Atmospheric Deposition Characteristics and Flux of Nitrogen and Phosphorus in Qiandaohu Reservoir, China
-
摘要: 大气氮磷沉降是湖库营养盐输入的重要途径,深刻地影响着湖库水体营养盐平衡及生态系统演化进程. 为了解山区大型水库大气氮磷沉降对水体的贡献,于2020年11月—2021年10月在千岛湖街口和淳安县城2个监测站点开展了大气氮磷干湿沉降周年观测,分析千岛湖大气氮磷沉降特征及入库负荷. 结果表明:千岛湖街口监测点大气总氮(TN)、总磷(TP)沉降量分别为1 774.83和34.11 kg/(km2·a),淳安县城监测点大气TN、TP沉降量分别为1 799.73和34.44 kg/(km2·a). 大气TN沉降以湿沉降为主,街口和淳安县城监测点TN湿沉降分别占总沉降的92%和88%;两个监测点大气TP沉降的组成差异较大,其中街口监测点湿沉降占53%,淳安县城监测点干沉降占60%. 气象条件(降雨)叠加人类活动(施肥等农业活动和旅游等城市活动)能够显著增加大气营养盐沉降量,全年85%的TN沉降和71%的TP沉降集中在降雨期. 观测期间,千岛湖大气TN、TP干湿沉降入湖负荷分别估算为1 041.98和20.04 t/a,分别占千岛湖河道TN、TP输入的9.4%和8.3%. 研究显示,千岛湖大气氮磷沉降量显著低于长三角地区其他水体,但农耕、旅游等人类活动仍造成千岛湖大气营养盐沉降量明显升高.Abstract: Atmospheric nitrogen and phosphorus deposition is an important source of the nutrient input to lakes and reservoirs, which profoundly affects the nutrient balance and the evolution of aquatic ecosystems. Increased human activities have increased nitrogen and phosphorus loads in the rivers flowing into lakes and reservoirs, and also increased the flux of nitrogen and phosphorus deposition from atmosphere to lakes and reservoirs. In order to understand the contribution of atmospheric nitrogen and phosphorus deposition to the nutrient input of large-scale reservoirs in mountainous areas, annual observations of atmospheric dry and wet deposition were conducted in Jiekou and Chun'an in the upper and middle reaches of Qiandaohu Reservoir from November 2020 to October 2021. The observations revealed the characteristics of the atmospheric nitrogen and phosphorus deposition and its loading in the reservoir. The results showed that the atmospheric deposition of total nitrogen (TN) and total phosphorus (TP) in Jiekou were 1774.83 and 34.11 kg/(km2·a), respectively. In contrast, the atmospheric TN and TP deposition in Chun'an were 1799.73 and 34.44 kg/(km2·a), respectively. Wet deposition accounted for 92% and 88% of atmospheric TN deposition, while dry deposition accounted for 47% and 60% of atmospheric TP deposition in Jiekou and Chun'an, respectively. Meteorological conditions (rainfall) combined with human activities (agricultural activities such as fertilization and urban activities such as tourism) could significantly increase atmospheric nutrient deposition. In Qiandaohu Reservoir, 85% of atmospheric TN deposition and 71% of atmospheric TP deposition were concentrated in the rainfall period. Without regarding to the influence of long-term transformation and weather variation, agricultural activities (e.g., fertilization) during rainfall period contributed 22% of the annual atmospheric TN deposition and 32% of atmospheric TP deposition in Jiekou, where plowland is the main type of land use. Human activities (e.g., tourism) contributed 33% of atmospheric TN deposition in Chun'an, and it received more than 10 million tourists every year. During the observation period, the load fluxes of atmospheric TN and TP deposition into the reservoir with both dry and wet deposition were estimated to be 1 041.98 and 20.04 t/a, accounting for 9.4% and 8.3% of the TN and TP loading from inflow rivers, respectively. It shows that the atmospheric nitrogen and phosphorus deposition in Qiandaohu Reservoir is lower than other water bodies in the Yangtze River Delta region, which can be used as a background value for environmental protection of surrounding waters. However, the critical roles of farming and tourism in increasing the atmospheric nitrogen deposition in Qiandaohu Reservoir should be paid attention.
