PM2.5 and O3 Pollution Characteristics in Baoding City
-
摘要: 为深入了解保定市空气质量状况,揭示PM2.5与臭氧(O3)的变化特征及相互关系,利用小波分析法对保定市2013—2020年每年4—9月AQI、PM2.5、O3-8 h (O3日最大8 h滑动平均值)和NO2浓度的逐日数据进行分析. 结果表明:①2013—2018年保定市O3污染呈逐年加重趋势,最大日浓度达到347 μg/m3;随着治理措施的颁布与实施,PM2.5超标天数由2013年的97 d减至2020年的1 d,PM2.5超标情况逐年改善. ②O3超标天数由2013年的3 d增至2018年的95 d,2020年减至61 d;O3超标天数占PM2.5和O3超标总天数的比例从2013年的3%增至2020年的98%,说明O3逐渐成为影响保定市空气质量的主要污染物. ③2013年保定市O3-8 h浓度低于“2+26”城市均值,2014—2020年O3-8 h浓度高于或接近“2+26”城市均值,说明近年来保定市O3-8 h浓度的升幅已超过“2+26”城市的平均水平. ④小波分析发现,2013—2020年(除2015年和2018年外)AQI与PM2.5污染序列的第1主周期相近,从2017年开始,AQI与O3-8 h污染序列的第1主周期和第2主周期均一致,说明近年来保定市空气污染逐渐由PM2.5污染转为PM2.5与O3复合污染. ⑤在同一时间尺度范围内,PM2.5与O3-8 h污染序列的震荡频率基本一致,说明二者存在较明显的正相关关系;2015—2019年,NO2与O3-8 h污染序列的震荡频率趋于一致,说明保定市O3-8 h浓度受前体物NO2影响较大,2020年震荡频率有较大差异,这可能与新冠肺炎疫情复工后生产规模尚未完全恢复,致使NO2、PM2.5等污染物排放强度同比降低有关. 因此,减少NO2排放,协同控制多污染物是实现保定市空气质量改善的主要途径.Abstract: In order to comprehensively understand the air quality in Baoding and reveal the changing characteristics and relationship between PM2.5 and O3, this study used wavelet analysis to analyze the daily data of AQI, PM2.5, O3-8 h (the maximum 8-hour moving average of O3) and NO2 from April to September in Baoding City from 2013 to 2020. The results show that: (1) From 2013 to 2018, O3 concentration showed an increasing trend, and the maximum daily concentration reached 347 μg/m3. The O3 concentrations began to decline since 2019. There were more days when the PM2.5 concentrations exceeded the secondary limit of the National Ambient Air Quality Standard (GB 3095-2012) (NAAQS) in 2013 than in other years. With the promulgation and implementation of governance measures, the situation of high PM2.5 pollution has improved. (2) The number of days when PM2.5 concentrations exceeded the NAAQS secondary limit was reduced from 97 days in 2013 to 1 day in 2020. The number of days of O3-8 h exceeding the NAAQS secondary limit increased from 3 days in 2013 to 95 days in 2018, and then decreased to 61 days in 2020. The proportion of O3-8 h exceeding-limit days in the total number of days in which the two pollutants exceeded the limit increased from 3% in 2013 to 98% in 2020, indicating that O3 has become a major pollutant affecting air quality in Baoding. (3) In 2013, the concentration of O3-8 h in Baoding City was lower than the average value of ‘2+26’ cities, and the concentration was higher than or close to the average value of ‘2+26’ cities during 2014-2020, indicating that the increase in O3-8 h concentration in Baoding City exceeded the average level of ‘2+26’ cities in recent years. (4) Wavelet analysis found that the AQI was similar to the first major cycle of PM2.5 from 2013 to 2020 (except for 2015 and 2018). Since 2017, the AQI and O3-8 h's first and second major cycles were consistent with each other. It shows that the air pollution in Baoding City changed from PM2.5 pollution to PM2.5 and O3 pollution. (5) Within the same time scale, the oscillation frequencies of PM2.5 and O3-8 h were basically the same, indicating that there was a clear positive correlation between PM2.5 and O3-8 h. From 2015 to 2019, the oscillation frequencies of NO2 and O3-8 h tended to be the same, indicating that the concentration of O3-8 h in Baoding City was greatly affected by the precursor NO2. The large difference in the frequency of oscillations in 2020 may be due to the fact that the production scale was not fully recovered after the resumption from the epidemic, which led the reduction of emission intensity of pollutants such as NO2 and PM2.5 during the epidemic period. Therefore, reducing NO2 emissions and coordinated control of multi-pollutants are the main ways to improve air quality in Baoding City.
