留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国电力行业二氧化碳排放达峰路径研究

王丽娟 张剑 王雪松 陈潇君 宋晓晖 周凌安 严刚

王丽娟, 张剑, 王雪松, 陈潇君, 宋晓晖, 周凌安, 严刚. 中国电力行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 329-338. doi: 10.13198/j.issn.1001-6929.2021.11.24
引用本文: 王丽娟, 张剑, 王雪松, 陈潇君, 宋晓晖, 周凌安, 严刚. 中国电力行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 329-338. doi: 10.13198/j.issn.1001-6929.2021.11.24
WANG Lijuan, ZHANG Jian, WANG Xuesong, CHEN Xiaojun, SONG Xiaohui, ZHOU Ling'an, YAN Gang. Pathway of Carbon Emission Peak in China′s Electric Power Industry[J]. Research of Environmental Sciences, 2022, 35(2): 329-338. doi: 10.13198/j.issn.1001-6929.2021.11.24
Citation: WANG Lijuan, ZHANG Jian, WANG Xuesong, CHEN Xiaojun, SONG Xiaohui, ZHOU Ling'an, YAN Gang. Pathway of Carbon Emission Peak in China′s Electric Power Industry[J]. Research of Environmental Sciences, 2022, 35(2): 329-338. doi: 10.13198/j.issn.1001-6929.2021.11.24

中国电力行业二氧化碳排放达峰路径研究

doi: 10.13198/j.issn.1001-6929.2021.11.24
基金项目: 国家重点研发计划项目(No.2019YFC0214205);中国工程院战略研究与咨询项目(No.2021-HYZD-14)
详细信息
    作者简介:

    王丽娟(1983-),女,山东滨州人,副研究员,博士,主要从事大气环境规划、碳达峰碳中和研究,wanglj@caep.org.cn

    通讯作者:

    ①王雪松(1983-),男,吉林松原人,高级工程师,博士,主要从事电力系统规划设计研究,xswang@eppei.com

    ②宋晓晖(1986-),女,山东东营人,副研究员,硕士,主要从事环境政策、碳达峰碳中和研究,songxh@caep.org.cn

  • 中图分类号: X24

Pathway of Carbon Emission Peak in China′s Electric Power Industry

Funds: National Key Research and Development Program of China (No.2019YFC0214205);Strategic Research and Consulting Project of Chinese Academy of Engineering (No.2021-HYZD-14)
  • 摘要: 电力行业是我国最大的碳排放部门,碳排放量占全国碳排放总量的40%以上;同时,电力将是未来10年能源增长的主体,而这些新增用电与国计民生直接相关,属于刚性需求,是支撑我国经济转型升级和未来居民生活水平提高的重要保障. 电力行业未来新增需求压力巨大,其碳排放峰值及达峰速度将直接决定2030年前全国碳排放达峰目标能否实现. 统筹考虑社会经济发展、各部门用电需求、电源结构调整、发电标准煤耗变化等因素,采用基于情景分析的方法,开展电力行业碳排放趋势预测,识别碳减排的主要驱动因素,提出推动碳排放达峰的关键举措,为制定碳达峰目标背景下的电力行业碳排放控制路径提供参考. 结果表明:①通过积极措施,电力行业碳排放能够在2030年左右达峰,在不考虑热电联产供热碳排放时,于2028—2031年达峰,峰值为43.2×108~44.9×108 t,较2020年增加3.2×108~4.9×108 t;考虑热电联产供热碳排放,则达峰时间为2031—2033年,峰值为50.7×108~53.0×108 t,较2020年增加4.9×108~7.2×108 t. ②在电源结构不变的情况下,如到2030年降低2%左右的电力需求,达峰时间将提前4年左右. ③提速风光新能源发展是实现2030年前碳达峰的必然选择,到2030年,提高风光发电、核电、水电、生物质、气电发电装机容量及发电量、节能降耗措施等各项措施的减排贡献率分别为55.3%、10.6%、9.2%、7.6%、5.7%、11.5%. 研究显示,未来我国电力行业碳减排工作重点要聚焦于优化电源结构、推动形成绿色生产生活方式、提升用电效率、降低煤电机组能耗水平等方面.

