Development History of Observation-Based Model (OBM) and Its Application and Prospect in Atmospheric Chemistry Studies in China
-
摘要: 基于观测的模型OBM(observation-based model)作为分析大气化学过程的重要方法之一,在深度挖掘大气综合观测数据以及全面认识区域大气复合污染成因方面具有广阔的应用潜力. 为进一步推进OBM在大气化学研究中的应用并提升PM2.5和臭氧(O3)协同防控的有效性和科学性,本文梳理了OBM结构和内置大气化学机制的发展历程,并总结了应用OBM解析O3和二次气溶胶生成机制及其他活性成分化学机制的研究成果. 结果表明:OBM结构和内置大气化学机制在不断更新,使OBM由最初用于O3生成机制的研究逐步发展成为功能强大的大气化学全过程分析工具,为我国大气复合污染防治工作提供了重要的技术支撑. 但是,OBM自身结构的局限性、我国尚未掌握OBM核心技术以及可利用的观测数据仍有限等原因制约了OBM在我国大气化学研究中的进一步应用和推广. 针对上述问题提出如下建议:在实际应用中应根据大气化学过程解析需求来选择合适的模型,充分发挥OBM的优势;开发具有中国自主知识产权的在线OBM运行系统和大气化学机制;建立有代表性的区域监测网络为OBM的进一步应用和推广提供综合数据支撑.
-
关键词:
- 基于观测的模型(OBM) /
- 大气化学机制 /
- 区域大气复合污染 /
- 环境空气臭氧 /
- 二次气溶胶
Abstract: Observation-based model (OBM) is one of the most widely used tools for analyzing atmospheric chemical processes, and it has broad application prospects in the in-depth analysis of observational data and comprehensive understanding of regional complex air pollution. To promote the application of OBM in atmospheric chemistry studies and to promote coordinated prevention and control of PM2.5 and O3 effectively and scientifically, the development history of OBM structures and its built-in atmospheric chemical mechanisms, and the application of OBM in identification of formation regimes of O3 and secondary aerosols as well as the chemistry of other important trace gases were summarized. The results demonstrated that the upgrading of the OBM structures and atmospheric chemical mechanisms prompted the application of OBM to be a powerful tool for comprehensive analyses of atmospheric chemical processes rather than just identifying O3 formation regimes. Therefore, OBM has played an important role in the prevention and control of regional complex air pollution in China due to its enhanced applicability. However, the limitations of OBM structures, the lack of core technologies for OBM, and limited observational data restricted the further application and promotion of OBM in atmospheric studies in China. The following suggestions are put forward for solving these issues: choose appropriate numeric models for application and take full advantages of OBM in practical applications; develop online systems for running OBM and localized atmospheric chemical mechanisms with China's independent intellectual property rights; establish representative regional monitoring networks to provide comprehensive data for OBM applications. -
表 1 OBM中常用的大气化学机制概述
Table 1. Summary of atmospheric chemical mechanisms built in OBM
区域 站点位置 站点类型 研究时段 化学机制 臭氧形成机制 活性VOCs物种 京津冀及
周边地区望都 乡村 2014年6—7月 RACM2 NOx控制 — 禹城 乡村 2013年6—7月 MCM3.3.1 协同控制 生物源VOCs 济南 城市 2017年7—8月 MCM3.3.1 VOCs/协同控制 — 东营 乡村 2017年6—7月 MCM3.3.1 NOx控制 烯烃 保定 城市 2015年9月 CB-IV VOCs控制 — 青岛 乡村 2018年10—11月 RACM2 协同控制 烯烃 榆垡 郊区 2006年8—9月 CB-IV 协同控制 — 武清 郊区 2009年6—8月 NCAR-MM NOx控制 — 汾渭平原 渭南 城市 2019年7—9月 RACM2 协同控制 烯烃 长三角地区 上海 城市 2017年7月 CB-IV VOCs控制 芳香烃 乡村 2017年7月 CB-IV 协同控制 芳香烃 南京 城市 2013年7—8月 CB-IV VOCs控制 烯烃 郊区 2013年7—8月 CB-IV VOCs控制 烯烃 杭州 城市 2018年5—9月 MCM3.3.1 VOCs控制 生物源VOCs 郊区 