Nitrogen and Phosphorus Purification Effects of Ecological Floating Bed in Qiandao Lake
-
摘要: 为探索生态浮床对较清洁型湖水的氮磷去除效果,以华东地区最大深水水库千岛湖为例,选取浮叶植物黄花水龙(Jussiaea stipulacea Ohwi.)、沉水植物绿色狐尾藻(Myriophyllum aquaticum)、挺水植物菖蒲(Acorus calamus)为材料,采用氮磷浓度相对较高的库尾湖湾湖水进行生态浮床静态模拟试验,测定浮床植物生长及水体氮磷浓度变化,并利用膜接口质谱仪测定水体溶解性氮气(N2)含量,研究浮床植物体内吸收、反硝化脱氮等综合脱氮除磷能力. 结果表明:①浮床植物的氮磷净化能力存在明显的季节性差异,春季浮床植物长势、氮磷去除效果、反硝化脱氮能力均高于秋季;②不同水生植物间的氮磷去除能力差异显著,试验水体中黄花水龙和绿色狐尾藻的总氮(TN)、总磷(TP)去除效率分别为2.22、0.07和2.89、0.08 mg/(kg·d),绿色狐尾藻体内吸收氮、磷最多,植物干质量的氮、磷含量分别为12.44~15.57和0.96~1.95 g/kg;③植物的生长大大增强了水体的反硝化脱氮能力,黄花水龙、绿色狐尾藻、菖蒲与空白对照组溶解性N2差值(净脱氮差)分别为0.16~22.35、−4.14~24.63、−0.26~15.74 μmol/L,水生植物生物量是影响浮床系统反硝化作用的最关键因素. 研究显示,生态浮床是较清洁型湖水氮磷削减的一种可行技术,浮床植物组合方案设计应充分考虑不同植物的季节生长特性和反硝化脱氮能力.Abstract: In order to explore the nitrogen and phosphorus removal effect of ecological floating bed in lake with clean water quality, taking Qiandao Lake, the largest deep-water reservoir in East China, as an example, the floating leaf plant (Jussiaea stipulacea Ohwi.), submerged plant (Myriophyllum aquaticum) and emergent plant (Acorus calamus) were selected to carry out the nitrogen and phosphorus purification static simulation experiment using ecological floating bed technology. The experimental lake water was collected from reservoir tail bay with relatively high nitrogen and phosphorus concentration. The growth parameters of floating bed plants and nitrogen and phosphorus concentrations in the water were measured, the content of dissolved N2 in water was also determined by Membrane Interface Mass Spectrometer, and the comprehensive nitrogen and phosphorus removal abilities of floating bed plants were investigated. The results showed that: (1) There were significant seasonal differences in the nitrogen and phosphorus purification capacity of floating bed plants. The growth rates, nitrogen and phosphorus removal efficiency and denitrification capacity of floating bed plants in spring were higher than those in autumn. (2) There were significant differences in nitrogen and phosphorus removal capacity among different aquatic plants. In the experimental water, the TN and TP degradation rates of ecological floating bed with Jussiaea stipulacea Ohwi. and Myriophyllum aquaticum were 2.22, 0.07 and 2.89, 0.08 mg/(kg·d), respectively. Myriophyllum aquaticum absorbed the most nitrogen and phosphorus, and the nitrogen and phosphorus contents of plant dry weight were 12.44-15.57 and 0.96-1.95 g/kg, respectively. (3) The growth of plants also greatly enhanced the denitrification of ecological floating bed system. The variation range of net nitrogen removal by denitrification of Jussiaea stipulacea Ohwi., Myriophyllum aquaticum and Acorus calamus were 0.16-22.35, −4.14-24.63, −0.26-15.74 μmol/L, respectively. The aquatic plant biomass is the most key factor affecting the denitrification of aquatic plants. This study shows that ecological floating bed is a feasible technology for nitrogen and phosphorus removal in slightly clean lake. The seasonal growth characteristics and denitrification capacity of different plants should be fully considered in the design of floating bed plant combination scheme. The research results can provide theoretical support for the in-depth treatment of nitrogen and phosphorus pollution in slightly clean reservoir.
