留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于观测的模型(OBM)的发展历程及其在我国大气化学研究中的应用与展望

张英南 薛丽坤 陈天舒 申恒青 李红 王文兴

张英南, 薛丽坤, 陈天舒, 申恒青, 李红, 王文兴. 基于观测的模型(OBM)的发展历程及其在我国大气化学研究中的应用与展望[J]. 环境科学研究, 2022, 35(3): 621-632. doi: 10.13198/j.issn.1001-6929.2022.01.05
引用本文: 张英南, 薛丽坤, 陈天舒, 申恒青, 李红, 王文兴. 基于观测的模型(OBM)的发展历程及其在我国大气化学研究中的应用与展望[J]. 环境科学研究, 2022, 35(3): 621-632. doi: 10.13198/j.issn.1001-6929.2022.01.05
ZHANG Yingnan, XUE Likun, CHEN Tianshu, SHEN Hengqing, LI Hong, WANG Wenxing. Development History of Observation-Based Model (OBM) and Its Application and Prospect in Atmospheric Chemistry Studies in China[J]. Research of Environmental Sciences, 2022, 35(3): 621-632. doi: 10.13198/j.issn.1001-6929.2022.01.05
Citation: ZHANG Yingnan, XUE Likun, CHEN Tianshu, SHEN Hengqing, LI Hong, WANG Wenxing. Development History of Observation-Based Model (OBM) and Its Application and Prospect in Atmospheric Chemistry Studies in China[J]. Research of Environmental Sciences, 2022, 35(3): 621-632. doi: 10.13198/j.issn.1001-6929.2022.01.05

基于观测的模型(OBM)的发展历程及其在我国大气化学研究中的应用与展望

doi: 10.13198/j.issn.1001-6929.2022.01.05
基金项目: 国家自然科学基金项目(No.41922051);山东省自然科学基金项目(No.ZR2019JQ09)
详细信息
    作者简介:

    张英南(1995-),女,山东济宁人,yingnan@mail.sdu.edu.cn

    通讯作者:

    薛丽坤(1983-),男,山东东营人,教授,博士,博导,主要从事大气化学、大气环境和污染防治领域研究,xuelikun@sdu.edu.cn

  • 中图分类号: X51

Development History of Observation-Based Model (OBM) and Its Application and Prospect in Atmospheric Chemistry Studies in China

Funds: National Natural Science Foundation of China (No.41922051); Natural Science Foundation of Shandong Province, China (No.ZR2019JQ09)
  • 摘要: 基于观测的模型OBM(observation-based model)作为分析大气化学过程的重要方法之一,在深度挖掘大气综合观测数据以及全面认识区域大气复合污染成因方面具有广阔的应用潜力. 为进一步推进OBM在大气化学研究中的应用并提升PM2.5和臭氧(O3)协同防控的有效性和科学性,本文梳理了OBM结构和内置大气化学机制的发展历程,并总结了应用OBM解析O3和二次气溶胶生成机制及其他活性成分化学机制的研究成果. 结果表明:OBM结构和内置大气化学机制在不断更新,使OBM由最初用于O3生成机制的研究逐步发展成为功能强大的大气化学全过程分析工具,为我国大气复合污染防治工作提供了重要的技术支撑. 但是,OBM自身结构的局限性、我国尚未掌握OBM核心技术以及可利用的观测数据仍有限等原因制约了OBM在我国大气化学研究中的进一步应用和推广. 针对上述问题提出如下建议:在实际应用中应根据大气化学过程解析需求来选择合适的模型,充分发挥OBM的优势;开发具有中国自主知识产权的在线OBM运行系统和大气化学机制;建立有代表性的区域监测网络为OBM的进一步应用和推广提供综合数据支撑.

     

  • 图  1  OBM基本结构的演变

    Figure  1.  The evolution of basic structures of OBM

    图  2  2000—2021年9月公开发表的利用OBM开展国内O3生成机制研究的英文论文数量

    注:依托Web of Science、Scopus和Google Scholar数据库.