-
Key words:
- dry deposition /
- wet deposition /
- nutrient /
- reservoir /
- eutrophication /
- human activities
-
表 1 千岛湖大气氮磷沉降量与其他湖库的对比
Table 1. Comparison of atmospheric nutrient deposition and load among different lakes and reservoirs
水体名称 研究时段 湖库面积/km2 大气TN沉降量/
[kg/(km2·a)]大气TN输入占入湖
负荷的比例/%大气TP沉降量/
[kg/(km2·a)]大气TP输入占入湖
负荷的比例/%千岛湖(该研究) 2020—2021年 573.33 1 774.83(街口监测点)、
1 799.73(淳安县城监测点)9.4 34.64(街口监测点)、
34.11(淳安县城监测点)8.3 太湖[9] 2002—2003年 2 338 4 226 48.80 306 46.20 太湖[35] 2007年 2 338 2 976 — 84 — 太湖[10] 2009—2010年 2 338 4 648.6(湿沉降) 18.60 105.7(湿沉降) 11.90 太湖[36] 2013—2014年 2 338 1 671.37(湿沉降) — 26.42(湿沉降) — 太湖[37] 2017—2018年 2 338 3 268(湿沉降) — 56(湿沉降) — 太湖[38] 2018年 2 338 3 177.6 — 139.2 — 巢湖[11] 2014—2016年 2 046 3 779.4 39.61 55.11 7.69 洱海[18] 2020年 251 455.88~921.96(湿沉降) 6.18 — — 抚仙湖[17] 2010年 217 — — 79.2 3.21 星云湖[17] 2010年 34 — — 443.5 7.11 阳宗海[18] 2012—2014年 31 248 — 24 — 乌梁素海[19] 2018—2019年 293 669.08 0.88~3.14 85.33 0.25~4.11 西湖北里湖[29] 2010年 0.35 5 129.4(2—7月) — 71.52(2—7月) — 丹江口水库[15] 2018—2019年 1 023 2 421(湿沉降) 10.82 — — 大河口水库[39] 2010年 17 3 205.9 — — — 汤浦水库[40] 2014—2015年 14 1 815(湿沉降) 1.77 62(湿沉降) 3.07 三峡水库[14] 2016—2017年 1 084 2 159 2.7 — — 三峡水库小流域[41] 2009年 0.45 — — 535 — 密云水库小流域[42] 2019—2020年 3.49 38.393 — 1.953 — 长江流域[43] 2000—2014年 — 3 320(DIN) — — — -
[1] LIU X,ZHANG Y,HAN W,et al.Enhanced nitrogen deposition over China[J].Nature,2013,494(7438):459-462. doi: 10.1038/nature11917 [2] CAMARERO L,CATALAN J.Atmospheric phosphorus deposition may cause lakes to revert from phosphorus limitation back to nitrogen limitation[J].Nature Communications,2012,3:1118. doi: 10.1038/ncomms2125 [3] MIYAZAKO T,KAMIYA H,GODO T,et al.Long-term trends in nitrogen and phosphorus concentrations in the Hii River as influenced by atmospheric deposition from East Asia[J].Limnology and Oceanography,2015,60(2):629-640. doi: 10.1002/lno.10051 [4] PEÑUELAS J,SARDANS J,RIVAS-UBACH A,et al.The human-induced imbalance between C,N and P in Earth's life system[J].Global Change Biology,2012,18(1):3-6. doi: 10.1111/j.1365-2486.2011.02568.x [5] LIU X J,DUAN L,MO J M,et al.Nitrogen deposition and its ecological impact in China:an overview[J].Environmental Pollution,2011,159(10):2251-2264. doi: 10.1016/j.envpol.2010.08.002 [6] ZHU J X,WANG Q F,HE N P,et al.Imbalanced atmospheric nitrogen and phosphorus depositions in China:implications for nutrient limitation[J].Journal of Geophysical Research:Biogeosciences,2016,121(6):1605-1616. doi: 10.1002/2016JG003393 [7] ZAMORA L M,PROSPERO J M,HANSELL D A,et al.Atmospheric P deposition to the subtropical North Atlantic:sources,properties,and relationship to N deposition[J].Journal of Geophysical Research:Atmospheres,2013,118(3):1546-1562. doi: 10.1002/jgrd.50187 [8] BROWN L J,TALEBAN V,GHARABAGHI B,et al.Seasonal and spatial distribution patterns of atmospheric phosphorus deposition to Lake Simcoe,ON[J].Journal of Great Lakes Research,2011,37:15-25. [9] 杨龙元,秦伯强,胡维平,等.太湖大气氮、磷营养元素干湿沉降率研究[J].