Pathway of Carbon Emission Peak in China′s Electric Power Industry
-
摘要: 电力行业是我国最大的碳排放部门,碳排放量占全国碳排放总量的40%以上;同时,电力将是未来10年能源增长的主体,而这些新增用电与国计民生直接相关,属于刚性需求,是支撑我国经济转型升级和未来居民生活水平提高的重要保障. 电力行业未来新增需求压力巨大,其碳排放峰值及达峰速度将直接决定2030年前全国碳排放达峰目标能否实现. 统筹考虑社会经济发展、各部门用电需求、电源结构调整、发电标准煤耗变化等因素,采用基于情景分析的方法,开展电力行业碳排放趋势预测,识别碳减排的主要驱动因素,提出推动碳排放达峰的关键举措,为制定碳达峰目标背景下的电力行业碳排放控制路径提供参考. 结果表明:①通过积极措施,电力行业碳排放能够在2030年左右达峰,在不考虑热电联产供热碳排放时,于2028—2031年达峰,峰值为43.2×108~44.9×108 t,较2020年增加3.2×108~4.9×108 t;考虑热电联产供热碳排放,则达峰时间为2031—2033年,峰值为50.7×108~53.0×108 t,较2020年增加4.9×108~7.2×108 t. ②在电源结构不变的情况下,如到2030年降低2%左右的电力需求,达峰时间将提前4年左右. ③提速风光新能源发展是实现2030年前碳达峰的必然选择,到2030年,提高风光发电、核电、水电、生物质、气电发电装机容量及发电量、节能降耗措施等各项措施的减排贡献率分别为55.3%、10.6%、9.2%、7.6%、5.7%、11.5%. 研究显示,未来我国电力行业碳减排工作重点要聚焦于优化电源结构、推动形成绿色生产生活方式、提升用电效率、降低煤电机组能耗水平等方面.Abstract: The electric power industry is the largest carbon emission sector in China, accounting for more than 40% of the total carbon emissions. The demand for electricity is expected to increase most significantly in the next ten years, and the growth of electricity consumption is directly related to the national economic development and people's livelihood. Whether the carbon emission peaking target can be achieved or not mainly depends on the peaking time and value of carbon emissions in the power industry. Considering the influences of economic and social development, the electricity demand, the power source structure adjustments, the changes in the standard coal consumption rate for power generation and other factors, an integrated scenario study was carried out on the paths of CO2 emission peaking in the power industry. The CO2 emission trends were calculated under different scenarios, the main driving factors of CO2 emission reduction were analyzed, and the key measures to promote the carbon emission peaking were identified. The research will provide support for policy making on carbon emission control to achieve the targets of carbon dioxide peaking and carbon neutrality. The results show that: (1) The carbon emissions from the power industry will peak around 2030, by taking active measures. Without considering heating supply, the carbon emissions from the power industry will reach the peak from 2028 to 2031, and the peak target is 43.2×108-44.9×108 t. Taking heating into account, the CO2 emissions from power industry will peak by 2031-2033, and the peak target is 50.7×108-53.0×108 t. (2) In the case of the same power supply structure, if the power demand reduces by 2% by 2030, the peak time will be advanced by about 4 years. (3) Speeding up the development of solar and wind power is the inevitable choice to achieve the carbon peak before 2030. Increasing the share of renewable energies in power generation, such as wind and solar power, hydropower, nuclear power, biomass power and reducing standard coal consumption for power generation will account for 55.3%, 10.6%, 9.2%, 7.6%, 5.7%, 11.5% of CO2 emissions reductions, respectively by 2030. Key measures to reduce carbon emissions in China's power industry are suggested, including optimizing the power supply structure, promoting green production and lifestyle, improving the efficiency of electricity consumption, and reducing the energy consumption of coal-fired power plants.
