Effect of Rainstorm Runoff on Total Phosphorus Load in Xin′anjiang
-
摘要: 为定量揭示暴雨径流对大型水库外源总磷(TP)负荷量的影响,构建新安江模型,结合TP浓度高频在线监测数据,计算千岛湖主要入库河流新安江街口断面逐日TP负荷量,并在此基础上划分暴雨径流携带TP负荷量对新安江TP年总入库负荷量的贡献. 结果表明:①近60年来,千岛湖流域年暴雨雨量占年降雨总量的28.1%,平均暴雨频次为6.2次/a,年暴雨雨量和频次均在0.001显著性水平上呈上升趋势;②基于逐日流量模拟和高频水质监测数据计算的入库TP负荷量为基于逐月常规监测数据计算结果的2.9倍;③典型年(2020年5月1日—2021年4月30日)通过街口断面进入千岛湖的径流量和TP负荷量分别为96×108 m3和1 506 t,其中由暴雨产生的径流量和TP负荷量占比分别为47.9%和69.4%. 研究显示,暴雨事件对水库外源磷负荷的贡献较大,暴雨径流携带高浓度磷的汇入对水库水质和生态系统健康构成较大威胁,采用高频监测网络与水文数值模型高效融合的方法,能有效提升水库TP外源负荷量的计算精度,可为加强认识水库磷污染过程、保障水库水质安全提供科技支撑.Abstract: The Xin′anjiang model was used to quantify the impact of rainstorm-induced runoff on the external load of total phosphorus (TP) in the Qiandaohu Reservoir Basin. The daily TP load of Xin′anjiang, which is the largest inflow of Qiandaohu Reservoir, was calculated using high-frequency monitoring data of TP concentration and the hydrological model outputs. The contribution of TP load carried by rainstorm-induced runoff to annual total TP load in the Xin′anjiang is quantified. The results showed that: (1) The Xin′anjiang model performed well in the runoff simulation of the Qiandaohu Reservoir Basin. In the past 60 years, the annual rainstorm rainfall in the Qiandaohu Reservoir Basin accounted for 28.1% of the total annual rainfall. The rainstorm frequency was 6.2 times/a. The trends in annual rainstorm rainfall and the rainstorm frequency dramatically increased at the significance level of 0.001. (2) The external TP load calculated by using the Xin′anjiang model outputs of daily runoff as well as high-frequency monitoring TP concentration was 2.9 times monthly manual monitoring values. (3) During May 1, 2020 to April 30, 2021, the inflow of the Xin′anjiang was 96×108 m3, of which the inflow generated by rainstorm accounted for 47.9% of the total inflow. The TP load entering Qiandaohu Reservoir through Jiekou Section was 1506 t, and TP load generated by rainstorm accounted for 69.4% of the total TP load. The results indicate that rainstorm events contributed greatly to the external load of TP of Qiandaohu Reservoir. Correspondingly, the external load of TP carried by rainstorm runoff posed a great threat to the lake water quality and ecosystem health. The combination of high-frequency monitoring and hydrological models can effectively improve the calculation accuracy of TP load. It can also provide scientific and technological support for improving the understanding of the phosphorus pollution process in lakes. The water quality safety of the lakes can be better guaranteed.
