Characteristic and Trend Analysis of PM2.5 and Ozone in Air Compound Pollution in Hubei Province During 2015-2020
-
摘要: 为揭示湖北省PM2.5和臭氧(O3)复合污染演变特征,基于湖北省17个地市的空气质量国控点和武汉市大气超级站组分监测数据,全面分析湖北省17个地市2015—2020年PM2.5和O3的时空变化特征及相关关系,探讨PM2.5和O3协同效应的成因机理. 结果表明:①2015—2020年,湖北省PM2.5显著改善,平均降幅为4.7 μg/(m3·a),但冬季负荷仍较高,主要集中于中部地区;O3污染凸显,平均增幅为3.8 μg/(m3·a),污染集中在4—10月的暖季,东部地区最严重,近两年超标天数已与PM2.5相当. ②湖北省PM2.5和O3关联日趋密切,协同效应显著,日评价指标显示夏季二者呈显著正相关(相关系数为0.57),近两年当PM2.5浓度≤50 μg/m3时,相关系数高达0.63;冬季PM2.5浓度与Ox(O3+NO2)浓度呈正相关,尤其2020年东部城市二者相关性高达0.46,显示大气氧化性对PM2.5二次污染的重要性. ③以武汉市为例,归纳PM2.5和O3复合污染的成因,暖季低PM2.5背景下,高温、中等湿度和弱风速的气象条件以及VOCs和NOx等前体物的高浓度排放,使得受VOCs主控的光化学反应加剧,易造成O3污染,从而加强PM2.5二次生成;冬季高的大气氧化性,叠加不利气象条件,促进颗粒物的二次生成,导致重污染时PM2.5组分以硝酸盐等二次无机组分为主. 研究显示,湖北省PM2.5和O3协同控制重点为,在保持现有NOx控制力度基础上强化VOCs控制,遏制暖季和东部区域O3浓度上升,加强冬季和中部PM2.5治理.Abstract: In order to reveal the evolution characteristics of compound air pollution, spatiotemporal characteristics of PM2.5 and O3, as well as their correlation relationships and the formation mechanism of the synergistic effect, were comprehensively analyzed based on the monitoring data in 17 cities in Hubei Province from 2015 to 2020 and the atmospheric superstation in Wuhan. The results indicated: (1) PM2.5 pollution was significantly mitigated with a decline rate of 4.7 μg/(m3·a), and O3 pollution worsened with a growth rate of 3.8 μg/(m3·a) and it appeared frequently in the warm season (April to October). In addition, PM2.5 concentration in winter was still high, especially in central cities. The number of days with O3 exceeding the standard in eastern cities was the same to the number of days with PM2.5 exceeding the standard in the past two years. (2) The PM2.5 and O3 in Hubei Province had an increasingly close relationship, and the synergistic effect was significant. The daily values showed that PM2.5 and O3 had a significant positive correlation in summer (the correlation coefficient (R) is 0.57), and R was as high as 0.63 when PM2.5 ≤ 50 μg/m3 in the past two years. In addition, there was a positive correlation between PM2.5 and Ox in winter, with the highest in eastern cities in 2020 (0.46), showing the importance of atmospheric oxidation for the secondary pollution of PM2.5. (3) The causes of the synergistic effect of PM2.5 and O3 in Wuhan were as follows. In the warm season, the intensified O3 photochemical reaction was controlled by VOCs due to high temperature, moderate humidity, weak wind and the high emissions of precursors (VOCs and NOx) under the background of low PM2.5, which will cause O3 pollution, thereby enhancing the secondary transformation of PM2.5. In winter, high atmospheric oxidation and unfavorable weather conditions promoted secondary aerosol transformation. During the heavy pollution episodes, PM2.5 components were mainly secondary inorganic components such as nitrate. (4) The coordinated control in Hubei Province is mainly to strengthen the control of VOCs on the basis of maintaining NOx control, suppress the rise of O3 concentration in warm season, especially in the eastern region, and enhance the control of PM2.5 in winter, especially in the central region.