    Figure  2.  The number of papers (in English) regarding OBM studies in O3 formation regimes over China

    表  1  OBM中常用的大气化学机制概述

    Table  1.   Summary of atmospheric chemical mechanisms built in OBM

    大气化学机制代表版本总反应数总物种数光解
    反应数
    无机
    反应数
    有机
    反应数
    无机
    物种数
    有机
    物种数
    类别数据来源
    CBMCB051565123541021635气相归纳化学机制文献[16]
    RACMRACM236311934463172198气相归纳化学机制文献[17]
    SAPRCSAPRC0729111034552362684气相归纳化学机制文献[18]
    MCMMCMv3.3.117 2245 832354817 176205 812气相详细化学机制文献[19-20]
    CAPRAMCAPRAM3.07 129123056 82434液相归纳化学机制文献[21]
    下载: 导出CSV

    表  2  基于OBM开展的O3生成机制研究总结[9,25]

    Table  2.   Summary of the observation-based model studies in O3 formation regime over China[9,25]

    区域站点位置站点类型研究时段化学机制臭氧形成机制活性VOCs物种
    京津冀及
    周边地区
    望都乡村2014年6—7月RACM2NOx控制
    禹城乡村2013年6—7月MCM3.3.1协同控制生物源VOCs
    济南城市2017年7—8月MCM3.3.1VOCs/协同控制
    东营乡村2017年6—7月MCM3.3.1NOx控制烯烃
    保定城市2015年9月CB-IVVOCs控制
    青岛乡村2018年10—11月RACM2协同控制烯烃
    榆垡郊区2006年8—9月CB-IV协同控制
    武清郊区2009年6—8月NCAR-MMNOx控制
    汾渭平原渭南城市2019年7—9月RACM2协同控制烯烃
    长三角地区上海城市2017年7月CB-IVVOCs控制芳香烃
    乡村2017年7月CB-IV协同控制芳香烃
    南京城市2013年7—8月CB-IVVOCs控制烯烃
    郊区2013年7—8月CB-IVVOCs控制烯烃
    杭州城市2018年5—9月MCM3.3.1VOCs控制生物源VOCs
    郊区2018年5—9月MCM3.3.1VOCs控制生物源VOCs
    乡村2018年5—9月MCM3.3.1协同控制芳香烃
    徐州城市2018年5月MCM3.2VOCs控制
    盐城城市2017年8月MCM3.2VOCs控制
    南通城市2018年7月MCM3.2协同控制
    川渝地区成都城市2016年9—10月RACM2VOCs控制烯烃
    工业2016年9—10月RACM2VOCs控制烯烃
    重庆城市2015年8—9月RACM2VOCs控制
    郊区2015年8—9月RACM2VOCs控制
    乡村2015年8—9月RACM2NOx控制
    珠三角地区东涌郊区2005—2014年CB05VOCs控制
    深圳城市2018年10月RACM2-LIM1VOCs控制芳香烃
    鹤山乡村2014年10—11月MCMVOCs控制芳香烃
    其他地区武汉城市2018年8月MCM3.2VOCs控制
    兰州郊区2018年8月MCM3.2协同控制
    郊区2006年6—7月MCM3.2NOx控制
    下载: 导出CSV

    表  3  基于OBM量化自由基初级来源和OH·反应活性的研究总结[47]

    Table  3.   Summary of the observation-based model studies of radical sources over China[47]

    区域站点位置站点类型研究时段OH·主要的
    初级来源
    HO2·主要的
    初级来源
    RO2·主要的
    初级来源
    化学机制
    京津冀及周边地区北京城市2008年7—8月O3光解OVOCs光解OVOCs光解MCM3.3.1
    东营乡村2017年6—7月O3光解OVOCs光解OVOCs光解MCM3.3.1
    泰山乡村2017年12月HONO光解OVOCs光解OVOCs光解MCM3.3.1
    乡村2018年3—4月HONO光解OVOCs光解OVOCs光解MCM3.3.1
    珠三角地区中国香港乡村2012年8—12月O3光解OVOCs光解OVOCs光解MCM3.3.1
    郊区2011年8月HONO光解OVOCs光解OVOCs光解MCM3.2
    其他地区成都郊区2019年8—9月HONO光解HCHO光解OVOCs光解RACM2-LIM1
    兰州城市2013年6—8月O3光解HCHO光解OVOCs光解MCM3.3.1
    工业2013年6—8月O3光解HCHO光解OVOCs光解MCM3.3.1
    瓦里关背景2003年4—5月、
    7—8月
    O3光解HCHO光解OVOCs光解MCM3.2
    下载: 导出CSV
  • [1] ZHENG B,TONG D,LI M,et al.Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions[J].Atmospheric Chemistry and Physics,2018,18(19):14095-14111. doi: 10.5194/acp-18-14095-2018
    [2] LIU Y M,WANG T.Worsening urban ozone pollution in China from 2013 to 2017.Part 2:the effects of emission changes and implications for multi-pollutant control[J].Atmospheric Chemistry and Physics,2020,20(11):6323-6337. doi: 10.5194/acp-20-6323-2020
    [3] SUN L,XUE L K,WANG T,et al.Significant increase of summertime ozone at Mount Tai in Central Eastern China[J].Atmospheric Chemistry and Physics,2016,16(16):10637-10650. doi: 10.5194/acp-16-10637-2016
    [4] WANG T,DAI J N,LAM K S,et al.Twenty-five years of lower tropospheric ozone observations in tropical east Asia:the influence of emissions and weather patterns[J].Geophysical Research Letters,2019,46(20):11463-11470. doi: 10.1029/2019GL084459
    [5] XU X B,LIN W L,XU W Y,et al.Long-term changes of regional ozone in China:implications for human health and ecosystem impacts[J].Elementa:Science of the Anthropocene,2020.doi: 10.1525/elementa.409.
    [6] 姜华,常宏咪.我国臭氧污染形势分析及成因初探[J].环境科学研究,2021,34(7):1576-1582.

