留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城镇分布对新安江水系及千岛湖营养盐浓度的影响

赵星辰 许海 俞洁 刘明亮 单亮 程新良 朱广伟 李慧赟 朱梦圆 康丽娟

赵星辰, 许海, 俞洁, 刘明亮, 单亮, 程新良, 朱广伟, 李慧赟, 朱梦圆, 康丽娟. 城镇分布对新安江水系及千岛湖营养盐浓度的影响[J]. 环境科学研究, 2022, 35(4): 864-876. doi: 10.13198/j.issn.1001-6929.2022.02.02
引用本文: 赵星辰, 许海, 俞洁, 刘明亮, 单亮, 程新良, 朱广伟, 李慧赟, 朱梦圆, 康丽娟. 城镇分布对新安江水系及千岛湖营养盐浓度的影响[J]. 环境科学研究, 2022, 35(4): 864-876. doi: 10.13198/j.issn.1001-6929.2022.02.02
ZHAO Xingchen, XU Hai, YU Jie, LIU Mingliang, SHAN Liang, CHENG Xinliang, ZHU Guangwei, LI Huiyun, ZHU Mengyuan, KANG Lijuan. Impacts of Urban Distribution on Nutrient Concentrations in Xin'an River and Qiandaohu Reservoir[J]. Research of Environmental Sciences, 2022, 35(4): 864-876. doi: 10.13198/j.issn.1001-6929.2022.02.02
Citation: ZHAO Xingchen, XU Hai, YU Jie, LIU Mingliang, SHAN Liang, CHENG Xinliang, ZHU Guangwei, LI Huiyun, ZHU Mengyuan, KANG Lijuan. Impacts of Urban Distribution on Nutrient Concentrations in Xin'an River and Qiandaohu Reservoir[J]. Research of Environmental Sciences, 2022, 35(4): 864-876. doi: 10.13198/j.issn.1001-6929.2022.02.02

城镇分布对新安江水系及千岛湖营养盐浓度的影响

doi: 10.13198/j.issn.1001-6929.2022.02.02
基金项目: 中国科学院野外站联盟项目(No.KFJ-SW-YW036);杭州市生态环境科学研究院委托项目(No.0625-20216501);杭州市农业与社会发展科研主动设计项目(No.20180417A06)
详细信息
    作者简介:

    赵星辰(1998-),女,内蒙古赤峰人,zhaoxingchen19@mails.ucas.ac.cn

    通讯作者:

    许海(1978-),男,安徽蚌埠人,主要从事湖库营养盐生态动力学研究,hxu@niglas.ac.cn

  • 中图分类号: X522

Impacts of Urban Distribution on Nutrient Concentrations in Xin'an River and Qiandaohu Reservoir

Funds: Field Station Alliance Project of Chinese Academy of Sciences (No.KFJ-SW-YW036);Hangzhou Institute of Ecological and Environmental Science, China (No.0625-20216501);Hangzhou Municipal Science and Technology Council, China (No.20180417A06)
  • 摘要: 快速城镇化会加剧地表水体氮磷营养盐的富集,引起水体富营养化问题. 研究城镇分布对河流与湖库氮磷污染特征的影响,分析其污染热点与来源具有重要意义. 于2020年7月—2021年7月调查了新安江水系及千岛湖水体氮磷污染的时空变化特征,分析了水质与土地利用类型的关系,揭示了千岛湖水体氮磷污染的来源. 结果表明:①时间上,新安江水系氮磷浓度季节性变化差异明显. TN浓度表现为冬季枯水期〔(1.96±1.24) mg/L〕>主汛期〔(1.63±0.71) mg/L〕>春汛期〔(1.42±0.49) mg/L〕,TP浓度表现为主汛期〔(0.101±0.049) mg/L〕>冬季枯水期〔(0.067±0.068) mg/L〕>春汛期〔(0.06±0.033) mg/L〕,汛期氮、磷浓度分别是非汛期的1.6和2.4倍. ②空间上,城镇污染对水体营养盐浓度影响显著. 水体流经人口集中、城镇化程度高的屯溪区后,TN、TP、NH4+-N浓度平均增幅分别为86.1%、77.7%和164.4%,干流水体受纳歙县城镇三大支流来水后,TN、TP浓度平均增幅分别为47.6%、70.3%. ③ Spearman相关分析结果表明,5 km缓冲区耕地和建筑用地面积占比与氮磷营养盐各形态浓度之间均存在显著正相关关系,其中建筑用地面积占比对NH4+-N浓度影响较大(R=0.323,P<0.001),耕地面积占比对NO3-N影响相对较大(R=0.265,P<0.05). 研究显示,城镇面源污染是新安江水系氮磷污染的主要来源,降雨径流是水体磷富集的主要驱动力,枯水期城镇污染对水体氮浓度的影响较大,在千岛湖营养盐控制中应尤为关注上游城镇污染管控.