     

  • 图  1  电力行业碳达峰预测技术路线

    Figure  1.  Technology framework of carbon emission peak forecasting in electric power industry

    图  2  我国用电发展趋势及用电结构

    Figure  2.  Development trend and structure of electricity consumption in China

    图  3  不同情景下我国电力行业CO2排放量

    Figure  3.  CO2 emission trends in the power industry under different scenarios in China

    图  4  不同措施对我国电力行业碳减排影响分析

    Figure  4.  Impact of different factors on carbon emission reduction in power industry in China

    表  1  不同情景下我国电力行业碳排放控制参数取值

    Table  1.   Parameter values of key measures for carbon emission control in power industry of China under the scenario of strengthened control

    情景名称年份用电需求/
    (1012 kW·h)
    发电标准煤耗/
    [g/ (kW·h)]
    发电装机容量/(108 kW)
    气电水电核电生物质风能太阳能
    基准情景20207.62891.03.40.50.32.82.5
    20259.52891.23.60.70.53.55.2
    203011.22891.53.81.00.74.27.8
    203512.72891.73.91.30.94.910.4
    低碳情景20259.52861.53.90.70.54.76.0
    203011.22802.04.11.20.96.79.7
    203512.72752.34.11.71.28.913.8
    强化情景20259.32861.53.90.70.54.76.0
    203011.02802.04.11.20.96.79.7
    203512.22752.34.11.71.28.913.8
    下载: 导出CSV

    表  2  不同因素对电力行业碳排放影响的测算原则

    Table  2.   Estimation principles on the effects of CO2 emission mitigations factors in the power industry

    影响因素碳排放影响测算原则
    电力需求变化 电源结构保持不变,电力需求变化对CO2排放的影响
    电源结构变化 电力需求保持不变时,提高风电、太阳能发电装机对CO2排放的影响
    发电煤耗变化 电力需求保持不变时,发电煤耗改变对CO2排放的影响
    下载: 导出CSV
  • [1] IEA. CO2 emissions from fuel combustion 2018 highlights [R]. Paris: International Energy Agency, 2018: 24-25
    [2] 王深,吕连宏,张保留,等.基于多目标模型的中国低成本碳达峰、碳中和路径[J].环境科学研究,2021,34(9):2044-2055.

    WANG S,LÜ L H,ZHANG B L,et al.Multi objective programming model of low-cost path for China's peaking carbon dioxide emissions and carbon neutrality[J].Research of Environmental Sciences,2021,34(9):2044-2055.
    [3] CHEN H,TANG B J,LIAO H,et al.A multi-period power generation planning model incorporating the non-carbon external costs: a case study of China[J].Applied Energy,2016,183:1333-1345. doi: 10.1016/j.apenergy.2016.09.097
    [4] CHEN H,KANG J N,LIAO H,et al.Costs and potentials of energy conservation in China's coal-fired power industry: a bottom-up approach considering price uncertainties[J].Energy Policy,2017,104:23-32. doi: 10.1016/j.enpol.2017.01.022
    [5] HU J F,KAHRL F,YAN Q Y,et al.The impact of China's differential electricity pricing policy on power sector CO2 emissions[J].Energy Policy,2012,45:412-419. doi: 10.1016/j.enpol.2012.02.049
    [6] CHERNI J A,KENTISH J.Renewable energy policy and electricity market reforms in China[J].Energy Policy,2007,35(7):3616-3629. doi: 10.1016/j.enpol.2006.12.024
    [7] ZHANG P D,YANG Y L,SHI J,et al.Opportunities and challenges for renewable energy policy in China[J].Renewable and Sustainable Energy Reviews,2009,13(2):439-449. doi: 10.1016/j.rser.2007.11.005
    [8] LI Y,LUKSZO Z,WEIJNEN M.The implications of CO2 price for China's power sector decarbonization[J].Applied Energy,2015,146:53-64.
    [9] YAN Q Y,ZHANG Q,ZOU X.Decomposition analysis of carbon dioxide emissions in China's regional thermal electricity generation, 2000-2020[J].Energy,2016,112:788-794. doi: 10.1016/j.energy.2016.06.136
    [10] KHANNA N Z,ZHOU N,FRIDLEY D,et al.Quantifying the potential impacts of China's power-sector policies on coal input and CO2 emissions through 2050: a bottom-up perspective[J].Utilities Policy,2016,41:128-138. doi: 10.1016/j.jup.2016.07.001
    [11] LI F F,XU Z,MA H.Can China achieve its CO2 emissions peak by 2030?[J].Ecological Indicators,2018,84:337-344. doi: 10.1016/j.ecolind.2017.08.048
    [12] NIU S W,LIU Y Y,DING Y X,et al.China׳s energy systems transformation and emissions peak[J]. Renewable and Sustainable Energy Reviews,2016,58:782-795.
    [13] YUAN J H,XU Y,HU Z,et al.Peak energy consumption and CO2 emissions in China[J].Energy Policy,2014,68:508-523. doi: 10.1016/j.enpol.2014.01.019
    [14] 赵明轩,吕连宏,张保留,等.中国能源消费、经济增长与碳排放之间的动态关系[J].环境科学研究,2021,34(6):1509-1522.