    JIANG H,CHANG H M.Analysis of China's ozone pollution situation,preliminary investigation of causes and prevention and control recommendations[J].Research of Environmental Sciences,2021,34(7):1576-1582.
    [7] 屈超,陈婷婷,刘佳,等.中国典型城市PM2.5浓度时空演绎规律及影响因素分析[J].环境科学研究,2019,32(7):1117-1125.

    QU C,CHEN T T,LIU J,et al.Spatio-temporal characteristics of PM2.5 and influence factors in typical cities of China[J].Research of Environmental Sciences,2019,32(7):1117-1125.
    [8] 李红,彭良,毕方,等.我国PM2.5与臭氧污染协同控制策略研究[J].环境科学研究,2019,32(10):1763-1778.

    LI H,PENG L,BI F,et al.Strategy of coordinated control of PM2.5 and ozone in China[J].Research of Environmental Sciences,2019,32(10):1763-1778.
    [9] WANG T,XUE L K,BRIMBLECOMBE P,et al.Ozone pollution in China:a review of concentrations,meteorological influences,chemical precursors,and effects[J].Science of the Total Environment,2017,575:1582-1596. doi: 10.1016/j.scitotenv.2016.10.081
    [10] 吴琳,薛丽坤,王文兴.基于观测的臭氧污染研究方法[J].地球环境学报,2017,8(6):479-491.

    WU L,XUE L K,WANG W X.Review on the observation-based methods for ozone air pollution research[J].Journal of Earth Environment,2017,8(6):479-491.
    [11] CARDELINO C A,CHAMEIDES W L.An observation-based model for analyzing ozone precursor relationships in the urban atmosphere[J].Journal of the Air & Waste Management Association,1995,45(3):161-180.
    [12] WOLFE G M,MARVIN M R,ROBERTS S J,et al.The framework for 0-D atmospheric modeling (F0AM) v3.1[J].Geoscientific Model Development,2016,9(9):3309-3319. doi: 10.5194/gmd-9-3309-2016
    [13] 唐效炎,张远航,邵敏,等.大气环境化学[M].北京:高等教育出版社,2006.
    [14] 石玉珍,徐永福,贾龙.大气化学机理的发展及应用[J].气候与环境研究,2012,17(1):112-124. doi: 10.3878/j.issn.1006-9585.2011.10061

    SHI Y Z,XU Y F,JIA L.Development and application of atmospheric chemical mechanisms[J].Climatic and Environmental Research,2012,17(1):112-124. doi: 10.3878/j.issn.1006-9585.2011.10061
    [15] 肖伟,何友江,孟凡,等.空气质量模型中大气化学机理的发展与比较[J].环境工程技术学报,2018,8(1):12-22.