     

  • 图  1  新安江流域采样点及土地利用类型分布

    Figure  1.  Location of sampling sites and land use map of the Xin'an River Basin

    图  2  新安江流域采样点5 km缓冲区土地利用类型面积占比和人口密度分布

    Figure  2.  The component ratio of land-use type for 5 km buffer area and population density in Xin'an River Basin

    图  3  新安江流域监测期间降水量及平均气温

    Figure  3.  Precipitation and average temperature in Xin'an River Basin during monitoring period

    图  4  新安江流域氮浓度的季节性变化特征

    Figure  4.  Seasonal variation of nitrogen concentrations in Xin'an River Basin

    图  5  新安江流域TN浓度的空间变化特征

    Figure  5.  Spatial variation of TN concentrations in Xin'an River Basin

    图  6  新安江流域NO3-N浓度的空间变化特征

    Figure  6.  Spatial variation of NO3-N concentrations in Xin'an River Basin

    图  7  新安江流域NH4+-N和PN浓度的空间变化特征

    Figure  7.  Spatial variation of NH4+-N and PN concentrations in Xin'an River Basin

    图  8  新安江流域磷浓度的季节性变化特征

    Figure  8.  Seasonal variation of phosphorus concentrations in Xin'an River Basin

    图  9  新安江流域TP浓度的空间变化特征

    Figure  9.  Spatial variation of TP concentrations in Xin'an River Basin

    图  10  新安江流域PP浓度的空间变化特征

    Figure  10.  Spatial variation of PP concentrations in Xin'an River Basin

    表  1  人口密度和土地利用类型面积占比与水质指标的Spearman相关分析结果

    Table  1.   Results of spearman correlation analysis among population density, land-use type ratio and water quality index

    项目TN
    浓度
    DTN
    浓度
    PN
    浓度
    NO3-N
    浓度
    NH4+-N
    浓度
    NO2-N
    浓度
    TP
    浓度
    DTP
    浓度
    PO43−-P
    浓度
    PP
    浓度
    人口密度0.1690.1820.1210.160.295*0.1780.2470.2080.2080.238
    耕地面积占比0.290*0.303*0.333**0.265*0.1310.312*0.351**0.398**0.424**0.277*
    林地面积占比−0.243−0.239−0.286*−0.14−0.187−0.282*−0.320*−0.351**−0.394**−0.256*
    草地面积占比0.0060.0540.092−0.0190.080.0880.1010.1830.2090.028
    水体面积占比0.427**0.406**0.293*0.496**0.255*0.419**0.332**0.259*0.2160.432**
    建筑用地面积占比0.280*0.254*0.323*0.1640.327**0.288*0.362**0.349**0.375**0.310*
    湿地面积占比0.1390.0660.2110.187−0.0540.0780.139−0.0060.030.223
    注:*、**分别表示显著性水平为0.05、0.01.
    下载: 导出CSV

    表  2  土地利用类型面积占比与水质指标的多元线性回归分析结果

    Table  2.   Results of multiple regression analysis for land-use type ratio and water quality index