海洋与湖沼,2007,38(2):104-110. doi: 10.3321/j.issn:0029-814X.2007.02.002YANG L Y,QIN B Q,HU W P,et al.The atmospheric deposition of nitrogen and phosphorus nutrients in Taihu Lake[J].Oceanologia et Limnologia Sinica,2007,38(2):104-110. doi: 10.3321/j.issn:0029-814X.2007.02.002 [10] 余辉,张璐璐,燕姝雯,等.太湖氮磷营养盐大气湿沉降特征及入湖贡献率[J].环境科学研究,2011,24(11):1210-1219.YU H,ZHANG L L,YAN S W,et al.Atmospheric wet deposition characteristics of nitrogen and phosphorus nutrients in Taihu Lake and contributions to the lake[J].Research of Environmental Sciences,2011,24(11):1210-1219. [11] 魏东霞,李璇,赵禹恒,等.合肥科学岛大气氮磷沉降及对巢湖影响的分析[J].合肥工业大学学报(自然科学版),2018,41(9):1259-1266.WEI D X,LI X,ZHAO Y H,et al.Analyses of atmospheric nitrogen and phosphorus deposition at Hefei Science Island and its impact on Chaohu Lake[J].Journal of Hefei University of Technology (Natural Science),2018,41(9):1259-1266. [12] 高伟,高波,严长安,等.鄱阳湖流域人为氮磷输入演变及湖泊水环境响应[J].环境科学学报,2016,36(9):3137-3145.GAO W,GAO B,YAN C A,et al.Evolution of anthropogenic nitrogen and phosphorus inputs to Lake Poyang Basin and its' effect on water quality of lake[J].Acta Scientiae Circumstantiae,2016,36(9):3137-3145. [13] 刘艳萍.洞庭湖流域人类活动净氮/磷输入(NANI/NAPI)时空分布评估[D].北京:北京林业大学,2019. [14] 张六一.三峡库区大气氮沉降特征、通量及其对水体氮素的贡献[D].重庆:中国科学院大学(中国科学院重庆绿色智能技术研究院),2019. [15] 郭晓明,金超,孟红旗,等.丹江口水库淅川库区大气氮湿沉降特征[J].生态学报,2021,41(10):3901-3909.GUO X M,JIN C,MENG H Q,et al.Atmospheric wet deposition characteristics of nitrogen in the Xichuan area of Danjiangkou Reservoir[J].Acta Ecologica Sinica,2021,41(10):3901-3909. [16] 黄明雨,吕兴菊,卫志宏,等.洱海大气氮素湿沉降特征[J].地球与环境,2021.doi: 10.14050/j.cnki.1672-9250.2021.49.091.HUANG M Y,LV X J,WEI Z H,et al.Characteristics of atmospheric nitrogen wet deposition in Erhai Lake[J].Earth and Environment,2021.doi: 10.14050/j.cnki.1672-9250.2021.49.091. [17] 金星,陆娅,靳澍清,等.抚仙湖、星云湖周边磷化工对湖面大气干、湿沉降总磷入湖量影响的调查研究[J].环境科学导刊,2010,29(6):39-42. doi: 10.3969/j.issn.1673-9655.2010.06.011JIN X,LU Y,JIN S Q,et al.Research on amount of total phosphorus entering into Fuxian Lake and xingyun lake through dry and wet deposition caused by surrounding phosphorus chemical factories[J].Environmental Science Survey,2010,29(6):39-42. doi: 10.3969/j.issn.1673-9655.2010.06.011 [18] 余功友,杨常亮,刘楷,等.云南阳宗海大气氮、磷沉降特征[J].湖泊科学,2017,29(5):1134-1142. doi: 10.18307/2017.0511YU G Y,YANG C L,LIU K,et al.Atmospheric deposition of nitrogen and phosphorous in Lake Yangzonghai,Yunnan Province[J].Journal of Lake Sciences,2017,29(5):1134-1142. doi: 10.18307/2017.0511 [19] 杜丹丹.乌梁素海大气沉降规律及对水体营养状态的影响性分析[D].呼和浩特:内蒙古农业大学,2020. [20] MORALES-BAQUERO R,PULIDO-VILLENA E,RECHE I.Atmospheric inputs of phosphorus and nitrogen to the southwest Mediterranean region:biogeochemical responses of high mountain lakes[J].Limnology and Oceanography,2006,51(2):830-837. doi: 10.4319/lo.2006.51.2.0830 [21] BERGSTRÖM A K,BLOMQVIST P,JANSSON M.Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish Lakes[J].Limnology and Oceanography,2005,50(3):987-994. doi: 10.4319/lo.2005.50.3.0987 [22] SHI K,ZHANG Y L,SONG K S,et al.A semi-analytical approach for remote sensing of trophic state in inland waters:bio-optical mechanism and application[J].Remote Sensing of Environment,2019,232:111349. doi: 10.1016/j.rse.2019.111349 [23] 笪文怡,朱广伟,吴志旭,等.2002—2017年千岛湖浮游植物群落结构变化及其影响因素[J].