-
表 1 水生植物种类及生物特性
Table 1. Species and biological characteristics of aquatic plants
植物名称 植物种类 科属 生物特性 黄花水龙 浮叶植物 柳叶菜科
丁香蓼属节间簇生白色气囊,常见的修复水体植物,有一定景观功能 绿色狐尾藻 沉水植物 小二仙科
狐尾藻属多年生草本,有发达通气的组织结构,春夏生长迅速,氮磷吸收能力强,生物量大 菖蒲 挺水植物 天南星科
菖蒲属根状茎粗壮,喜阴湿,有药用、观赏价值 表 2 两次试验初始水样水质指标
Table 2. Initial water quality index of two experiments
试验季节 浓度/(mg/L) TN TP DOC DO NO3−-N 秋季 1.50 0.08 1.33 9.13 1.27 春季 2.05 0.08 1.76 6.87 1.64 表 3 春秋两季不同植物生物量的变化
Table 3. Changes in biomass of different plants in spring and autumn
kg/m2 植物种类 秋季 春季 开始生物量 结束生物量 开始生物量 结束生物量 黄花水龙 2.07±0.37b 3.04±0.26a 1.38±0.16b 4.98±0.67b 绿色狐尾藻 1.86±0.36b 2.69±0.61c 1.06±0.19b 2.12±0.43b 菖蒲 4.28±0.47a 4.85±0.83b 2.68±0.45a 3.15±0.27a 注:字母不同表示不同处理之间差异显著(P<0.05),字母相同表示差异不显著. 下同. 表 4 春秋两季不同水生植物TN、TP去除效率
Table 4. TN and TP degradation rates of different aquatic plants in spring and autumn
mg/(kg·d) 植物种类 秋季 春季 TN去除效率 TP去除效率 TN去除效率 TP去除效率 黄花水龙 1.26±0.22a 0.04±0.01a 2.22±0.76b 0.07±0.01a 绿色狐尾藻 1.43±0.13a 0.05±0.01a 2.89±0.15a 0.08±0.02a 菖蒲 0.39±0.16b 0.01±0.01b 0.27±0.20c 0.02±0.01b 表 5 春秋两季不同水生植物体内氮磷吸收量
Table 5. Nitrogen and phosphorus uptake by different aquatic plants in spring and autumn
植物种类 氮吸收量/(g/kg) 磷吸收量/(g/kg) 秋季 春季 秋季 春季 黄花水龙 5.27±4.37b 8.30±1.16b 0.67±0.09a 0.51±0.23b 绿色狐尾藻 12.44±2.52a 15.57±2.57a 0.96±0.23a 1.95±0.22a 菖蒲 5.45±0.94b 8.59±0.52b 0.24±0.41b 0.68±0.11b 表 6 不同途径脱氮的贡献率
Table 6. Contribution rate of nitrogen removal by different ways
植物种类 植物吸收贡献率/% 反硝化与其他贡献率/% 秋季 春季 秋季 春季 黄花水龙 19.48 29.85 80.52 70.15 绿色狐尾藻 29.88 22.58 70.12 77.42 菖蒲 15.83 20.61 84.17 79.39 表 7 水生植物净脱氮量与不同因素的相关分析
Table 7. Correlation analysis between net nitrogen removal of aquatic plants and different factors
项目 DOC浓度 DO浓度 温度 根长 生物量 黄花水龙 0.38 −0.66* 0.38 0.57 0.65* 净脱氮量 绿色狐尾藻 0.22 −0.58 0.73* 0.66* 0.79** 菖蒲 0.31 −0.72* 0.47 0.31 0.71* 注:*表示在0.05水平(双尾)上显著相关;**表示在0.01水平(双尾)上显著相关;n=10. -
[1] MAY L,OLSZEWSKA J,GUNN I M,et al.Eutrophication and restoration in temperate lakes[J].IOP Conference Series:Earth and Environmental Science,2020,535(1):012001. doi: 10.1088/1755-1315/535/1/012001 [2] LÜRLING M,MUCCI M.Mitigating eutrophication nuisance:in-lake measures are becoming inevitable in eutrophic waters in the Netherlands[J].Hydrobiologia,2020,847(21):4447-4467. doi: 10.1007/s10750-020-04297-9 [3] LUND J W.Eutrophication[J].Nature,1967,214:557-558. doi: 10.1038/214557a0 [4] XU H,PAERL H W,QIN B Q,et al.Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China[J].Limnology and Oceanography,2010,55(1):420-432. doi: 10.4319/lo.2010.55.1.0420 [5] 杜冰雪,徐力刚,张杰,等.鄱阳湖富营养化时空变化特征及其与水位的关系[J].