    XIAO W,HE Y J,MENG F,et al.Development and comparison of atmospheric chemical mechanisms in air quality numerical model[J].Journal of Environmental Engineering Technology,2018,8(1):12-22.
    [16] YARWOOD G,RAO S,YOCKE M.Updates to the carbon bond chemical mechanism:CB05[R].California:University of California,2005:2841-2842.
    [17] GOLIFF W S,STOCKWELL W R,LAWSON C V.The regional atmospheric chemistry mechanism,version 2[J].Atmospheric Environment,2013,68:174-185. doi: 10.1016/j.atmosenv.2012.11.038
    [18] CARTER W P L.Development of the SAPRC-07 chemical mechanism[J].Atmospheric Environment,2010,44(40):5324-5335. doi: 10.1016/j.atmosenv.2010.01.026
    [19] JENKIN M E,SAUNDERS S M,WAGNER V,et al.Protocol for the development of the Master Chemical Mechanism,MCM v3 (Part B):tropospheric degradation of aromatic volatile organic compounds[J].Atmospheric Chemistry and Physics,2003,3(1):181-193. doi: 10.5194/acp-3-181-2003
    [20] SAUNDERS S M,JENKIN M E,DERWENT R G,et al.Protocol for the development of the Master Chemical Mechanism,MCM v3 (Part A):tropospheric degradation of non-aromatic volatile organic compounds[J].Atmospheric Chemistry and Physics,2003,3(1):161-180. doi: 10.5194/acp-3-161-2003
    [21] HERRMANN H,TILGNER A,BARZAGHI P,et al.Towards a more detailed description of tropospheric aqueous phase organic chemistry:CAPRAM 3.0[J].Atmospheric Environment,2005,39(23/24):4351-4363.
    [22] COATES J,MAR K A,OJHA N,et al.The influence of temperature on ozone production under varying NOx conditions:a modelling study[J].Atmospheric Chemistry and Physics,2016,16(18):11601-11615. doi: 10.5194/acp-16-11601-2016
    [23] 刘峻峰,李金龙,白郁华.大气光化学烟雾反应机理比较(Ⅰ):O3和NOx的比较[J].环境化学,2001,20(4):305-312. doi: 10.3321/j.issn:0254-6108.2001.04.001

    LIU J F,LI J L,BAI Y H.A comparison of atmospheric photochemical mechanisms (Ⅰ) O3 and NOx[J].Environmental Chemistry,2001,20(4):305-312. doi: 10.3321/j.issn:0254-6108.2001.04.001
    [24] 刘峻峰,李金龙,白郁华.大气光化学烟雾反应机理比较(Ⅱ):HOx和光化学氧化产物的比较[J].环境化学,2001,20(4):313-319. doi: 10.3321/j.issn:0254-6108.2001.04.002