-
表 1 不同情景下我国电力行业碳排放控制参数取值
Table 1. Parameter values of key measures for carbon emission control in power industry of China under the scenario of strengthened control
情景名称 年份 用电需求/
(1012 kW·h)发电标准煤耗/
[g/ (kW·h)]发电装机容量/(108 kW) 气电 水电 核电 生物质 风能 太阳能 基准情景 2020 7.6 289 1.0 3.4 0.5 0.3 2.8 2.5 2025 9.5 289 1.2 3.6 0.7 0.5 3.5 5.2 2030 11.2 289 1.5 3.8 1.0 0.7 4.2 7.8 2035 12.7 289 1.7 3.9 1.3 0.9 4.9 10.4 低碳情景 2025 9.5 286 1.5 3.9 0.7 0.5 4.7 6.0 2030 11.2 280 2.0 4.1 1.2 0.9 6.7 9.7 2035 12.7 275 2.3 4.1 1.7 1.2 8.9 13.8 强化情景 2025 9.3 286 1.5 3.9 0.7 0.5 4.7 6.0 2030 11.0 280 2.0 4.1 1.2 0.9 6.7 9.7 2035 12.2 275 2.3 4.1 1.7 1.2 8.9 13.8 表 2 不同因素对电力行业碳排放影响的测算原则
Table 2. Estimation principles on the effects of CO2 emission mitigations factors in the power industry
影响因素 碳排放影响测算原则 电力需求变化 电源结构保持不变,电力需求变化对CO2排放的影响 电源结构变化 电力需求保持不变时,提高风电、太阳能发电装机对CO2排放的影响 发电煤耗变化 电力需求保持不变时,发电煤耗改变对CO2排放的影响 -
[1] IEA. CO2 emissions from fuel combustion 2018 highlights [R]. Paris: International Energy Agency, 2018: 24-25 [2] 王深,吕连宏,张保留,等.基于多目标模型的中国低成本碳达峰、碳中和路径[J].环境科学研究,2021,34(9):2044-2055.WANG S,LÜ L H,ZHANG B L,et al.Multi objective programming model of low-cost path for China's peaking carbon dioxide emissions and carbon neutrality[J].Research of Environmental Sciences,2021,34(9):2044-2055. [3] CHEN H,TANG B J,LIAO H,et al.A multi-period power generation planning model incorporating the non-carbon external costs: a case study of China[J].Applied Energy,2016,183:1333-1345. doi: 10.1016/j.apenergy.2016.09.097 [4] CHEN H,KANG J N,LIAO H,et al.Costs and potentials of energy conservation in China's coal-fired power industry: a bottom-up approach considering price uncertainties[J].Energy Policy,2017,104:23-32. doi: 10.1016/j.enpol.2017.01.022 [5] HU J F,KAHRL F,YAN Q Y,et al.The impact of China's differential electricity pricing policy on power sector CO2 emissions[J].Energy Policy,2012,45:412-419. doi: 10.1016/j.enpol.2012.02.049 [6] CHERNI J A,KENTISH J.Renewable energy policy and electricity market reforms in China[J].Energy Policy,2007,35(7):3616-3629. doi: 10.1016/j.enpol.2006.12.024 [7] ZHANG P D,YANG Y L,SHI J,et al.Opportunities and challenges for renewable energy policy in China[J].Renewable and Sustainable Energy Reviews,2009,13(2):439-449. doi: 10.1016/j.rser.2007.11.005 [8] LI Y,LUKSZO Z,WEIJNEN M.The implications of CO2 price for China's power sector decarbonization[J].Applied Energy,2015,146:53-64. [9] YAN Q Y,ZHANG Q,ZOU X.Decomposition analysis of carbon dioxide emissions in China's regional thermal electricity generation, 2000-2020[J].Energy,2016,112:788-794. doi: 10.1016/j.energy.2016.06.136 [10] KHANNA N Z,ZHOU N,FRIDLEY D,et al.Quantifying the potential impacts of China's power-sector policies on coal input and CO2 emissions through 2050: a bottom-up perspective[J].Utilities Policy,2016,41:128-138. doi: 10.1016/j.jup.2016.07.001 [11] LI F F,XU Z,MA H.Can China achieve its CO2 emissions peak by 2030?