    水质指标回归方程RP
    TNy=0.514+1.557 Agr%+1.260 Red%+12.975 Wat%−24.223 Gra%0.7530.000
    TPy =0.029+0.181 Red%+0.104 Agr%−1.987 Gra%0.6520.002
    PNy=0.190+0.801 Red%+0.419 Agr%−9.245 Gra%0.5550.018
    PPy=0.008+0.421 Wat%+0.067 Red%+0.049 Agr%−0.974 Gra%0.7130.001
    NO3-Ny =0.272+0.848 Agr%+8.478 Wat%−9.392 Gra%0.8370.000
    NH4+-Ny=0.052+0.294 Red%0.3790.036
    PO43−-Py =0.005+0.041 Red%+0.029 Agr%−0.402 Gra%0.6590.001
    注:Agr%表示耕地面积占比;For%表示林地面积占比;Gra%表示草地面积占比;Wat%表示水体面积占比;Red%表示建筑用地面积占比.
    下载: 导出CSV
  • [1] QIN B Q,DENG J M,SHI K,et al.Extreme climate anomalies enhancing cyanobacterial blooms in eutrophic Lake Taihu,China[J].Water Resources Research,2021.doi: 10.1029/2020wr029371.
    [2] TONG Y D,ZHANG W,WANG X J,et al.Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006[J].Nature Geoscience,2017,10(7):507-511. doi: 10.1038/ngeo2967
    [3] HO J C,MICHALAK A M,PAHLEVAN N.Widespread global increase in intense lake phytoplankton blooms since the 1980s[J].Nature,2019,574(7780):667-670. doi: 10.1038/s41586-019-1648-7
    [4] 高可伟,朱元荣,孙福红,等.我国典型湖泊及其入湖河流氮磷水质协同控制探讨[J].湖泊科学,2021,33(5):1400-1414. doi: 10.18307/2021.0509

    GAO K W,ZHU Y R,SUN F H,et al.A study on the collaborative control of water quality of nitrogen and phosphorus between typical lakes and their inflow rivers in China[J].Journal of Lake Sciences,2021,33(5):1400-1414. doi: 10.18307/2021.0509
    [5] JIA X B,LUO W Y,WU X Q,et al.Historical record of nutrients inputs into the Xin'an Reservoir and its potential environmental implication[J].Environmental Science and Pollution Research,2017,24(25):20330-20341. doi: 10.1007/s11356-017-9537-9
    [6] BAI X M,SHI P J,LIU Y S.Society:realizing China's urban dream[J].Nature,2014,509(7499):158-160. doi: 10.1038/509158a
    [7] 郝璐,孙阁.城市化对流域生态水文过程的影响研究综述[J].生态学报,2021,41(1):13-26.

    HAO L,SUN G.Impacts of urbanization on watershed ecohydrological processes:progresses and perspectives[J].Acta Ecologica Sinica,2021,41(1):13-26.
    [8] PAUL M J,MEYER J L.Streams in the urban landscape[J].Annual Review of Ecology and Systematics,2001,32(1):333-365. doi: 10.1146/annurev.ecolsys.32.081501.114040
    [9] 廖炜,李璐,杨伟,等.城镇化过程中的流域面源污染时空变化[J].长江流域资源与环境,2018,27(8):1776-1783.

    LIAO W,LI L,YANG W,et al.Spatio-temporal change of non-point source pollution loads in the process of urbanization[J].Resources and Environment in the Yangtze Basin,2018,27(8):1776-1783.
    [10] 高凤,邵美玲,曹昌丽,等.城镇化流域氮、磷污染特征及影响因素:以宁波北仑区小浃江为例[J].湖泊科学,2019,31(3):689-699. doi: 10.18307/2019.0308

    GAO F,SHAO M L,CAO C L,et al.Nitrogen and phosphorus pollution characteristics and influencing factors in urbanized watershed:a case study of Xiaojia River in Beilun District,Ningbo City[J].Journal of Lake Sciences,2019,31(3):689-699. doi: 10.18307/2019.0308
    [11] 王琦,魏来,韩煜,等.查干湖汇水区面源污染风险识别及管控[J].环境科学研究,2020,33(9):2074-2083.

    WANG Q,WEI L,HAN Y,et al.Risk identification and control of non-point sources pollution in Chagan Lake catchment area[J].Research of Environmental Sciences,2020,33(9):2074-2083.
    [12] 时迪迪,张守红,王红.北沙河上游潜在非点源污染风险时空变化分析[J].环境科学研究,2021.doi: 10.13198/j.issn.1001-6929.2020.01.01.