    LIU J F,LI J L,BAI Y H.A comparison of atmospheric photochemical mechanisms (Ⅱ) HOx and photochemical products[J].Environmental Chemistry,2001,20(4):313-319. doi: 10.3321/j.issn:0254-6108.2001.04.002
    [25] LU H X,LYU X P,CHENG H R,et al.Overview on the spatial-temporal characteristics of the ozone formation regime in China[J].Environmental Science Processes & Impacts,2019,21(6):916-929.
    [26] HAN X,ZHU L Y,WANG S L,et al.Modeling study of impacts on surface ozone of regional transport and emissions reductions over North China Plain in summer 2015[J].Atmospheric Chemistry and Physics,2018,18(16):12207-12221. doi: 10.5194/acp-18-12207-2018
    [27] WANG N,LYU X P,DENG X J,et al.Aggravating O3 pollution due to NOx emission control in eastern China[J].Science of the Total Environment,2019,677:732-744. doi: 10.1016/j.scitotenv.2019.04.388
    [28] BENISH S E,HE H,REN X R,et al.Measurement report:aircraft observations of ozone,nitrogen oxides,and volatile organic compounds over Hebei Province,China[J].Atmospheric Chemistry and Physics,2020,20(23):14523-14545. doi: 10.5194/acp-20-14523-2020
    [29] CHEN X Y,LIU Y M,LAI A Q,et al.Factors dominating 3-dimensional ozone distribution during high tropospheric ozone period[J].Environmental Pollution,2018,232:55-64. doi: 10.1016/j.envpol.2017.09.017
    [30] LU K D,ZHANG Y H,SU H,et al.Oxidant (O3+NO2) production processes and formation regimes in Beijing[J].Journal of Geophysical Research:Atmospheres,2010,115(D7):D07303.
    [31] PAN X,KANAYA Y,TANIMOTO H,et al.Examining the major contributors of ozone pollution in a rural area of the Yangtze River Delta region during harvest season[J].Atmospheric Chemistry and Physics,2015,15(11):6101-6111. doi: 10.5194/acp-15-6101-2015
    [32] GENG F H,TIE X X,XU J M,et al.Characterizations of ozone,NOx,and VOCs measured in Shanghai,China[J].Atmospheric Environment,2008,42(29):6873-6883. doi: 10.1016/j.atmosenv.2008.05.045
    [33] GENG F H,ZHAO C S,TANG X,et al.Analysis of ozone and VOCs measured in Shanghai:a case study[J].Atmospheric Environment,2007,41(5):989-1001. doi: 10.1016/j.atmosenv.2006.09.023
    [34] XUE L K,WANG T,GAO J,et al.Ground-level ozone in four Chinese cities:precursors,regional transport and heterogeneous processes[J].Atmospheric Chemistry and Physics,2014,14(23):13175-13188. doi: 10.5194/acp-14-13175-2014
    [35] AN J L,ZOU J N,WANG J X,et al.Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings,Yangtze River Delta,China[J].Environmental Science and Pollution Research,2015,22(24):19607-19617. doi: 10.1007/s11356-015-5177-0
    [36] ZONG R H,YANG X,WEN L,et al.Strong ozone production at a rural site in the North China Plain:mixed effects of urban plumesand biogenic emissions[J].Journal of Environmental Sciences,2018,71:261-270. doi: 10.1016/j.jes.2018.05.003
    [37] QIU W Y,LIU Y H,TAN Z F,et al.Calculation of maximum incremental reactivity scales based on typical megacities in China[J].Chinese Science Bulletin,2020,65(7):610-621. doi: 10.1360/TB-2019-0598
    [38] ZHANG Y N,XUE L K,CARTER W P L,et al.Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity[J].Atmospheric Chemistry and Physics,2021,21(14):11053-11068. doi: 10.5194/acp-21-11053-2021
    [39] XUE J,YUAN Z B,GRIFFITH S M,et al.Sulfate formation enhanced by a cocktail of high NOx,SO2,particulate matter,and droplet pH during haze-fog events in megacities in China:an observation-based modeling investigation[J].Environmental Science & Technology,2016,50(14):7325-7334.
    [40] WANG H C,CHEN X R,LU K D,et al.Wintertime N2O5 uptake coefficients over the North China plain[J].Science Bulletin,2020,65(9):765-774. doi: 10.1016/j.scib.2020.02.006
    [41] WANG H C,LU K D,CHEN X R,et al.High N2O5 concentrations observed in urban Beijing:implications of a large nitrate formation pathway[J].Environmental Science & Technology Letters,2017,4(10):416-420.
    [42] YUN H,WANG T,WANG W H,et al.Nighttime NOx loss and ClNO2 formation in the residual layer of a polluted region:insights from field measurements and an iterative box model[J].Science of the Total Environment,2018,622/623:727-734. doi: 10.1016/j.scitotenv.2017.11.352
    [43] PATHAK R K,WANG T,WU W S.Nighttime enhancement of PM2.5 nitrate in ammonia-poor atmospheric conditions in Beijing and Shanghai:plausible contributions of heterogeneous hydrolysis of N2O5 and HNO3 partitioning[J].Atmospheric Environment,2011,45(5):1183-1191. doi: 10.1016/j.atmosenv.2010.09.003
    [44] WANG Z,WANG W H,THAM Y J,et al.Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain[J].Atmospheric Chemistry and Physics,2017,17(20):12361-12378. doi: 10.5194/acp-17-12361-2017