-
Key words:
- wavelet analysis /
- pollution trend /
- cooperative control /
- Baoding City
-
表 1 2013—2020年保定市与“2+26”城市主要污染物浓度的距平结果
Table 1. Anomalous results of main pollutant anomalies between Baoding and the ‘2+26’ cities from 2013 to 2020
年份 AQI PM2.5浓度 O3-8 h浓度 NO2浓度 2013 0.15 0.05 −0.29 −0.09 2014 0.15 0.14 0.17 −0.14 2015 0.05 0.11 0.21 0.01 2016 0.06 0.15 0.02 0.08 2017 0.06 0.15 0.14 0.14 2018 0.01 0.07 0.10 0.10 2019 −0.05 −0.02 0.04 0.04 2020 −0.10 −0.13 0.01 0.01 注:数值=(保定市值−“2+26”城市均值)/“2+26”城市均值. -
[1] LI K,JACOB D J,LIAO H,et al.Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China[J].PNAS,2019,116(2):422-427. doi: 10.1073/pnas.1812168116 [2] 潘本锋,程麟钧,王建国,等.京津冀地区臭氧污染特征与来源分析[J].中国环境监测,2016,32(5):17-23.PAN B F,CHENG L J,WANG J G,et al.Characteristics and source attribution of ozone pollution in Beijing-Tianjin-Hebei Region[J].Environmental Monitoring in China,2016,32(5):17-23. [3] 程麟钧,唐桂刚,刘宇,等.京津冀及周边地区大气污染综合立体观测网支撑作用[J].环境科学研究,2021,34(1):11-19.CHENG L J,TANG G G,LIU Y,et al.Supporting role of the comprehensive observation network of air pollution in Beijing-Tianjin-Hebei and its surrounding areas[J].Research of Environmental Sciences,2021,34(1):11-19. [4] 姜华,常宏咪.我国臭氧污染形势分析及成因初探[J].环境科学研究,2021,34(7):1576-1582.JIANG H,CHANG H M.Analysis of China's ozone pollution situation,preliminary investigation of causes and prevention and control recommendations[J].Research of Environmental Sciences,2021,34(7):1576-1582. [5] FLEMING Z L,DOHERTY R M,VON-SCHNEIDEMESSER E,et al.Tropospheric ozone assessment report:present-day ozone distribution and trends relevant to human health[J].Elementa:Science of the Anthropocene,2018.doi: 10.1525/elementa.273. [6] CROUSE D L,PETERS P A,HYSTAD P,et al.Ambient PM2.5,O3,and NO2 exposures and associations with mortality over 16 years of follow-up in the Canadian census health and environment cohort (CanCHEC)[J].Environmental Health Perspectives,2015,123(11):1180-1186. doi: 10.1289/ehp.1409276 [7] FANG X Z,XIAO H Y,SUN H X,et al.Characteristics of ground-level ozone from 2015 to 2018 in BTH area,China[J].Atmosphere,2020,11(2):130. doi: 10.3390/atmos11020130 [8] JIA M W,ZHAO T L,CHENG X H,et al.Inverse relations of PM2.5 and O3 in air compound pollution between cold and hot seasons over an urban area of East China[J].Atmosphere,2017,8(12):59. doi: 10.3390/atmos8030059 [9] 孙金金,黄琳,龚康佳,等.2014—2019年北京和南京地区PM2.5和臭氧质量浓度相关性研究[J].