-化学分册,2019,55(8):904-911.HUA Y Y,LIN Q,LU C Y.Simultaneous determination of 8 phenolic endocrine disrupting chemicals in river water by UHPLC-MS/MS with automated solid phase extraction[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2019,55(8):904-911. [38] 杨丽萍,王强,祝凌燕.高效液相色谱串联质谱法测定鱼体内双酚A及其替代品[J].环境化学,2018,37(8):1842-1850. doi: 10.7524/j.issn.0254-6108.2018031602YANG L P,WANG Q,ZHU L Y.Simultaneous determination of bisphenol A and its alternatives in fish samples by ultra performance liquid chromatography electrospray tandem mass spectrometry[J].Environmental Chemistry,2018,37(8):1842-1850. doi: 10.7524/j.issn.0254-6108.2018031602 [39] 张晓孟,李斌,单永平,等.辽河流域印染行业重点排污河段有机污染物的定性分析[J].环境工程技术学报,2013,3(6):519-526. doi: 10.3969/j.issn.1674-991X.2013.06.081ZHANG X M,LI B,SHAN Y P,et al.Qualitative analysis of organic pollutants in key receiving waterbody of effluents from printing and dyeing industries in Liaohe River Basin[J].Journal of Environmental Engineering Technology,2013,3(6):519-526. doi: 10.3969/j.issn.1674-991X.2013.06.081 [40] 马金波.固相萃取-UPLC-MS/MS法测定地表水中的双酚A和双酚S[J].当代化工,2019,48(10):2410-2413. doi: 10.3969/j.issn.1671-0460.2019.10.069MA J B.Determination of bisphenol A and bisphenol S residues in surface water by UPLC-MS/MS with solid phase extraction[J].Contemporary Chemical Industry,2019,48(10):2410-2413. doi: 10.3969/j.issn.1671-0460.2019.10.069 -