-
Key words:
- rainstorm runoff /
- Xin′anjiang model /
- external load /
- total phosphorus /
- Qiandaohu Reservoir
-
表 1 千岛湖不同量级降雨量和降雨频次多年变化趋势
Table 1. Multi-year variation trend of rainfall of different magnitude and rainfall frequency in Qiandaohu Reservoir
降雨特征指标 统计量 显著性水平(α) 趋势 倾斜度 小雨 雨量 1.65 0.1 ↑ 0.40 频次 0.51 — — 0.04 中雨 雨量 0.70 — — 0.63 频次 0.84 — — 0.04 大雨 雨量 0.71 — — 1.07 频次 0.70 — — 0.03 暴雨 雨量 3.49 0.001 ↑ 6.42 频次 3.36 0.001 ↑ 0.08 -
[1] 韩博平.中国水库生态学研究的回顾与展望[J].湖泊科学,2010,22(2):151-160.HAN B P.Reservoir ecology and limnology in China:a retrospective comment[J].Journal of Lake Sciences,2010,22(2):151-160. [2] 张振克,孟红明,殷勇.中国水库环境面临的主要问题及其对策[J].科技导报,2006,24(12):82-84. doi: 10.3321/j.issn:1000-7857.2006.12.020ZHANG Z K,MENG H M,YIN Y.Main problems and countermeasures to the environment of reservoirs in China[J].Science & Technology Review,2006,24(12):82-84. doi: 10.3321/j.issn:1000-7857.2006.12.020 [3] 中华人民共和国水利部.2019全国水利发展统计公报[R].北京:中国水利水电出版社,2020. [4] 刘录三,黄国鲜,王璠,等.长江流域水生态环境安全主要问题、形势与对策[J].环境科学研究,2020,33(5):1081-1090.LIU L S,HUANG G X,WANG F,et al.Main problems,situation and countermeasures of water eco-environment security in the Yangtze River Basin[J].Research of Environmental Sciences,2020,33(5):1081-1090. [5] QIN B Q,ZHANG Y L,DENG J M,et al.Polluted lake restoration to promote sustainability in the Yangtze River Basin,China[J].National Science Review,2021,9(1):nwab207. [6] LUND J W.Eutrophication[J].Nature,1967,214(5088):557-558. doi: 10.1038/214557a0 [7] LUND J W G.Phosphorus and the eutrophication problem[J].Nature,1974,249:797. doi: 10.1038/249797a0 [8] XU H,PAERL H W,QIN B Q,et al.Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China[J].Limnology and Oceanography,2010,55(1):420-432. [9] QIN B Q,ZHOU J,ELSER J J,et al.Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes[J].Environmental Science & Technology,2020,54(6):3191-3198. [10] 史鹏程,朱广伟,杨文斌,等.新安江水库悬浮颗粒物时空分布、沉降通量及其营养盐效应[J].环境科学,2020,41(5):2137-2148.SHI P C,ZHU G W,YANG W B,et al.Spatial-temporal distribution of suspended solids and its sedimentation flux and nutrients effects in Xin'anjiang Reservoir,China[J].Environmental Science,2020,41(5):2137-2148. [11] LIU M,ZHANG Y L,SHI K,et al.Effects of rainfall on thermal stratification and dissolved oxygen in a deep drinking water reservoir[J].Hydrological Processes,2020,34(15):3387-3399. doi: 10.1002/hyp.13826 [12] LI Y,ZHANG Y L,SHI K,et al.Spatiotemporal dynamics of chlorophyll-a in a large reservoir as derived from Landsat 8 OLI data:understanding its driving and restrictive factors[J].Environmental Science and Pollution Research International,2018,25(2):1359-1374. doi: 10.1007/s11356-017-0536-7 [13] 笪文怡,朱广伟,黎云祥,等.新安江水库河口区水质及藻类群落结构高频变化[J].环境科学,2020,41(2):713-727.DA W Y,ZHU G W,LI Y X,et al.High-frequency dynamics of water quality and phytoplankton community in inflowing river mouth of Xin'anjiang Reservoir,China[J].Environmental Science,2020,41(2):713-727. [14] 中华人民共和国水利部.中华人民共和国水文年鉴[R].北京:中华人民共和国水利部,2019. [15] 国家环境保护总局, 废水检测分析方法编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002. [16] 国家环境保护总局.水质 总磷的测定 钼酸铵分光光度法:GB 11893—1989[S].北京:中国标准出版社,1989. [17] 国家质量监督检验检疫总局,中国国家标准化管理委员会.降水量等级:GB/T 28592—2012[S].北京:中国标准出版社,2012. [18] ZHAO R J.The Xin'anjiang model applied in China[J].Journal of Hydrology,1992,135(1/2/3/4):371-381. [19] ZHAO R J,ZHANG Y L,FANG L R,et al.The Xin'anjiang model[C].Oxford:IASH,Hydrological Forecasting Proceedings Oxford Symposium,1980,351-35621. [20] CHENG C T,OU C P,CHAU K W.Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration[J].Journal of Hydrology,2002,268(1/2/3/4):72-86. [21] LI H X,ZHANG Y Q,CHIEW F H S,et al.Predicting runoff in ungauged catchments by using Xin'anjiang model with MODIS leaf area index[J].Journal of Hydrology,2009,370(1/2/3/4):155-162. [22] JAYAWARDENA A W,ZHOU M C.A modified spatial soil moisture storage capacity distribution curve for the Xin'anjiang model[J].Journal of Hydrology,2000,227(1/2/3/4):93-113. [23] LEWIS R M,TORCZON V.Pattern search algorithms for bound constrained minimization[J].SIAM Journal on Optimization,1999,9(4):1082-1099. doi: 10.1137/S1052623496300507 [24] ZHANG Y Q,CHIEW F H S,ZHANG L,et al.Use of remotely sensed actual evapotranspiration to improve rainfall:runoff modeling in southeast Australia[J].Journal of Hydrometeorology,2009,10(4):969-980. doi: 10.1175/2009JHM1061.1 [25] LI H Y,ZHANG Y Q,VAZE J,et al.Separating effects of vegetation change and climate variability using hydrological modelling and sensitivity-based approaches[J].Journal of Hydrology,2012,420/421:403-418. doi: 10.1016/j.jhydrol.2011.12.033 [26] 郝晨林,邓义祥,汪永辉,等.河流污染物通量估算方法筛选及误差分析[J].环境科学学报,2012,32(7):1670-1676.HAO C L,DENG Y X,WANG Y H,et al.Study on the selection and error analysis of riverine pollutant flux estimation methods[J].Acta Scientiae Circumstantiae,2012,32(7):1670-1676. [27] 张倚铭,兰佳,李慧赟,等.新安江对千岛湖外源输入总量的贡献分析(2006—2016年)[J].湖泊科学,2019,31(6):1534-1546. doi: 10.18307/2019.0621ZHANG Y M,LAN J,LI H Y,et al.Estimation of external nutrient loadings from the main tributary (Xin'anjiang) into Lake Qiandao,2006-2016[J].Journal of Lake Sciences,2019,31(6):1534-1546. doi: 10.18307/2019.0621 [28] MANN H B.Nonparametric tests against trend[J].Econometrica,1945,13(3):245. doi: 10.2307/1907187 [29] KENDALL M G.Rank correlation methods[J].Biometrika,1957,44(1/2):298. [30] 朱广伟,邹伟,国超旋,等.太湖水体磷浓度与赋存量长期变化(2005—2018年)及其对未来磷控制目标管理的启示[J].湖泊科学,2020,32(1):21-35. doi: 10.18307/2020.0103ZHU G W,ZOU W,GUO C X,et al.Long-term variations of phosphorus concentration and capacity in Lake Taihu,2005-2018:implications for future phosphorus reduction target management[J].Journal of Lake Sciences,2020,32(1):21-35. doi: 10.18307/2020.0103 [31] 李晓虹,雷秋良,周脚根,等.降雨强度对洱海流域凤羽河氮磷排放的影响[J].环境科学,2019,40(12):5375-5383.LI X H,LEI Q L,ZHOU J G,et al.Effect of rainfall intensity on the content of nitrogen and phosphorus components in plateau areas:a case study of the Fengyu River Watershed[J].Environmental Science,2019,40(12):5375-5383. [32] MEINSON P,IDRIZAJ A,NÕGES P,et al.Continuous and high-frequency measurements in limnology:history,applications,and future challenges[J].Environmental Reviews,2016,24(1):52-62. doi: 10.1139/er-2015-0030 [33] 何卓识,霍守亮,马春子,等.气候变化对小流域氮、磷通量的影响:以延安市河流流域为例[J].环境工程技术学报,2020,10(6):964-970. doi: 10.12153/j.issn.1674-991X.20200025HE Z S,HUO S L,MA C Z,et al.Impact of climate change on the variation of nitrogen and phosphorus fluxes at watershed scale:a case study in watersheds of Yan'an City[J].Journal of Environmental Engineering Technology,2020,10(6):964-970. doi: 10.12153/j.issn.1674-991X.20200025 [34] 王子为,林佳宁,张远,等.鄱阳湖入湖河流氮磷水质控制限值研究[J].环境科学研究,2020,33(5):1163-1169.WANG Z W,LIN J N,ZHANG Y,et al.Water quality limits of nitrogen and phosphorus in the inflow rivers of Poyang Lake[J].Research of Environmental Sciences,2020,33(5):1163-1169. [35] ZHANG L,LU W X,AN Y L,et al.Response of non-point source pollutant loads to climate change in the Shitoukoumen Reservoir Catchment[J].Environmental Monitoring and Assessment,2012,184(1):581-594. doi: 10.1007/s10661-011-2353-7 -