    SHI D D,ZHANG S H,WANG H.Spatio-temporal variation of potential non-point source pollution risk analysis in the upstream area of the Beisha River[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2020.01.01.
    [13] 龚小杰,王晓锋,刘婷婷,等.流域场镇发展下三峡水库典型入库河流水体碳、氮、磷时空特征及富营养化评价[J].湖泊科学,2020,32(1):111-123. doi: 10.18307/2020.0111

    GONG X J,WANG X F,LIU T T,et al.Spatial-temporal characteristics of carbon,nitrogen and phosphorus and eutrophication assessment in a typical river of Three Gorges Reservoir under the development of field towns[J].Journal of Lake Sciences,2020,32(1):111-123. doi: 10.18307/2020.0111
    [14] 王话翔,初晓冶,陈莹,等.特大城市地表水环境溶解氧时空分布特征探究[J].华东师范大学学报(自然科学版),2020(6):154-163.

    WANG H X,CHU X Y,CHEN Y,et al.A study on temporal and spatial distribution characteristics of dissolved oxygen in surface water of megacities[J].Journal of East China Normal University (Natural Science),2020(6):154-163.
    [15] 张倚铭,兰佳,李慧赟,等.新安江对千岛湖外源输入总量的贡献分析(2006—2016年)[J].湖泊科学,2019,31(6):1534-1546. doi: 10.18307/2019.0621

    ZHANG Y M,LAN J,LI H Y,et al.Estimation of external nutrient loadings from the main tributary(Xin'anjiang) into Lake Qiandao,2006-2016[J].Journal of Lake Sciences,2019,31(6):1534-1546. doi: 10.18307/2019.0621
    [16] LI Y,SHI K,ZHANG Y L,et al.Analysis of water clarity decrease in Xin'anjiang Reservoir,China,from 30-year Landsat TM,ETM+,and OLI observations[J].Journal of Hydrology,2020,590:125476. doi: 10.1016/j.jhydrol.2020.125476
    [17] 笪文怡.千岛湖水环境时空变化特征及其影响因素[D].南充:西华师范大学,2019:20-25.
    [18] 张潇,张晓瑶,陆林,等.旅游干扰下流域多尺度景观格局演化特征及驱动因素:以新安江流域为例[J].生态学报,2021,41(9):3415-3428.

    ZHANG X,ZHANG X Y,LU L,et al.Evolution characteristics and driving factors of basin multi-scale landscape pattern under the tourism disturbances:a case study of the Xin'an River Basin[J].Acta Ecologica Sinica,2021,41(9):3415-3428.
    [19] 王雨蓉,曾庆敏,陈利根,等.新安江流域人类活动净氮输入的时空变化及其对生态补偿的响应[J].生态与农村环境学报,2021,37(4):465-473.

    WANG Y R,ZENG Q M,CHEN L G,et al.Spatio-temporal variation in net anthropogenic nitrogen input to the Xin'an River Basin and its responses to payments for ecosystem services[J].Journal of Ecology and Rural Environment,2021,37(4):465-473.
    [20] 王艾.流域人类活动净氮输入的时空变化及其对河道水质的影响[D].北京:清华大学,2016:27-28.
    [21] HAN X X,XIAO J,WANG L Q,et al.Identification of areas vulnerable to soil erosion and risk assessment of phosphorus transport in a typical watershed in the Loess Plateau[J].Science of the Total Environment,2021,758:143661. doi: 10.1016/j.scitotenv.2020.143661
    [22] ZHANG X Y,CHEN L,YU Y,et al.Water quality variability affected by landscape patterns and the associated temporal observation scales in the rapidly urbanizing watershed[J].Journal of Environmental Management,2021,298:113523. doi: 10.1016/j.jenvman.2021.113523
    [23] BREZONIK P L,STADELMANN T H.Analysis and predictive models of stormwater runoff volumes,loads,and pollutant concentrations from watersheds in the Twin Cities metropolitan area,Minnesota,USA[J].Water Research,2002,36(7):1743-1757. doi: 10.1016/S0043-1354(01)00375-X
    [24] 黄益平,王鹏,徐启渝,等.袁河流域土地利用方式对河流水体碳、氮、磷的影响[J].环境科学研究,2021,34(9):2132-2142.