-
Key words:
- PM2.5 /
- ozone (O3) /
- synergistic control /
- compound pollution /
- Hubei Province
-
图 1 湖北省地形与监测站点、人口及3个区域的分布以及2015—2020年PM2.5和O3-8 h浓度空间分布
注:第一区域为武汉市及周边的10个地市,位于湖北省东部;第二区域包括襄阳市、荆州市、荆门市和宜昌市,位于湖北省中部;第三个区域包括十堰市、恩施土家族苗族自治州(简称“恩施州”)和神农架林区,位于湖北省西部.
Figure 1. The distribution of topography, monitoring sites, population and three regions, as well as the spatial distributions of PM2.5 and O3-8 h concentrations during 2015-2020 in Hubei Province
图 7 2015—2020年基于季节的各区域R(PM2.5-O3-8 h)、R(PM2.5-Ox)分别与PM2.5和O3-8 h浓度季均值的相关性散点图
注:R(PM2.5-O3-8 h)和R(PM2.5-Ox)分别为PM2.5浓度与O3-8 h和Ox浓度的相关系数.
Figure 7. Scatter plots of R(PM2.5-O3-8 h) , R(PM2.5-Ox) and seasonal averaged PM2.5, O3-8 h concentrations in different regions based on seasonal scales during 2015-2020
表 1 2019年和2020年冬季武汉市不同浓度PM2.5中主要大气组分差异
Table 1. Comparison of main atmospheric compounds in different PM2.5 concentration levels in winter between 2019 and 2020 in Wuhan City
年份 变量 单位 ρ(PM2.5)范围 ≤35 µg/m3 36~75 µg/m3 76~115 µg/m3 116~150 µg/m3 151~250 µg/m3 2019 ρ(Ox) µg/m3 59.35 73.44 82.35 88 71.94 2020 ρ(Ox) µg/m3 65.82 78.32 86.17 116.19 132.88 2019 ρ(OM) µg/m3 8.0 12.0 18.7 23.5 27.5 2019 ρ(SO42−) µg/m3 10.2 6.1 9.6 12.7 29.7 2019 ρ(NO3−) µg/m3 25.5 19.9 30.4 45.1 75.2 2019 ρ(NH4+) µg/m3 8.3 7.3 11.6 19.4 32.2 2020 ρ(OM) µg/m3 8.9 13.3 21.9 27.8 40.5 2020 ρ(SO42−) µg/m3 5.4 10.4 15.4 13.7 17.0 2020 ρ(NO3−) µg/m3 9.0 19.6 40.8 60.2 81.9 2020 ρ(NH4+) µg/m3 5.7 11.9 22.0 26.9 36.2 2019 NOR 0.247 0.213 0.247 0.319 0.468 2020 NOR 0.123 0.181 0.281 2020 SOR 0.281 0.360 0.383 0.362 0.489 2020 SOR 0.230 0.352 0.474 2019 φ(VOCs) 10−9 32.0 36.7 50.2 48.6 59.3 2020 φ(VOCs) 10−9 19.1 24.2 38.6 2019 ρ(NOx) µg/m3 46.1 78.1 112.0 85.8 74.2 2020 ρ(NOx) µg/m3 24.7 39.8 54.2 25.6 2019 φ(VOCs)/ρ(NOx) 3.6 3.8 3.8 4.2 5.5 2020 φ(VOCs)/ρ(NOx) 6.7 5.8 6.2 表 2 武汉市2019年和2020年5—10月不同O3-8 h浓度下主要大气组分及气象要素差异
Table 2. Comparison of main atmospheric compounds and meteorological factors in different O3-8 h concentration levels during May and October between 2019 and 2020 in Wuhan City
年份 变量 单位 ρ(O3-8 h)范围 61~80 µg/m3 81~120 µg/m3 121~160 µg/m3 161~200 µg/m3 >200 µg/m3 2019 ρ(PM2.5) µg/m3 25.8 24.7 26.7 32.6 40.5 2020 ρ(PM2.5) µg/m3 21.8 25.1 29.0 32.9 34.4 2019 ρ(OM) µg/m3 6.1 7.1 7.0 8.2 9.7 2019 ρ(SO42−) µg/m3 5.6 6.1 6.9 9.1 11.1 2019 ρ(NO3−) µg/m3 7.8 6.5 5.8 6.9 5.8 2019 ρ(NH4+) µg/m3 4.1 4.1 4.3 5.4 5.6 2020 ρ(OM) µg/m3 8.7 10.3 10.6 11.0 11.1 2020 ρ(SO42-) µg/m3 4.4 5.3 6.5 7.6 8.1 2020 ρ(NO3−) µg/m3 6.3 5.1 5.5 4.3 3.1 2020 ρ(NH4+) µg/m3 3.9 4.0 4.5 4.5 4.2 2019 φ(VOCs) 10−9 22.7 24.2 23.3 27.1 28.0 2020 φ(VOCs) 10−9 21.5 19.8 19.6 23.1 24.0 2019 ρ(NOx) µg/m3 29.1 38.3 37.0 46.0 49.7 2020 ρ(NOx) µg/m3 37.9 37.5 39.5 40.8 41.3 2019 φ(VOCs)/ρ(NOx) 6.4 5.3 5.5 4.8 4.6 2020 φ(VOCs)/ρ(NOx) 4.5 4.2 3.8 4.2 4.3 2019 最高温度 ℃ 23.5 27.9 30.2 31.5 34.2 2019 相对湿度 % 81.2 75.6 68.4 66.7 62.6 2019 风速 m/s 2.3 2.1 2.1 1.6 1.6 2020 最高温度 ℃ 24.4 27.1 30.0 31.9 33.3 2020 相对湿度 % 89.7 84.7 77.0 74.4 70.8 2020 风速 m/s 1.9 2.1 1.9 1.6 1.3 -