[J].Ecological Indicators,2018,84:337-344. doi: 10.1016/j.ecolind.2017.08.048 [12] NIU S W,LIU Y Y,DING Y X,et al.China׳s energy systems transformation and emissions peak[J]. Renewable and Sustainable Energy Reviews,2016,58:782-795. [13] YUAN J H,XU Y,HU Z,et al.Peak energy consumption and CO2 emissions in China[J].Energy Policy,2014,68:508-523. doi: 10.1016/j.enpol.2014.01.019 [14] 赵明轩,吕连宏,张保留,等.中国能源消费、经济增长与碳排放之间的动态关系[J].环境科学研究,2021,34(6):1509-1522.ZHAO M X,LÜ L H,ZHANG B L,et al.Dynamic relationship among energy consumption, economic growth and carbon emissions in China[J].Research of Environmental Sciences,2021,34(6):1509-1522. [15] CHEN Q X,KANG C Q,XIA Q,et al.Preliminary exploration on low-carbon technology roadmap of China's power sector[J].Energy,2011,36(3):1500-1512. doi: 10.1016/j.energy.2011.01.015 [16] 王勇,毕莹,王恩东.中国工业碳排放达峰的情景预测与减排潜力评估[J].中国人口·资源与环境,2017,27(10):131-140.WANG Y,BI Y,WANG E D.Scene prediction of carbon emission peak and emission reduction potential estimation in Chinese industry[J].China Population, Resources and Environment,2017,27(10):131-140. [17] 张宁,贺姝峒,王军锋,等.碳交易背景下天津市电力行业碳排放强度与基准线[J].环境科学研究,2018,31(1):187-193.ZHANG N,HE S T,WANG J F,et al.Carbon intensity and benchmarking analysis of power industry in Tianjin under the context of cap-and-trade[J].Research of Environmental Sciences,2018,31(1):187-193. [18] TANG B J,LI R,LI X Y,et al.An optimal production planning model of coal-fired power industry in China: considering the process of closing down inefficient units and developing CCS technologies[J].Applied Energy,2017,206:519-530. doi: 10.1016/j.apenergy.2017.08.215 [19] TANG B J,LI R,YU B Y,et al.How to peak carbon emissions in China's power sector: a regional perspective[J].Energy Policy,2018,120:365-381. doi: 10.1016/j.enpol.2018.04.067 [20] 孔佑花,王丽,郭志玲,等.基于系统动力学的甘肃省碳排放峰值预测[J].环境工程技术学报,2018,8(3):309-318. doi: 10.3969/j.issn.1674-991X.2018.03.041KONG Y H,WANG L,GUO Z L,et al.Carbon emissions peak prediction in Gansu Province based on system dynamics[J].Journal of Environmental Engineering Technology,2018,8(3):309-318. doi: 10.3969/j.issn.1674-991X.2018.03.041 [21] 蔡博峰,庞凌云,曹丽斌,等.《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》实施2年(2016—2018年)评估[J].环境工程,2019,37(2):1-7.CAI B F,PANG L Y,CAO L B,et al.Two-year implementation assessment (2016-2018) of China's technical guideline on environmental risk assessment for carbon dioxide capture, utilization and storage (on trial)[J].Environmental Engineering,2019,37(2):1-7. [22] 李锐,杜治洲,杨佳刚,等.中国水电开发现状及前景展望[J].水科学与工程技术,2019(6):73-78.LI R,DU Z Z,YANG J G,et al.The development progress and prospects of China′s hydropower[J].Water Sciences and Engineering Technology,2019(6):73-78. [23] 孙祥栋. 解读2014年以来我国电力弹性系数[N]. 北京: 中国能源报, 2015-05-04(5). [24] 郝卫平,李琼慧,赵一农.我国电力弹性系数的现实意义[J].中国电力,2003,36(5):8-10HAO W P,LI Q H,ZHAO Y N.Current significance of electricity elasticity coefficient in China[J].Electric Power,2003,36(5):8-10 [25] 国家统计局. 中国能源统计年鉴2020[M]. 北京: 中国统计出版社, 2021. [26] 汪旭颖,李冰,吕晨,等.中国钢铁行业二氧化碳排放达峰路径研究[J].环境科学研究 ,2021.doi: 10.13198/j.issn.1001-6929.2021.11.11.WANG X Y,LI B,LV C,et al.China's iron and steel industry carbon emissions peak pathways[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2021.11.11. [27] 贺晋瑜,何捷,王郁涛,等.