    HUANG Y P,WANG P,XU Q Y,et al.Influence of land use on carbon,nitrogen and phosphorus in water of Yuan River Basin[J].Research of Environmental Sciences,2021,34(9):2132-2142.
    [25] YANG L,HE J T,LIU Y M,et al.Characteristics of change in water quality along reclaimed water intake area of the Chaobai River in Beijing,China[J].Journal of Environmental Sciences,2016,50:93-102. doi: 10.1016/j.jes.2016.05.023
    [26] 李丛杨,史宸菲,方家琪,等.太湖入湖河流氮磷时空分布特征[J].生态与农村环境学报,2021,37(2):182-187.

    LI C Y,SHI C F,FANG J Q,et al.Spatio-temporal distribution characteristics of nitrogen and phosphorus in the typical inflow river of Taihu Lake[J].Journal of Ecology and Rural Environment,2021,37(2):182-187.
    [27] 曹芳芳,李雪,王东,等.新安江流域土地利用结构对水质的影响[J].环境科学,2013,34(7):2582-2587.

    CAO F F,LI X,WANG D,et al.Effects of land use structure on water quality in Xin'anjiang River[J].Environmental Science,2013,34(7):2582-2587.
    [28] 叶匡旻.松花江流域氮、磷的时空变化特征及源解析研究[D].北京:中国环境科学研究院,2020:52-54.
    [29] 严坤,王玉宽,刘勤,等.三峡库区规模化顺坡沟垄果园氮、磷输出过程及流失负荷[J].环境科学,2020,41(8):3646-3656.

    YAN K,WANG Y K,LIU Q,et al.Dynamic process of nitrogen and phosphorus export and loss load in an intensive orchard with ridge and furrow plantation in the Three Gorges Reservoir Area[J].Environmental Science,2020,41(8):3646-3656.
    [30] ALEWELL C,RINGEVAL B,BALLABIO C,et al.Global phosphorus shortage will be aggravated by soil erosion[J].Nature Communications,2020,11:4546. doi: 10.1038/s41467-020-18326-7
    [31] YAN L,XUE L H,PETROPOULOS E,et al.Nutrient loss by runoff from rice-wheat rotation during the wheat season is dictated by rainfall duration[J].Environmental Pollution,2021,285:117382. doi: 10.1016/j.envpol.2021.117382
    [32] 柳强,张鹏,史箴,等.三峡库区上游沱江流域总磷浓度时空变化特性及影响因素分析[J].环境工程技术学报,2021.doi:http://kns.cnki.net/kcms/detail/11.5972.X.20210929.1842.006.html.

    LIU Q,ZHANG P,SHI Z,et al.Characterization of temporal and spatial variations of the total phosphorus concentrations in Tuojiang River Basin,an upstream tributary of the Three Gorges Reservoir[J].Journal of Environmental Engineering Technology,2021.doi:http://kns.cnki.net/kcms/detail/11.5972.X.20210929.1842.006.html.
    [33] 周晓雯,安艳玲,吴起鑫,等.山区河流氮磷空间分布对人类活动的响应:以赤水河一级支流桐梓河为例[J].水土保持研究,2021,28(4):179-185.

    ZHOU X W,AN Y L,WU Q X,et al.Response of spatial distribution of nitrogen and phosphorus to human activities in mountainous rivers:a case study of Tongzi River,a first-grade tributary of Chishui River[J].Research of Soil and Water Conservation,2021,28(4):179-185.
    [34] 笪文怡,朱广伟,吴志旭,等.2002—2017年千岛湖浮游植物群落结构变化及其影响因素[J].湖泊科学,2019,31(5):1320-1333. doi: 10.18307/2019.0522

    DA W Y,ZHU G W,WU Z X,et al.Long-term variation of phytoplankton community and driving factors in Qiandaohu Reservoir,southeast China[J].Journal of Lake Sciences,2019,31(5):1320-1333. doi: 10.18307/2019.0522
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  61
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13
  • 修回日期:  2022-01-17

目录

    /

    返回文章
    返回