    ZHAO M X,LÜ L H,ZHANG B L,et al.Dynamic relationship among energy consumption, economic growth and carbon emissions in China[J].Research of Environmental Sciences,2021,34(6):1509-1522.
    [15] CHEN Q X,KANG C Q,XIA Q,et al.Preliminary exploration on low-carbon technology roadmap of China's power sector[J].Energy,2011,36(3):1500-1512. doi: 10.1016/j.energy.2011.01.015
    [16] 王勇,毕莹,王恩东.中国工业碳排放达峰的情景预测与减排潜力评估[J].中国人口·资源与环境,2017,27(10):131-140.

    WANG Y,BI Y,WANG E D.Scene prediction of carbon emission peak and emission reduction potential estimation in Chinese industry[J].China Population, Resources and Environment,2017,27(10):131-140.
    [17] 张宁,贺姝峒,王军锋,等.碳交易背景下天津市电力行业碳排放强度与基准线[J].环境科学研究,2018,31(1):187-193.

    ZHANG N,HE S T,WANG J F,et al.Carbon intensity and benchmarking analysis of power industry in Tianjin under the context of cap-and-trade[J].Research of Environmental Sciences,2018,31(1):187-193.
    [18] TANG B J,LI R,LI X Y,et al.An optimal production planning model of coal-fired power industry in China: considering the process of closing down inefficient units and developing CCS technologies[J].Applied Energy,2017,206:519-530. doi: 10.1016/j.apenergy.2017.08.215
    [19] TANG B J,LI R,YU B Y,et al.How to peak carbon emissions in China's power sector: a regional perspective[J].Energy Policy,2018,120:365-381. doi: 10.1016/j.enpol.2018.04.067
    [20] 孔佑花,王丽,郭志玲,等.基于系统动力学的甘肃省碳排放峰值预测[J].环境工程技术学报,2018,8(3):309-318. doi: 10.3969/j.issn.1674-991X.2018.03.041

    KONG Y H,WANG L,GUO Z L,et al.Carbon emissions peak prediction in Gansu Province based on system dynamics[J].Journal of Environmental Engineering Technology,2018,8(3):309-318. doi: 10.3969/j.issn.1674-991X.2018.03.041
    [21] 蔡博峰,庞凌云,曹丽斌,等.《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》实施2年(2016—2018年)评估[J].环境工程,2019,37(2):1-7.

    CAI B F,PANG L Y,CAO L B,et al.Two-year implementation assessment (2016-2018) of China's technical guideline on environmental risk assessment for carbon dioxide capture, utilization and storage (on trial)[J].Environmental Engineering,2019,37(2):1-7.
    [22] 李锐,杜治洲,杨佳刚,等.中国水电开发现状及前景展望[J].水科学与工程技术,2019(6):73-78.

    LI R,DU Z Z,YANG J G,et al.The development progress and prospects of China′s hydropower[J].Water Sciences and Engineering Technology,2019(6):73-78.
    [23] 孙祥栋. 解读2014年以来我国电力弹性系数[N]. 北京: 中国能源报, 2015-05-04(5).
    [24] 郝卫平,李琼慧,赵一农.我国电力弹性系数的现实意义[J].中国电力,2003,36(5):8-10

    HAO W P,LI Q H,ZHAO Y N.Current significance of electricity elasticity coefficient in China[J].Electric Power,2003,36(5):8-10
    [25] 国家统计局. 中国能源统计年鉴2020[M]. 北京: 中国统计出版社, 2021.
    [26] 汪旭颖,李冰,吕晨,等.中国钢铁行业二氧化碳排放达峰路径研究[J].环境科学研究 ,2021.doi: 10.13198/j.issn.1001-6929.2021.11.11.

    WANG X Y,LI B,LV C,et al.China's iron and steel industry carbon emissions peak pathways[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2021.11.11.
    [27] 贺晋瑜,何捷,王郁涛,等.中国水泥行业二氧化碳达峰路径研究[J].环境科学研究,2021.doi: 10.13198/j.issn.1001-6929.2021.11.19

    HE J Y,HE J,WANG Y T,et al.Pathway of carbon emissions peak for cement industry in China[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2021.11.19.
    [28] 王丽娟,邵朱强,熊慧,等.中国铝冶炼行业二氧化碳排放达峰路径研究[J].环境科学研究,2021.doi: 10.13198/j.issn.1001-6929.2021.11.18.