南京信息工程大学学报(自然科学版),2020,12(6):656-664.SUN J J,HUANG L,GONG K J,et al.Correlation between surface PM2.5 and ozone during 2014-2019 in Beijing and Nanjing[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2020,12(6):656-664. [10] MARAIS E A,JACOB D J,WECHT K,et al.Anthropogenic emissions in Nigeria and implications for atmospheric ozone pollution:a view from space[J].Atmospheric Environment,2014,99:32-40. doi: 10.1016/j.atmosenv.2014.09.055 [11] 李慧,王淑兰,张文杰,等.京津冀及周边地区“2+26”城市空气质量特征及其影响因素[J].环境科学研究,2021,34(1):172-184.LI H,WANG S L,ZHANG W J,et al.Characteristics and influencing factors of urban air quality in Beijing-Tianjin-Hebei and its surrounding areas (‘2+26’ cities)[J].Research of Environmental Sciences,2021,34(1):172-184. [12] 罗悦函,赵天良,孟凯,等.华北平原和山区城市PM2.5和O3变化关系比较分析[J].中国环境科学,2021,41(9):3981-3989. doi: 10.3969/j.issn.1000-6923.2021.09.002LUO Y H,ZHAO T L,MENG K,et al.Comparative analysis of the relationship between PM2.5 and O3 in plain and mountainous cities in North China[J].China Environmental Science,2021,41(9):3981-3989. doi: 10.3969/j.issn.1000-6923.2021.09.002 [13] WANG Z B,LI J X,LIANG L W.Spatio-temporal evolution of ozone pollution and its influencing factors in the Beijing-Tianjin-Hebei Urban Agglomeration[J].Environmental Pollution,2020,256:113419. doi: 10.1016/j.envpol.2019.113419 [14] CAO B F,YIN Z C.Future atmospheric circulations benefit ozone pollution control in Beijing-Tianjin-Hebei with global warming[J].Science of the Total Environment,2020,743:140645. doi: 10.1016/j.scitotenv.2020.140645 [15] 黄争超,洪礼楠,尹佩玲,等.保定市夏季臭氧污染来源及大气传输影响研究[J].北京大学学报(自然科学版),2018,54(3):665-672.HUANG Z C,HONG L N,YIN P L,et al.Source apportionment and transport characteristics of ozone in Baoding during summer time[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2018,54(3):665-672. [16] 环境保护部,国家质量监督检验检疫总局.环境空气质量标准:GB 3095—2012[S].北京:中国环境科学出版社,2016. [17] 环境保护部.环境空气质量评价技术规范(试行):HJ 663—2013[S].北京:中国环境科学出版社,2013. [18] 王海鹏,张斌,刘祖涵,等.基于小波变换的兰州市近十年空气污染指数变化[J].环境科学学报,2011,31(5):1070-1076.WANG H P,ZHANG B,LIU Z H,et al.Waveletanalysis of air pollution index changes in Lanzhou during the last decade[J].Acta Scientiae Circumstantiae,2011,31(5):1070-1076. [19] LISA V D H,DEVENTER M J,GRAUS M,et al.Aerosol particles during the Innsbruck Air Quality Study (INNAQS):the impact of transient fluxes on total aerosol number exchange[J].Atmospheric Environment,2018,190:389-400. doi: 10.1016/j.atmosenv.2018.07.041 [20] 吴小玲,张斌,艾南山,等.基于小波变换的上海市近10年SO2污染指数的变化[J].环境科学,2009,30(8):2193-2198. doi: 10.3321/j.issn:0250-3301.2009.08.002WU X L,ZHANG B,AI N S,et al.Wavelet analysis on SO2 pollution index changes of Shanghai in recent 10 years[J].Environmental Science,2009,30(8):2193-2198. doi: 10.3321/j.issn:0250-3301.2009.08.002 [21] 苟银寅,张凯,李金娟,等.