中国水泥行业二氧化碳达峰路径研究[J].环境科学研究,2021.doi: 10.13198/j.issn.1001-6929.2021.11.19HE J Y,HE J,WANG Y T,et al.Pathway of carbon emissions peak for cement industry in China[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2021.11.19. [28] 王丽娟,邵朱强,熊慧,等.中国铝冶炼行业二氧化碳排放达峰路径研究[J].环境科学研究,2021.doi: 10.13198/j.issn.1001-6929.2021.11.18.WANG L J,SHAO Z Q,XIONG H,et al.Pathway of carbon emissions peak of aluminum industry[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2021.11.18. [29] 庞凌云,翁慧,常靖,等.中国石化化工行业二氧化碳排放达峰路径研究[J].环境科学研究,2021.doi: 10.13198/j.issn.1001-6929.2021.11.26.PANG L Y,WENG H,CHANG J,et al.Pathway of carbon emission peak for China's petrochemical and chemical industries[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2021.11.26. [30] 金玲,郝成亮,吴立新,等.中国煤化工行业二氧化碳排放达峰路径研究[J].环境科学研究,2021.doi: 10.13198/j.issn.1001-6929.2021.11.08.JING L,HAO C L,WU L X,et al.Pathway of carbon emissionspeak of China's coal chemical industry[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2021.11.08. [31] 于倩倩.关于“十三五”中期我国水电发展的几点思考[J].水力发电,2019,45(11):112-116. doi: 10.3969/j.issn.0559-9342.2019.11.023YU Q Q.Studies on the mid-term evaluation of the hydropower development in China during the ‘13th Five-Year Plan’[J].Water Power,2019,45(11):112-116. doi: 10.3969/j.issn.0559-9342.2019.11.023 [32] 李光辉, 邱国盛, 李小丁, 等. 核安全“十四五”规划的思考与建议[J]. 环境保护, 2020, 48(增刊2): 80-83.LI G H, QIU G S, LI X D, et al. Thoughts and suggestions on the ‘14th Five-Year Plan’ for nuclear safety[J]. Environmental Protection, 2020, 48(Suppl 2): 80-83. [33] 李至,闵山山,胡敏.我国生物质气化发电现状简述[J].电站系统工程,2020,36(6):11-13.LI Z,MIN S S,HU M.Status of bio-pyrolysis gas power generation in China[J].Power System Engineering,2020,36(6):11-13. [34] 张岳琦,廖翠萍,谢鹏程,等.广东省生物质发电应用的影响因素分析[J].新能源进展,2020,8(6):524-532. doi: 10.3969/j.issn.2095-560X.2020.06.010ZHANG Y Q,LIAO C P,XIE P C,et al.Influence factors analysis of biomass power generation application in Guangdong Province[J].Advances in New and Renewable Energy,2020,8(6):524-532. doi: 10.3969/j.issn.2095-560X.2020.06.010 [35] 李佩聪.生物质发电的未来展望[J].能源,2018(增刊1):159-161. [36] 刘志坦.我国气电产业“十四五”发展之思考[J].中国电业,2020(11):44-47. [37] 周淑慧. 迈向碳中和: 天然气行业“十四五”时期展望[N]. 北京: 中国石油报, 2020-11-17(8). [38] 孙文娟,孙海萍,荆延妮.中国天然气发电产业发展现状及展望[J].国际石油经济,2020,28(4):90-96. doi: 10.3969/j.issn.1004-7298.2020.04.010SUN W J,SUN H P,JING Y N.Status and prospect of gas power generation industry in China[J].International Petroleum Economics,2020,28(4):90-96. doi: 10.3969/j.issn.1004-7298.2020.04.010 [39] 朱法华,王玉山,徐振,等.中国电力行业碳达峰、碳中和的发展路径研究[J].电力科技与环保,2021,37(3):9-16.ZHU F H,WANG Y S,XU Z,et al.Research on the development path of carbon peak and carbon neutrality in China's power industry[J].Electric Power Technology and Environmental Protection,2021,37(3):9-16. [40] 申融容,玄婉玥,张健,等.面向电源侧灵活性提升的热电解耦技术综述[J].中国能源,2021,43(5):51-59.SHEN R R,XUAN W Y,ZHANG J,et al.Review of retrofitting methods for decoupling heat and electricity generation to promote the power system flexibility[J].Energy of China,2021,43(5):51-59 -