2018年5—9月 MCM3.3.1 VOCs控制 生物源VOCs 乡村 2018年5—9月 MCM3.3.1 协同控制 芳香烃 徐州 城市 2018年5月 MCM3.2 VOCs控制 — 盐城 城市 2017年8月 MCM3.2 VOCs控制 — 南通 城市 2018年7月 MCM3.2 协同控制 — 川渝地区 成都 城市 2016年9—10月 RACM2 VOCs控制 烯烃 工业 2016年9—10月 RACM2 VOCs控制 烯烃 重庆 城市 2015年8—9月 RACM2 VOCs控制 — 郊区 2015年8—9月 RACM2 VOCs控制 — 乡村 2015年8—9月 RACM2 NOx控制 — 珠三角地区 东涌 郊区 2005—2014年 CB05 VOCs控制 — 深圳 城市 2018年10月 RACM2-LIM1 VOCs控制 芳香烃 鹤山 乡村 2014年10—11月 MCM VOCs控制 芳香烃 其他地区 武汉 城市 2018年8月 MCM3.2 VOCs控制 — 兰州 郊区 2018年8月 MCM3.2 协同控制 — 郊区 2006年6—7月 MCM3.2 NOx控制 — 表 3 基于OBM量化自由基初级来源和OH·反应活性的研究总结[47]
Table 3. Summary of the observation-based model studies of radical sources over China[47]
区域 站点位置 站点类型 研究时段 OH·主要的
初级来源HO2·主要的
初级来源RO2·主要的
初级来源化学机制 京津冀及周边地区 北京 城市 2008年7—8月 O3光解 OVOCs光解 OVOCs光解 MCM3.3.1 东营 乡村 2017年6—7月 O3光解 OVOCs光解 OVOCs光解 MCM3.3.1 泰山 乡村 2017年12月 HONO光解 OVOCs光解 OVOCs光解 MCM3.3.1 乡村 2018年3—4月 HONO光解 OVOCs光解 OVOCs光解 MCM3.3.1 珠三角地区 中国香港 乡村 2012年8—12月 O3光解 OVOCs光解 OVOCs光解 MCM3.3.1 郊区 2011年8月 HONO光解 OVOCs光解 OVOCs光解 MCM3.2 其他地区 成都 郊区 2019年8—9月 HONO光解 HCHO光解 OVOCs光解 RACM2-LIM1 兰州 城市 2013年6—8月 O3光解 HCHO光解 OVOCs光解 MCM3.3.1 工业 2013年6—8月 O3光解 HCHO光解 OVOCs光解 MCM3.3.1 瓦里关 背景 2003年4—5月、
7—8月O3光解 HCHO光解 OVOCs光解 MCM3.2 -
[1] ZHENG B,TONG D,LI M,et al.Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions[J].Atmospheric Chemistry and Physics,2018,18(19):14095-14111. doi: 10.5194/acp-18-14095-2018 [2] LIU Y M,WANG T.Worsening urban ozone pollution in China from 2013 to 2017.Part 2:the effects of emission changes and implications for multi-pollutant control[J].Atmospheric Chemistry and Physics,2020,20(11):6323-6337. doi: 10.5194/acp-20-6323-2020 [3] SUN L,XUE L K,WANG T,et al.Significant increase of summertime ozone at Mount Tai in Central Eastern China[J].Atmospheric Chemistry and Physics,2016,16(16):10637-10650. doi: 10.5194/acp-16-10637-2016 [4] WANG T,DAI J N,LAM K S,et al.Twenty-five years of lower tropospheric ozone observations in tropical east Asia:the influence of emissions and weather patterns[J].Geophysical Research Letters,2019,46(20):11463-11470. doi: 10.1029/2019GL084459 [5] XU X B,LIN W L,XU W Y,et al.Long-term changes of regional ozone in China:implications for human health and ecosystem impacts[J].Elementa:Science of the Anthropocene,2020.doi: 10.1525/elementa.409. [6] 姜华,常宏咪.我国臭氧污染形势分析及成因初探[J].环境科学研究,2021,34(7):1576-1582.JIANG H,CHANG H M.Analysis of China's ozone pollution situation,preliminary investigation of causes and prevention and control recommendations[J].Research of Environmental Sciences,2021,34(7):1576-1582. [7] 屈超,陈婷婷,刘佳,等.中国典型城市PM2.5浓度时空演绎规律及影响因素分析[J].环境科学研究,2019,32(7):1117-1125.QU C,CHEN T T,LIU J,et al.Spatio-temporal characteristics of PM2.5 and influence factors in typical cities of China[J].Research of Environmental Sciences,2019,32(7):1117-1125. [8] 李红,彭良,毕方,等.我国PM2.5与臭氧污染协同控制策略研究[J].环境科学研究,2019,32(10):1763-1778.LI H,PENG L,BI F,et al.Strategy of coordinated control of PM2.5 and ozone in China[J].Research of Environmental Sciences,2019,32(10):1763-1778. [9] WANG T,XUE L K,BRIMBLECOMBE P,et al.Ozone pollution in China:a review of concentrations,meteorological influences,chemical precursors,and effects[J].Science of the Total Environment,2017,575:1582-1596. doi: 10.1016/j.scitotenv.2016.10.081 [10] 吴琳,薛丽坤,王文兴.