[1] 王跃思,姚利,王莉莉,等.2013年元月我国中东部地区强霾污染成因分析[J].中国科学:地球科学,2014,44(1):15-26. [2] LELIEVELD J,EVANS J S,FNAIS M,et al.The contribution of outdoor air pollution sources to premature mortality on a global scale[J].Nature,2015,525(7569):367-371. doi: 10.1038/nature15371 [3] IPCC.Clouds and aerosols.in:climate change 2013:the physical science basis.contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[R].Geneva:IPCC,2013. [4] ZHANG Q,ZHENG Y X,TONG D,et al.Drivers of improved PM2.5 air quality in China from 2013 to 2017[J].PNAS,2019,116(49):24463-24469. doi: 10.1073/pnas.1907956116 [5] 张远航,郑君瑜.中国大气臭氧污染防治蓝皮书[R].北京:中国环境科学学会臭氧污染控制专业委员会,2020:1-109. [6] TAO M H,WANG L L,CHEN L F,et al.Reversal of aerosol properties in eastern China with rapid decline of anthropogenic emissions[J].Remote Sensing,2020,12(3):523. doi: 10.3390/rs12030523 [7] LIU J D,WANG L L,LI M G,et al.Quantifying the impact of synoptic circulation patterns on ozone variability in northern China from April to October 2013-2017[J].Atmospheric Chemistry and Physics,2019,19(23):14477-14492. doi: 10.5194/acp-19-14477-2019 [8] WANG T,XUE L K,BRIMBLECOMBE P,et al.Ozone pollution in China:a review of concentrations,meteorological influences,chemical precursors,and effects[J].Science of the Total Environment,2017,575:1582-1596. doi: 10.1016/j.scitotenv.2016.10.081 [9] 刘峰,朱永官,王效科.我国地面臭氧污染及其生态环境效应[J].生态环境,2008,17(4):1674-1679.LIU F,ZHU Y G,WANG X K.Surface ozone pollution and its eco-environmental impacts in China[J].Ecology and Environment,2008,17(4):1674-1679. [10] 李红,彭良,毕方,等.我国PM2.5与臭氧污染协同控制策略研究[J].环境科学研究,2019,32(10):1763-1778.LI H,PENG L,BI F,et al.Strategy of coordinated control of PM2.5 and ozone in China[J].Research of Environmental Sciences,2019,32(10):1763-1778. [11] ZHU J,CHEN L,LIAO H,et al.Correlations between PM2.5 and ozone over China and associated underlying reasons[J].Atmosphere,2019,10(7):352. doi: 10.3390/atmos10070352 [12] LYU X P,CHEN N,GUO H,et al.Ambient volatile organic compounds and their effect on ozone production in Wuhan,central China[J].Science of the Total Environment,2016,541:200-209. doi: 10.1016/j.scitotenv.2015.09.093 [13] ZHAO D D,LIU G J,XIN J Y,et al.The haze pollution under strong atmospheric oxidization capacity in summer in Beijing:insights into the formation mechanism of atmospheric physicochemical process[J].Atmospheric Chemistry and Physics,2020,20(8):4575-4592. doi: 10.5194/acp-20-4575-2020 [14] GAO J H,LI Y,ZHU B,et al.What have we missed when studying the impact of aerosols on surface ozone via changing photolysis rates?[J].Atmospheric Chemistry and Physics,2020,20(18):10831-10844. doi: 10.5194/acp-20-10831-2020 [15] LI K,JACOB D J,LIAO H,et al.Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China[J].PNAS,2019,116(2):422-427. doi: 10.1073/pnas.1812168116 [16] CHU B W,MA Q X,LIU J,et al.Air pollutant correlations in China:secondary air pollutant responses to NOx and SO2 control[J].Environmental Science & Technology Letters,2020,7(10):695-700. [17] WANG Y H,GAO W K,WANG S,et al.Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017[J].National Science Review,2020,7(8):1331-1339. doi: 10.1093/nsr/nwaa032 [18] 程麟钧,王帅,宫正宇,等.中国臭氧浓度的时空变化特征及分区[J].中国环境科学,2017,37(11):4003-4012. doi: 10.3969/j.issn.1000-6923.2017.11.001CHENG L J,WANG S,GONG Z Y,et al.Spatial and seasonal variation and regionalization of ozone concentrations in China[J].China Environmental Science,2017,37(11):4003-4012. doi: 10.3969/j.issn.1000-6923.2017.11.001 [19] 陈楠,许可,曹中美,等.湖北大气颗粒物污染水平及污染物相关性研究[J].环境科学与技术,2016,39(9):194-198.CHEN N,XU K,CAO Z M,et al.Analysis on the pollution levels of atmospheric particles and the correlation of pollutants in Hubei Province[J].Environmental Science & Technology (China),2016,39(9):194-198. [20] 陈楠,操文祥,丁青青,等.湖北省PM2.5与PM10比值分析及PM2.5时空分布特征研究[J].环境科学与管理,2017,42(1):98-102. doi: 10.3969/j.issn.1673-1212.2017.01.024CHEN N,CAO W X,DING Q Q,et al.Analysis on PM2.5/PM10 ratio and spatial and temporal distribution characteristics of PM2.5 in Hubei[J].Environmental Science and Management,2017,42(1):98-102. doi: 10.3969/j.issn.1673-1212.2017.01.024 [21] LI M G,WANG L L,LIU J D,et al.Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013-2017[J].Environment International,2020,134:105283. doi: 10.1016/j.envint.2019.105283 [22] 陈楠,王剑,操文祥,等.湖北省一次空气重污染过程的预报分析[J].环境科学与技术,2018,41(8):95-103.CHEN N,WANG J,CAO W X,et al.Forecasting analysis on a severe air pollution process in Hubei Province[J].Environmental Science & Technology (China),2018,41(8):95-103. [23] 陈楠,徐宝东,张瑜,等.激光雷达在湖北大气环境监测中的应用[J].中国环境监测,2019,35(2):142-149.CHEN N,XU B D,ZHANG Y,et al.Application of lidar in atmospheric environment monitoring in Hubei Province[J].Environmental Monitoring in China,2019,35(2):142-149. [24] SONG C B,WU L,XIE Y C,et al.Air pollution in China:status and spatiotemporal variations[J].Environmental Pollution,2017,227:334-347. doi: 10.1016/j.envpol.2017.04.075 [25] ZHAO S P,YIN D Y,YU Y,et al.PM2.5 and O3 pollution during 2015-2019 over 367 Chinese cities:spatiotemporal variations,meteorological and topographical impacts[J].Environmental Pollution,2020,264:114694. doi: 10.1016/j.envpol.2020.114694 [26] TAO M H,HUANG H J,CHEN N,et al.Contrasting effects of emission control on air pollution in Central China during the 2019 military world games based on satellite and ground observations[J].Atmospheric Research,2021,259:105657. doi: 10.1016/j.atmosres.2021.105657 [27] 陈楠,张周祥,李涛,等.武汉地区疫情管控期间空气质量变化及改善措施研究[J].