环境科学研究,2019,32(5):795-801.DU B X,XU L G,ZHANG J,et al.The spatial-temporal characteristics of eutrophication in Poyang Lake and its relationship with the water level[J].Research of Environmental Sciences,2019,32(5):795-801. [6] HUISMAN J,CODD G A,PAERL H W,et al.Cyanobacterial blooms[J].Nature Reviews Microbiology,2018,16(8):471-483. doi: 10.1038/s41579-018-0040-1 [7] 杨桂山,马荣华,张路,等.中国湖泊现状及面临的重大问题与保护策略[J].湖泊科学,2010,22(6):799-810.YANG G S,MA R H,ZHANG L,et al.Lake status,major problems and protection strategy in China[J].Journal of Lake Sciences,2010,22(6):799-810. [8] SAMAL K,KAR S,TRIVEDI S.Ecological floating bed (EFB) for decontamination of polluted water bodies:design,mechanism and performance[J].Journal of Environmental Management,2019,251:109550. doi: 10.1016/j.jenvman.2019.109550 [9] BOYD C E.Vascular aquatic plants for mineral nutrient removal from polluted waters[J].Economic Botany,1970,24(1):95-103. doi: 10.1007/BF02860642 [10] KAHEN G.Energy technology transfer:a proposal for the strategic assessment of environmental impacts within developing countries[J].Energy & Environment,1997,8(2):115-131. [11] AUDET J,OLSEN T M,ELSBORG T,et al.Influence of plant habitats on denitrification in lowland agricultural streams[J].Journal of Environmental Management,2021,286:112193. doi: 10.1016/j.jenvman.2021.112193 [12] BENELLI S,RIBAUDO C,BERTRIN V,et al.Effects of macrophytes on potential nitrification and denitrification in oligotrophic lake sediments[J].Aquatic Botany,2020,167:103287. doi: 10.1016/j.aquabot.2020.103287 [13] SUDIARTO S I A,RENGGAMAN A,CHOI H L.Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics[J].Journal of Environmental Management,2019,231:763-769. doi: 10.1016/j.jenvman.2018.10.070 [14] YANG J Z,QI Y,LI H Y,et al.Comparison of nitrogen and phosphorus purification effects of different wetland plants on eutrophic water[J].IOP Conference Series:Earth and Environmental Science,2018,113:012042. doi: 10.1088/1755-1315/113/1/012042 [15] LIU J L,LIU J K,ANDERSON J T,et al.Potential of aquatic macrophytes and artificial floating island for removing contaminants[J].Plant Biosystems:an International Journal Dealing With All Aspects of Plant Biology,2016,150(4):702-709. doi: 10.1080/11263504.2014.990535 [16] 丛海兵,吴黎明.2种耐寒生态浮床植物的水质改善性能研究[J].环境工程学报,2012,6(1):51-56.CONG H B,WU L M.Study on water quality improvement capacity of two cold-resistant floating bed plants[J].Chinese Journal of Environmental Engineering,2012,6(1):51-56. [17] 胡晓东,王俊,吴苏舒,等.江苏省湖泊水生植物优势种对氮、磷去除效果比较研究[J].中国农村水利水电,2020(2):48-51. doi: 10.3969/j.issn.1007-2284.2020.02.010HU X D,WANG J,WU S S,et al.Research on nitrogen and phosphorus removal efficiency of dominant species of aquatic plants in lakes of Jiangsu Province[J].China Rural Water and Hydropower,2020(2):48-51. doi: 10.3969/j.issn.1007-2284.2020.02.010 [18] 朱浩,曹坤,陈晓龙,等.