    WANG L J,SHAO Z Q,XIONG H,et al.Pathway of carbon emissions peak of aluminum industry[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2021.11.18.
    [29] 庞凌云,翁慧,常靖,等.中国石化化工行业二氧化碳排放达峰路径研究[J].环境科学研究,2021.doi: 10.13198/j.issn.1001-6929.2021.11.26.

    PANG L Y,WENG H,CHANG J,et al.Pathway of carbon emission peak for China's petrochemical and chemical industries[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2021.11.26.
    [30] 金玲,郝成亮,吴立新,等.中国煤化工行业二氧化碳排放达峰路径研究[J].环境科学研究,2021.doi: 10.13198/j.issn.1001-6929.2021.11.08.

    JING L,HAO C L,WU L X,et al.Pathway of carbon emissionspeak of China's coal chemical industry[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2021.11.08.
    [31] 于倩倩.关于“十三五”中期我国水电发展的几点思考[J].水力发电,2019,45(11):112-116. doi: 10.3969/j.issn.0559-9342.2019.11.023

    YU Q Q.Studies on the mid-term evaluation of the hydropower development in China during the ‘13th Five-Year Plan’[J].Water Power,2019,45(11):112-116. doi: 10.3969/j.issn.0559-9342.2019.11.023
    [32] 李光辉, 邱国盛, 李小丁, 等. 核安全“十四五”规划的思考与建议[J]. 环境保护, 2020, 48(增刊2): 80-83.

    LI G H, QIU G S, LI X D, et al. Thoughts and suggestions on the ‘14th Five-Year Plan’ for nuclear safety[J]. Environmental Protection, 2020, 48(Suppl 2): 80-83.
    [33] 李至,闵山山,胡敏.我国生物质气化发电现状简述[J].电站系统工程,2020,36(6):11-13.

    LI Z,MIN S S,HU M.Status of bio-pyrolysis gas power generation in China[J].Power System Engineering,2020,36(6):11-13.
    [34] 张岳琦,廖翠萍,谢鹏程,等.广东省生物质发电应用的影响因素分析[J].新能源进展,2020,8(6):524-532. doi: 10.3969/j.issn.2095-560X.2020.06.010

    ZHANG Y Q,LIAO C P,XIE P C,et al.Influence factors analysis of biomass power generation application in Guangdong Province[J].Advances in New and Renewable Energy,2020,8(6):524-532. doi: 10.3969/j.issn.2095-560X.2020.06.010
    [35] 李佩聪.生物质发电的未来展望[J].能源,2018(增刊1):159-161.
    [36] 刘志坦.我国气电产业“十四五”发展之思考[J].中国电业,2020(11):44-47.
    [37] 周淑慧. 迈向碳中和: 天然气行业“十四五”时期展望[N]. 北京: 中国石油报, 2020-11-17(8).
    [38] 孙文娟,孙海萍,荆延妮.中国天然气发电产业发展现状及展望[J].国际石油经济,2020,28(4):90-96. doi: 10.3969/j.issn.1004-7298.2020.04.010

    SUN W J,SUN H P,JING Y N.Status and prospect of gas power generation industry in China[J].International Petroleum Economics,2020,28(4):90-96. doi: 10.3969/j.issn.1004-7298.2020.04.010
    [39] 朱法华,王玉山,徐振,等.中国电力行业碳达峰、碳中和的发展路径研究[J].电力科技与环保,2021,37(3):9-16.

    ZHU F H,WANG Y S,XU Z,et al.Research on the development path of carbon peak and carbon neutrality in China's power industry[J].Electric Power Technology and Environmental Protection,2021,37(3):9-16.
    [40] 申融容,玄婉玥,张健,等.面向电源侧灵活性提升的热电解耦技术综述[J].中国能源,2021,43(5):51-59.

    SHEN R R,XUAN W Y,ZHANG J,et al.Review of retrofitting methods for decoupling heat and electricity generation to promote the power system flexibility[J].Energy of China,2021,43(5):51-59
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1563
  • HTML全文浏览量:  246
  • PDF下载量:  700
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2021-11-04
  • 网络出版日期:  2022-03-07

目录

    /

    返回文章
    返回