气候与环境研究,2021,26(2):217-226.CHEN N,ZHANG Z X,LI T,et al.Air quality change and improvement measures during the COVID-19 epidemic in Wuhan[J].Climatic and Environmental Research,2021,26(2):217-226. [28] WANG Q L,WANG L L,TAO M H,et al.Exploring the variation of black and brown carbon during COVID-19 lockdown in megacity wuhan and its surrounding cities,China[J].Science of the Total Environment,2021,791:148226. doi: 10.1016/j.scitotenv.2021.148226 [29] ZHENG H,KONG S F,CHEN N,et al.Significant changes in the chemical compositions and sources of PM2.5 in Wuhan since the city lockdown as COVID-19[J].Science of the Total Environment,2020,739:140000. doi: 10.1016/j.scitotenv.2020.140000 [30] FU Q Y,ZHUANG G S,WANG J,et al.Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta,China[J].Atmospheric Environment,2008,42(9):2023-2036. doi: 10.1016/j.atmosenv.2007.12.002 [31] CARTER W P L.Development of the SAPRC-07 chemical mechanism[J].Atmospheric Environment,2010,44(40):5324-5335. doi: 10.1016/j.atmosenv.2010.01.026 [32] 姜华,常宏咪.我国臭氧污染形势分析及成因初探[J].环境科学研究,2021,34(7):1576-1582.JIANG H,CHANG H M.Analysis of China's ozone pollution situation,preliminary investigation of causes and prevention and control recommendations[J].Research of Environmental Sciences,2021,34(7):1576-1582. [33] LI K,JACOB D J,LIAO H,et al.Ozone pollution in the North China Plain spreading into the late-winter haze season[J].PNAS,2021,118(10):e2015797118. doi: 10.1073/pnas.2015797118 [34] LI K,JACOB D J,LIAO H,et al.A two-pollutant strategy for improving ozone and particulate air quality in China[J].Nature Geoscience,2019,12(11):906-910. doi: 10.1038/s41561-019-0464-x [35] HUI L R,LIU X G,TAN Q W,et al.Characteristics,source apportionment and contribution of VOCs to ozone formation in Wuhan,Central China[J].Atmospheric Environment,2018,192:55-71. doi: 10.1016/j.atmosenv.2018.08.042 [36] LU X C,CHEN N,WANG Y H,et al.Radical budget and ozone chemistry during autumn in the atmosphere of an urban site in Central China[J].Journal of Geophysical Research:Atmospheres,2017,122(6):3672-3685. doi: 10.1002/2016JD025676 [37] 陈楠,陆兴成,姚腾,等.湖北臭氧分布特征及其管控措施[J].中国环境监测,2017,33(4):150-158.CHEN N,LU X C,YAO T,et al.Ozone distribution characteristics and its control measures in Hubei[J].Environmental Monitoring in China,2017,33(4):150-158. [38] 徐晨曦,陈军辉,韩丽,等.成都市2017年夏季大气VOCs污染特征、臭氧生成潜势及来源分析[J].环境科学研究,2019,32(4):619-626.XU C X,CHEN J H,HAN L,et al.Analyses of pollution characteristics,ozone formation potential and sources of VOCs atmosphere in Chengdu City in summer 2017[J].Research of Environmental Sciences,2019,32(4):619-626. [39] 曹小聪,吴晓晨,徐文帅,等.三亚市大气VOCs污染特征、臭氧生成潜势及来源解析[J].环境科学研究,2021,34(8):1812-1824.CAO X C,WU X C,XU W S,et al.Pollution characterization,ozone formation potential and source apportionment of ambient VOCs in Sanya,China[J].Research of Environmental Sciences,2021,34(8):1812-1824. [40] 刘锐泽,方渊,张韬,等.青岛市夏季VOCs污染特征及来源解析[J].环境工程技术学报,2021,11(6):1041-1048.LIU R Z,FANG Y,ZHANG T,et al.Characteristics and source analysis of VOCs pollution in summer in Qingdao[J].Journal of Environmental Engineering Technology,2021,11(6):1041-1048. -