生态悬床技术对白洋淀水环境修复效果的研究[J].渔业现代化,2020,47(6):42-48. doi: 10.3969/j.issn.1007-9580.2020.06.007ZHU H,CAO K,CHEN X L,et al.Effect of ecological suspended bed measures on water environment restoration in Baiyangdian Lake[J].Fishery Modernization,2020,47(6):42-48. doi: 10.3969/j.issn.1007-9580.2020.06.007 [19] 笪文怡,黎云祥,朱广伟,等.水文气象过程对千岛湖氮磷变化的影响[J].水生态学杂志,2019,40(5):9-19.DA W Y,LI Y X,ZHU G W,et al.Influence of hydrometeorological processes on nutrient dynamics in Qiandao Lake[J].Journal of Hydroecology,2019,40(5):9-19. [20] 金赞芳,岑佳蓉,胡宇铭,等.千岛湖水体氮的垂向分布特征及来源解析[J].中国环境科学,2019,39(8):3441-3449. doi: 10.3969/j.issn.1000-6923.2019.08.038JIN Z F,CEN J R,HU Y M,et al.The vertical distribution of nitrogen and the nitrogen sources in Qiandao Lake[J].China Environmental Science,2019,39(8):3441-3449. doi: 10.3969/j.issn.1000-6923.2019.08.038 [21] 韩晓霞,朱广伟,吴志旭,等.新安江水库(千岛湖)水质时空变化特征及保护策略[J].湖泊科学,2013,25(6):836-845. doi: 10.18307/2013.0607HAN X X,ZHU G W,WU Z X,et al.Spatial-temporal variations of water quality parameters in Xin'anjiang Reservoir (Lake Qiandao) and the water protection strategy[J].Journal of Lake Sciences,2013,25(6):836-845. doi: 10.18307/2013.0607 [22] 笪文怡,朱广伟,黎云祥,等.新安江水库河口区水质及藻类群落结构高频变化[J].环境科学,2020,41(2):713-727.DA W Y,ZHU G W,LI Y X,et al.High-frequency dynamics of water quality and phytoplankton community in inflowing river mouth of Xin'anjiang Reservoir,China[J].Environmental Science,2020,41(2):713-727. [23] 葛滢,王晓月,常杰.不同程度富营养化水中植物净化能力比较研究[J].环境科学学报,1999,19(6):690-692. doi: 10.3321/j.issn:0253-2468.1999.06.021GE Y,WANG X Y,CHANG J.Omparative studies on the purification ability of plants in differentde gree eutrophic water[J].Acta Scientiae Circumstantiae,1999,19(6):690-692. doi: 10.3321/j.issn:0253-2468.1999.06.021 [24] KANA T M,DARKANGELO C,HUNT M D,et al.Membrane inlet mass spectrometer for rapid high-precision determination of N2,O2,and Ar in environmental water samples[J].Analytical Chemistry,1994,66(23):4166-4170. doi: 10.1021/ac00095a009 [25] WEISS R F.The Solubility of nitrogen,oxygen and Argon in water and seawater[J].Deep Sea Research and Oceanographic Abstracts,1970,17(4):721-735. doi: 10.1016/0011-7471(70)90037-9 [26] ZHANG P Y,GRUTTERS B,VAN-LEEUWEN C H A,et al.Effects of rising temperature on the growth,stoichiometry,and palatability of aquatic plants[J].Frontiers in Plant Science,2019,9:1947. doi: 10.3389/fpls.2018.01947 [27] TANG G,SHI Y C,YOU S H.Overview of nitrogen removal in constructed wetland and its influencing factors[J].IOP Conference Series:Earth and Environmental Science,2021,697(1):012010. doi: 10.1088/1755-1315/697/1/012010 [28] MARÍN-MUÑIZ J L,HERNÁNDEZ M E,GALLEGOS-PÉREZ M P,et al.Plant growth and pollutant removal from wastewater in domiciliary constructed wetland microcosms with monoculture and polyculture of tropical ornamental plants[J].Ecological Engineering,2020,147:105658. doi: 10.1016/j.ecoleng.2019.105658 [29] JIANG J,WANG Y P,YANG Y H,et al.Interactive effects of nitrogen and phosphorus additions on plant growth vary with ecosystem type[J].Plant and Soil,2019,440(1/2):523-537. [30] 常福辰,施国新,丁小余,等.水龙营养器官的形态结构与生态适应[J].南京师大学报(自然科学版),2003,26(1):101-105.CHANG F C,SHI G X,DING X Y,et al.Studies on morphological structure of Jussiaea repens Linn. and its adaptation to the aquatic habitats[J].Journal of Nanjing Normal University (Natural Science Edition),2003,26(1):101-105. [31] SU F,LI Z A,LI Y W,et al.Removal of total nitrogen and phosphorus using single or combinations of aquatic plants[J].International Journal of Environmental Research and Public Health,2019,16(23):4663. doi: 10.3390/ijerph16234663 [32] 于洪刚,杨希晨,孟琦,等.富营养化水体中附植生物夏季反硝化脱氮作用研究[J].绿色科技,2017(20):36-37. [33] 贺承友.绿狐尾藻生态治污技术的推广应用[J].贵州畜牧兽医,2016,40(2):60-61. doi: 10.3969/j.issn.1007-1474.2016.02.029 [34] 张芳,易能,邸攀攀,等.不同水生植物的除氮效率及对生物脱氮过程的调节作用[J].生态与农村环境学报,2017,33(2):174-180. doi: 10.11934/j.issn.1673-4831.2017.02.011ZHANG F,YI N,DI P P,et al.Nitrogen removal efficiency and control of bio-denitrification process of aquatic plants[J].Journal of Ecology and Rural Environment,2017,33(2):174-180. doi: 10.11934/j.issn.1673-4831.2017.02.011 [35] ROBLES T,PETER G,TUR N M.Notes on the sexual condition of Myriophyllum aquaticum,haloragaceae[J].Phyton,2011,80(1):133-138. doi: 10.32604/phyton.2011.80.133 [36] 王俊力,付子轼,乔红霞,等.枯萎期芦苇收割时间对湿地脱氮效果及根系呼吸代谢的影响[J].环境科学研究,2021,34(8):1909-1917.WANG J L,FU Z S,QIAO H X,et al.Effects of reed (Phragmites australis) harvest time on nitrogen removal and root respiratory metabolism in wetland[J].Research of Environmental Sciences,2021,34(8):1909-1917. [37] 邵凯迪,段婧婧,薛利红,等.5种水生植物对模拟菜地径流中总氮和硝氮净化效果[J].环境工程技术学报,2020,10(3):406-413. doi: 10.12153/j.issn.1674-991X.20190160SHAO K D,DUAN J J,XUE L H,et al.Purification effect of five kinds of hydrophytes on total nitrogen and nitrate in simulated vegetable field runoff water[J].Journal of Environmental Engineering Technology,2020,10(3):406-413. doi: 10.12153/j.issn.1674-991X.20190160 [38] ZHAO Y Q,XIA Y Q,TI C P,et al.Nitrogen removal capacity of the river network in a high nitrogen loading region[J].Environmental Science & Technology,2015,49(3):1427-1435. [39] HANSEN A T,DOLPH C L,FOUFOULA-GEORGIOU E,et al.Contribution of wetlands to nitrate removal at the watershed scale[J].Nature Geoscience,2018,11(2):127-132. doi: 10.1038/s41561-017-0056-6 [40] ZHANG S N,XIAO R L,LIU F,et al.Effect of vegetation on nitrogen removal and ammonia volatilization from wetland microcosms[J].Ecological Engineering,2016,97:363-369. doi: 10.1016/j.ecoleng.2016.10.021 [41] 刘海琴,邱园园,闻学政,等.4种水生植物深度净化村镇生活污水厂尾水效果研究[J].