基于观测的臭氧污染研究方法[J].地球环境学报,2017,8(6):479-491.WU L,XUE L K,WANG W X.Review on the observation-based methods for ozone air pollution research[J].Journal of Earth Environment,2017,8(6):479-491. [11] CARDELINO C A,CHAMEIDES W L.An observation-based model for analyzing ozone precursor relationships in the urban atmosphere[J].Journal of the Air & Waste Management Association,1995,45(3):161-180. [12] WOLFE G M,MARVIN M R,ROBERTS S J,et al.The framework for 0-D atmospheric modeling (F0AM) v3.1[J].Geoscientific Model Development,2016,9(9):3309-3319. doi: 10.5194/gmd-9-3309-2016 [13] 唐效炎,张远航,邵敏,等.大气环境化学[M].北京:高等教育出版社,2006. [14] 石玉珍,徐永福,贾龙.大气化学机理的发展及应用[J].气候与环境研究,2012,17(1):112-124. doi: 10.3878/j.issn.1006-9585.2011.10061SHI Y Z,XU Y F,JIA L.Development and application of atmospheric chemical mechanisms[J].Climatic and Environmental Research,2012,17(1):112-124. doi: 10.3878/j.issn.1006-9585.2011.10061 [15] 肖伟,何友江,孟凡,等.空气质量模型中大气化学机理的发展与比较[J].环境工程技术学报,2018,8(1):12-22.XIAO W,HE Y J,MENG F,et al.Development and comparison of atmospheric chemical mechanisms in air quality numerical model[J].Journal of Environmental Engineering Technology,2018,8(1):12-22. [16] YARWOOD G,RAO S,YOCKE M.Updates to the carbon bond chemical mechanism:CB05[R].California:University of California,2005:2841-2842. [17] GOLIFF W S,STOCKWELL W R,LAWSON C V.The regional atmospheric chemistry mechanism,version 2[J].Atmospheric Environment,2013,68:174-185. doi: 10.1016/j.atmosenv.2012.11.038 [18] CARTER W P L.Development of the SAPRC-07 chemical mechanism[J].Atmospheric Environment,2010,44(40):5324-5335. doi: 10.1016/j.atmosenv.2010.01.026 [19] JENKIN M E,SAUNDERS S M,WAGNER V,et al.Protocol for the development of the Master Chemical Mechanism,MCM v3 (Part B):tropospheric degradation of aromatic volatile organic compounds[J].Atmospheric Chemistry and Physics,2003,3(1):181-193. doi: 10.5194/acp-3-181-2003 [20] SAUNDERS S M,JENKIN M E,DERWENT R G,et al.Protocol for the development of the Master Chemical Mechanism,MCM v3 (Part A):tropospheric degradation of non-aromatic volatile organic compounds[J].Atmospheric Chemistry and Physics,2003,3(1):161-180. doi: 10.5194/acp-3-161-2003 [21] HERRMANN H,TILGNER A,BARZAGHI P,et al.Towards a more detailed description of tropospheric aqueous phase organic chemistry:CAPRAM 3.0[J].Atmospheric Environment,2005,39(23/24):4351-4363. [22] COATES J,MAR K A,OJHA N,et al.The influence of temperature on ozone production under varying NOx conditions:a modelling study[J].Atmospheric Chemistry and Physics,2016,16(18):11601-11615. doi: 10.5194/acp-16-11601-2016 [23] 刘峻峰,李金龙,白郁华.大气光化学烟雾反应机理比较(Ⅰ):O3和NOx的比较[J].环境化学,2001,20(4):305-312. doi: 10.3321/j.issn:0254-6108.2001.04.001LIU J F,LI J L,BAI Y H.A comparison of atmospheric photochemical mechanisms (Ⅰ) O3 and NOx[J].Environmental Chemistry,2001,20(4):305-312. doi: 10.3321/j.issn:0254-6108.2001.04.001 [24] 刘峻峰,李金龙,白郁华.