保定市大气污染变化趋势及特征[J].环境科学,2020,41(10):4413-4425.GOU Y Y,ZHANG K,LI J J,et al.Variational trend and characteristics of air pollution in Baoding City[J].Environmental Science,2020,41(10):4413-4425. [22] 陈朝晖,程水源,苏福庆,等.华北区域大气污染过程中天气型和输送路径分析[J].环境科学研究,2008,21(1):17-21.CHEN Z H,CHENG S Y,SU F Q,et al.Analysis of synoptic patterns and transports during regional atmospheric pollution process in North China[J].Research of Environmental Sciences,2008,21(1):17-21. [23] 刘树华,刘振鑫,李炬,等.京津冀地区大气局地环流耦合效应的数值模拟[J].中国科学(D辑:地球科学),2009,39(1):88-98. [24] 邵平,辛金元,安俊琳,等.长三角工业区夏季近地层臭氧和颗粒物污染相互关系研究[J].大气科学,2017,41(3):618-628.SHAO P,XIN J Y,AN J L,et al.An analysis on the relationship between ground-level ozone and particulate matter in an industrial area in the Yangtze River Delta during summertime[J].Chinese Journal of Atmospheric Sciences,2017,41(3):618-628. [25] MBULULO Y,QIN J,HONG J,et al.Characteristics of atmospheric boundary layer structure during PM2.5 and ozone pollution events in Wuhan,China[J].Atmosphere,2018,9(9):359. doi: 10.3390/atmos9090359 [26] 李娜,周涛,刘小雪,等.廊坊市臭氧污染特征及其与气象因素的关系[J].环境工程技术学报,2021,11(2):217-225. doi: 10.12153/j.issn.1674-991X.20200147LI N,ZHOU T,LIU X X,et al.Characteristics of ozone pollution and its relationship with meteorological factors in Langfang City[J].Journal of Environmental Engineering Technology,2021,11(2):217-225. doi: 10.12153/j.issn.1674-991X.20200147 [27] 赵龙一,郭佳华,张宇航等.2015—2019年南阳市臭氧污染特征及气象因素研究[J].环境工程技术学报,2021.doi: 10.12153/j.issn.1674-991X.20210205.ZHAO L Y,GUO J H,ZHANG Y H,et al.Characteristics of ozone pollution and meteorological parameters analysis in Nanyang City[J].Journal of Environmental Engineering Technology,2021.doi: 10.12153/j.issn.1674-991X.20210205. [28] 栗泽苑,杨雷峰,华道柱,等.2013—2018年中国近地面臭氧浓度空间分布特征及其与气象因子的关系[J].环境科学研究,2021,34(9):2094-2104.LI Z Y,YANG L F,HUA D Z,et al.Spatial pattern of surface ozone and its relationship with meteorological variables in China during 2013-2018[J].Research of Environmental Sciences,2021,34(9):2094-2104. [29] WANG T,XUE L K,BRIMBLECOMBE P,et al.Ozone pollution in China:a review of concentrations,meteorological influences,chemical precursors,and effects[J].Science of the Total Environment,2017,575:1582-1596. doi: 10.1016/j.scitotenv.2016.10.081 [30] 孟琛琛,倪爽英,陆雅静,等.新冠肺炎疫情期间河北省国省道机动车交通量及大气污染物排放量变化分析[J].环境科学学报,2021,41(3):905-913.MENG C C,NI S Y,LU Y J,et al.Changes of air pollutants emission from vehicles on national and provincial roads of Hebei during the COVID-19 epidemic in China[J].Acta Scientiae Circumstantiae,2021,41(3):905-913. -