中国生态农业学报,2018,26(4):616-626.LIU H Q,QIU Y Y,WEN X Z,et al.The deep purification of four aquatic macrophytes for tailrace of rural sewage treatment plants[J].Chinese Journal of Eco-Agriculture,2018,26(4):616-626. [42] 王趁义,赵欣园,滕丽华,等.碱蓬浮床对海水养殖尾水中氮磷修复效果研究[J].广西植物,2018,38(6):696-703. doi: 10.11931/guihaia.gxzw201711040WANG C Y,ZHAO X Y,TENG L H,et al.Remediation effects of Suaeda salsa floating bed on nitrogen and phosphorus in marine-culture tail water[J].Guihaia,2018,38(6):696-703. doi: 10.11931/guihaia.gxzw201711040 [43] GOTTSCHALL N,BOUTIN C,CROLLA A,et al.The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater,Ontario,Canada[J].Ecological Engineering,2007,29(2):154-163. doi: 10.1016/j.ecoleng.2006.06.004 [44] 刘少博,冉彬,曾冠军,等.高铵条件下绿狐尾藻的生理与氮磷吸收特征[J].环境科学,2017,38(9):3731-3737.LIU S B,RAN B,ZENG G J,et al.Physiological characteristics and nitrogen and phosphorus uptake of Myriophyllum aquaticum under high ammonium conditions[J].Environmental Science,2017,38(9):3731-3737. [45] CHEN H B,DENG M E,LU J D.Study on the purification of TN in different concentration waters by artificial floating bed[J].IOP Conference Series:Earth and Environmental Science,2020,440(5):052053. doi: 10.1088/1755-1315/440/5/052053 [46] ACHOUAK W,ABROUK D,GUYONNET J,et al.Plant hosts control microbial denitrification activity[J].FEMS Microbiology Ecology,2019,95(3):fiz021. [47] 潘福霞,来晓双,李欣,等.不同湿地植物脱氮效果与根际土壤微生物群落功能多样性特征分析[J].环境科学研究,2020,33(6):1497-1503.PAN F X,LAI X S,LI X,et al.Nitrogen removal efficiencies and rhizosphere soil microbial community functional diversities of different plants in constructed wetlands[J].Research of Environmental Sciences,2020,33(6):1497-1503. [48] MALTAIS-LANDRY G,MARANGER R,BRISSON J,et al.Nitrogen transformations and retention in planted and artificially aerated constructed wetlands[J].Water Research,2009,43(2):535-545. doi: 10.1016/j.watres.2008.10.040 [49] 孙鹏,崔康平,许为义,等.3种浮床植物对污染水体水质改善性能研究[J].江苏农业科学,2016,44(5):475-479. [50] KNOWLES R.Denitrification[J].Microbiological Reviews,1982,46(1):43-70. doi: 10.1128/mr.46.1.43-70.1982 [51] LU H J,CHANDRAN K,STENSEL D.Microbial ecology of denitrification in biological wastewater treatment[J].Water Research,2014,64:237-254. doi: 10.1016/j.watres.2014.06.042 [52] VERAART A J,BRUIJNE W J J,KLEIN J J M,et al.Effects of aquatic vegetation type on denitrification[J].Biogeochemistry,2011,104(1/2/3):267-274. -