大气光化学烟雾反应机理比较(Ⅱ):HOx和光化学氧化产物的比较[J].环境化学,2001,20(4):313-319. doi: 10.3321/j.issn:0254-6108.2001.04.002LIU J F,LI J L,BAI Y H.A comparison of atmospheric photochemical mechanisms (Ⅱ) HOx and photochemical products[J].Environmental Chemistry,2001,20(4):313-319. doi: 10.3321/j.issn:0254-6108.2001.04.002 [25] LU H X,LYU X P,CHENG H R,et al.Overview on the spatial-temporal characteristics of the ozone formation regime in China[J].Environmental Science Processes & Impacts,2019,21(6):916-929. [26] HAN X,ZHU L Y,WANG S L,et al.Modeling study of impacts on surface ozone of regional transport and emissions reductions over North China Plain in summer 2015[J].Atmospheric Chemistry and Physics,2018,18(16):12207-12221. doi: 10.5194/acp-18-12207-2018 [27] WANG N,LYU X P,DENG X J,et al.Aggravating O3 pollution due to NOx emission control in eastern China[J].Science of the Total Environment,2019,677:732-744. doi: 10.1016/j.scitotenv.2019.04.388 [28] BENISH S E,HE H,REN X R,et al.Measurement report:aircraft observations of ozone,nitrogen oxides,and volatile organic compounds over Hebei Province,China[J].Atmospheric Chemistry and Physics,2020,20(23):14523-14545. doi: 10.5194/acp-20-14523-2020 [29] CHEN X Y,LIU Y M,LAI A Q,et al.Factors dominating 3-dimensional ozone distribution during high tropospheric ozone period[J].Environmental Pollution,2018,232:55-64. doi: 10.1016/j.envpol.2017.09.017 [30] LU K D,ZHANG Y H,SU H,et al.Oxidant (O3+NO2) production processes and formation regimes in Beijing[J].Journal of Geophysical Research:Atmospheres,2010,115(D7):D07303. [31] PAN X,KANAYA Y,TANIMOTO H,et al.Examining the major contributors of ozone pollution in a rural area of the Yangtze River Delta region during harvest season[J].Atmospheric Chemistry and Physics,2015,15(11):6101-6111. doi: 10.5194/acp-15-6101-2015 [32] GENG F H,TIE X X,XU J M,et al.Characterizations of ozone,NOx,and VOCs measured in Shanghai,China[J].Atmospheric Environment,2008,42(29):6873-6883. doi: 10.1016/j.atmosenv.2008.05.045 [33] GENG F H,ZHAO C S,TANG X,et al.Analysis of ozone and VOCs measured in Shanghai:a case study[J].Atmospheric Environment,2007,41(5):989-1001. doi: 10.1016/j.atmosenv.2006.09.023 [34] XUE L K,WANG T,GAO J,et al.Ground-level ozone in four Chinese cities:precursors,regional transport and heterogeneous processes[J].Atmospheric Chemistry and Physics,2014,14(23):13175-13188. doi: 10.5194/acp-14-13175-2014 [35] AN J L,ZOU J N,WANG J X,et al.Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings,Yangtze River Delta,China[J].Environmental Science and Pollution Research,2015,22(24):19607-19617. doi: 10.1007/s11356-015-5177-0 [36] ZONG R H,YANG X,WEN L,et al.Strong ozone production at a rural site in the North China Plain:mixed effects of urban plumesand biogenic emissions[J].Journal of Environmental Sciences,2018,71:261-270. doi: 10.1016/j.jes.2018.05.003 [37] QIU W Y,LIU Y H,TAN Z F,et al.Calculation of maximum incremental reactivity scales based on typical megacities in China[J].Chinese Science Bulletin,2020,65(7):610-621. doi: 10.1360/TB-2019-0598 [38] ZHANG Y N,XUE L K,CARTER W P L,et al.Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity[J].Atmospheric Chemistry and Physics,2021,21(14):11053-11068. doi: 10.5194/acp-21-11053-2021 [39] XUE J,YUAN Z B,GRIFFITH S M,et al.Sulfate formation enhanced by a cocktail of high NOx,SO2,particulate matter,and droplet pH during haze-fog events in megacities in China:an observation-based modeling investigation[J].Environmental Science & Technology,2016,50(14):7325-7334. [40] WANG H C,CHEN X R,LU K D,et al.Wintertime N2O5 uptake coefficients over the North China plain[J].Science Bulletin,2020,65(9):765-774. doi: 10.1016/j.scib.2020.02.006 [41] WANG H C,LU K D,CHEN X R,et al.High N2O5 concentrations observed in urban Beijing:implications of a large nitrate formation pathway[J].Environmental Science & Technology Letters,2017,4(10):416-420. [42] YUN H,WANG T,WANG W H,et al.Nighttime NOx loss and ClNO2 formation in the residual layer of a polluted region:insights from field measurements and an iterative box model[J].Science of the Total Environment,2018,622/623:727-734. doi: 10.1016/j.scitotenv.2017.11.352 [43] PATHAK R K,WANG T,WU W S.Nighttime enhancement of PM2.5 nitrate in ammonia-poor atmospheric conditions in Beijing and Shanghai:plausible contributions of heterogeneous hydrolysis of N2O5 and HNO3 partitioning[J].Atmospheric Environment,2011,45(5):1183-1191. doi: 10.1016/j.atmosenv.2010.09.003 [44] WANG Z,WANG W H,THAM Y J,et al.Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain[J].Atmospheric Chemistry and Physics,2017,17(20):12361-12378. doi: 10.5194/acp-17-12361-2017 [45] WEN L,XUE L K,WANG X F,et al.Summertime fine particulate nitrate pollution in the North China Plain:increasing trends,formation mechanisms and implications for control policy[J].Atmospheric Chemistry and Physics,2018,18(15):11261-11275. doi: 10.5194/acp-18-11261-2018 [46] ZHU Y H,TILGNER A,HOFFMANN E H,et al.Multiphase MCM-CAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt.Tai summer campaign in 2014[J].Atmospheric Chemistry and Physics,2020,20(11):6725-6747. doi: 10.5194/acp-20-6725-2020 [47] ZHANG Y N,XUE L K,DONG C,et al.Gaseous carbonyls in China's atmosphere:tempo-spatial distributions,sources,photochemical formation,and impact on air quality[J].Atmospheric Environment,2019,214:116863. doi: 10.1016/j.atmosenv.2019.116863 [48] YANG X,XUE L K,WANG T,et al.Observations and explicit modeling of summertime carbonyl formation in Beijing:identification of key precursor species and their impact on atmospheric oxidation chemistry[J].Journal of Geophysical Research:Atmospheres,2018,123(2):1426-1440. doi: 10.1002/2017JD027403 [49] JIA C H,WANG Y N,LI Y J,et al.Oxidative capacity and radical chemistry in a semi-arid and petrochemical-industrialized city,northwest China[J].Aerosol and Air Quality Research,2018,18(6):1391-1404. doi: 10.4209/aaqr.2017.11.0506 [50] YANG X P,LU K D,MA X F,et al.Observations and modeling of OH and HO2 radicals in Chengdu,China in summer 2019[J].Science of the Total Environment,2021,772:144829. doi: 10.1016/j.scitotenv.2020.144829 [51] XUE L K,GU R R,WANG T,et al.Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region:analysis of a severe photochemical smog episode[J].Atmospheric Chemistry and Physics,2016,16(15):9891-9903. doi: 10.5194/acp-16-9891-2016 [52] CHEN T S,XUE L K,ZHENG P G,et al.Volatile organic compounds and ozone air pollution in an oil production region in northern China[J].Atmospheric Chemistry and Physics,2020,20(11):7069-7086. doi: 10.5194/acp-20-7069-2020 [53] LI Z Y,XUE L K,YANG X,et al.Oxidizing capacity of the rural atmosphere in Hong Kong,southern China[J].Science of the Total Environment,2018,612:1114-1122. doi: 10.1016/j.scitotenv.2017.08.310 [54] JIANG Y,XUE L K,GU R R,et al.Sources of nitrous acid (HONO) in the upper boundary layer and lower free troposphere of the North China Plain:insights from the Mount Tai Observatory[J].Atmospheric Chemistry and Physics,2020,20(20):12115-12131. doi: 10.5194/acp-20-12115-2020 [55] XUE L K,WANG T,GUO H,et al.Sources and photochemistry of volatile organic compounds in the remote atmosphere of Western China:results from the Mt.Waliguan Observatory[J].Atmospheric Chemistry and Physics,2013,13(17):8551-8567. doi: 10.5194/acp-13-8551-2013 [56] LU K D,HOFZUMAHAUS A,HOLLAND F,et al.Missing OH source in a suburban environment near Beijing:observed and modelled OH and HO2 concentrations in summer 2006[J].Atmospheric Chemistry and Physics,2013,13(2):1057-1080. doi: 10.5194/acp-13-1057-2013 [57] TAN Z F,FUCHS H,LU K D,et al.Radical chemistry at a rural site (Wangdu) in the North China Plain:observation and model calculations of OH,HO2 and RO2 radicals[J].Atmospheric Chemistry and Physics,2017,17(1):663-690. doi: 10.5194/acp-17-663-2017 [58] LIU Y H,LU K D,LI X,et al.A comprehensive model test of the HONO sources constrained to field measurements at rural North China Plain[J].Environmental Science & Technology,2019,53(7):3517-3525. [59] XUE C Y,ZHANG C L,YE C,et al.HONO budget and its role in nitrate formation in the rural North China Plain[J].Environmental Science & Technology,2020,54(18):11048-11057. [60] ZHANG W Q,TONG S R,JIA C H,et al.Different HONO sources for three layers at the urban area of Beijing[J].Environmental Science & Technology,2020,54(20):12870-12880. [61] LI Y F,WANG X Z,WU Z H,et al.Atmospheric nitrous acid (HONO) in an alternate process of haze pollution and ozone pollution in urban Beijing in summertime:Variations,sources and contribution to atmospheric photochemistry[J].Atmospheric Research,2021,260:105689. doi: 10.1016/j.atmosres.2021.105689 [62] XUE L K,SAUNDERS S M,WANG T,et al.Development of a chlorine chemistry module for the Master Chemical Mechanism[J].Geoscientific Model Development,2015,8(10):3151-3162. doi: 10.5194/gmd-8-3151-2015 [63] PENG X,WANG W H,XIA M,et al.An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality[J].National Science Review,2021.doi: 10.1002/essoar.10504290.1. -