    [45] WEN L,XUE L K,WANG X F,et al.Summertime fine particulate nitrate pollution in the North China Plain:increasing trends,formation mechanisms and implications for control policy[J].Atmospheric Chemistry and Physics,2018,18(15):11261-11275. doi: 10.5194/acp-18-11261-2018
    [46] ZHU Y H,TILGNER A,HOFFMANN E H,et al.Multiphase MCM-CAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt.Tai summer campaign in 2014[J].Atmospheric Chemistry and Physics,2020,20(11):6725-6747. doi: 10.5194/acp-20-6725-2020
    [47] ZHANG Y N,XUE L K,DONG C,et al.Gaseous carbonyls in China's atmosphere:tempo-spatial distributions,sources,photochemical formation,and impact on air quality[J].Atmospheric Environment,2019,214:116863. doi: 10.1016/j.atmosenv.2019.116863
    [48] YANG X,XUE L K,WANG T,et al.Observations and explicit modeling of summertime carbonyl formation in Beijing:identification of key precursor species and their impact on atmospheric oxidation chemistry[J].Journal of Geophysical Research:Atmospheres,2018,123(2):1426-1440. doi: 10.1002/2017JD027403
    [49] JIA C H,WANG Y N,LI Y J,et al.Oxidative capacity and radical chemistry in a semi-arid and petrochemical-industrialized city,northwest China[J].Aerosol and Air Quality Research,2018,18(6):1391-1404. doi: 10.4209/aaqr.2017.11.0506
    [50] YANG X P,LU K D,MA X F,et al.Observations and modeling of OH and HO2 radicals in Chengdu,China in summer 2019[J].Science of the Total Environment,2021,772:144829. doi: 10.1016/j.scitotenv.2020.144829
    [51] XUE L K,GU R R,WANG T,et al.Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region:analysis of a severe photochemical smog episode[J].Atmospheric Chemistry and Physics,2016,16(15):9891-9903. doi: 10.5194/acp-16-9891-2016
    [52] CHEN T S,XUE L K,ZHENG P G,et al.Volatile organic compounds and ozone air pollution in an oil production region in northern China[J].Atmospheric Chemistry and Physics,2020,20(11):7069-7086. doi: 10.5194/acp-20-7069-2020
    [53] LI Z Y,XUE L K,YANG X,et al.Oxidizing capacity of the rural atmosphere in Hong Kong,southern China[J].Science of the Total Environment,2018,612:1114-1122. doi: 10.1016/j.scitotenv.2017.08.310
    [54] JIANG Y,XUE L K,GU R R,et al.Sources of nitrous acid (HONO) in the upper boundary layer and lower free troposphere of the North China Plain:insights from the Mount Tai Observatory[J].Atmospheric Chemistry and Physics,2020,20(20):12115-12131. doi: 10.5194/acp-20-12115-2020
    [55] XUE L K,WANG T,GUO H,et al.Sources and photochemistry of volatile organic compounds in the remote atmosphere of Western China:results from the Mt.Waliguan Observatory[J].Atmospheric Chemistry and Physics,2013,13(17):8551-8567. doi: 10.5194/acp-13-8551-2013
    [56] LU K D,HOFZUMAHAUS A,HOLLAND F,et al.Missing OH source in a suburban environment near Beijing:observed and modelled OH and HO2 concentrations in summer 2006[J].Atmospheric Chemistry and Physics,2013,13(2):1057-1080. doi: 10.5194/acp-13-1057-2013
    [57] TAN Z F,FUCHS H,LU K D,et al.Radical chemistry at a rural site (Wangdu) in the North China Plain:observation and model calculations of OH,HO2 and RO2 radicals[J].Atmospheric Chemistry and Physics,2017,17(1):663-690. doi: 10.5194/acp-17-663-2017
    [58] LIU Y H,LU K D,LI X,et al.A comprehensive model test of the HONO sources constrained to field measurements at rural North China Plain[J].Environmental Science & Technology,2019,53(7):3517-3525.
    [59] XUE C Y,ZHANG C L,YE C,et al.HONO budget and its role in nitrate formation in the rural North China Plain[J].Environmental Science & Technology,2020,54(18):11048-11057.
    [60] ZHANG W Q,TONG S R,JIA C H,et al.Different HONO sources for three layers at the urban area of Beijing[J].Environmental Science & Technology,2020,54(20):12870-12880.
    [61] LI Y F,WANG X Z,WU Z H,et al.Atmospheric nitrous acid (HONO) in an alternate process of haze pollution and ozone pollution in urban Beijing in summertime:Variations,sources and contribution to atmospheric photochemistry[J].Atmospheric Research,2021,260:105689. doi: 10.1016/j.atmosres.2021.105689
    [62] XUE L K,SAUNDERS S M,WANG T,et al.Development of a chlorine chemistry module for the Master Chemical Mechanism[J].Geoscientific Model Development,2015,8(10):3151-3162. doi: 10.5194/gmd-8-3151-2015
    [63] PENG X,WANG W H,XIA M,et al.An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality[J].National Science Review,2021.doi: 10.1002/essoar.10504290.1.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  2155
  • HTML全文浏览量:  542
  • PDF下载量:  555
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-06
  • 修回日期:  2021-12-20
  • 网络出版日期:  2022-03-22

目录

    /

    返回文章
    返回