湖泊科学,2019,31(5):1320-1333. doi: 10.18307/2019.0522DA W Y,ZHU G W,WU Z X,et al.Long-term variation of phytoplankton community and driving factors in Qiandaohu Reservoir,southeast China[J].Journal of Lake Sciences,2019,31(5):1320-1333. doi: 10.18307/2019.0522 [24] 笪文怡,朱广伟,黎云祥,等.新安江水库河口区水质及藻类群落结构高频变化[J].环境科学,2020,41(2):713-727.DA W Y,ZHU G W,LI Y X,et al.High-frequency dynamics of water quality and phytoplankton community in inflowing river mouth of Xin'anjiang Reservoir,China[J].Environmental Science,2020,41(2):713-727. [25] 张倚铭,兰佳,李慧赟,等.新安江对千岛湖外源输入总量的贡献分析(2006—2016年)[J].湖泊科学,2019,31(6):1534-1546. doi: 10.18307/2019.0621ZHANG Y M,LAN J,LI H Y,et al.Estimation of external nutrient loadings from the main tributary(Xin'anjiang) into Lake Qiandao,2006-2016[J].Journal of Lake Sciences,2019,31(6):1534-1546. doi: 10.18307/2019.0621 [26] 李芸,王斌,袁静,等.基于VFSMOD模型的植被缓冲带对千岛湖地区农田面源污染磷负荷削减效果模拟[J].环境工程技术学报,2022,12(1):29-37.LI Y,WANG B,YUAN J,et al.Simulation of the reduction effect of vegetation buffer zone on phosphorus load of farmland NPS pollution in Qiandao Lake area based on VFSMOD model[J].Journal of Environmental Engineering Technology,2022,12(1):29-37. [27] 缪今典,张晓明,魏天兴,等.千岛湖流域杭州段人类活动净氮、净磷输入时空分布[J].中国环境科学,2021,41(6):2831-2842. doi: 10.3969/j.issn.1000-6923.2021.06.037MIAO J D,ZHANG X M,WEI T X,et al.Temporal and spatial distribution characteristics of net nitrogen and phosphorus input from human activity:a case study of Hangzhou section of Qiandao Lake Basin[J].China Environmental Science,2021,41(6):2831-2842. doi: 10.3969/j.issn.1000-6923.2021.06.037 [28] ZHU J X,HE N P,WANG Q F,et al.The composition,spatial patterns,and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems[J].Science of the Total Environment,2015,511:777-785. doi: 10.1016/j.scitotenv.2014.12.038 [29] JASSBY A D,REUTER J E,AXLER R P,et al.Atmospheric deposition of nitrogen and phosphorus in the annual nutrient load of Lake Tahoe (California-Nevada)[J].Water Resources Research,1994,30(7):2207-2216. doi: 10.1029/94WR00754 [30] 唐明金,董书伟,王甫,等.大气颗粒物中磷的含量及可溶性[J].矿物岩石地球化学通报,2022,41(1):70-80.TANG M J,DONG S W,WANG F,et al.Abundance and solubility of phosphorus in atmospheric particles[J].Bulletin of Mineralogy,Petrology and Geochemistry,2022,41(1):70-80. [31] DIAZ-DE-QUIJANO D,VLADIMIROVICH AGEEV A,IVANOVA E A,et al.Winter atmospheric nutrient and pollutant deposition on Western Sayan Mountain Lakes (Siberia)[J].Biogeosciences,2021,18(5):1601-1618. doi: 10.5194/bg-18-1601-2021 [32] 王江飞,周柯锦,汪小泉,等.杭嘉湖地区大气氮、磷沉降特征研究[J].中国环境科学,2015,35(9):2754-2763. doi: 10.3969/j.issn.1000-6923.2015.09.030WANG J F,ZHOU K J,WANG X Q,et al.Atmospheric nitrogen and phosphorous deposition in Hangjiahu area[J].China Environmental Science,2015,35(9):2754-2763. doi: 10.3969/j.issn.1000-6923.2015.09.030 [33] 李太谦,焦锋,郑燚.杭州北里湖春、夏季大气氮、磷沉降研究[J].环境科技,2010,23(6):66-70. doi: 10.3969/j.issn.1674-4829.2010.06.020LI T Q,JIAO F,ZHENG Y.Atmospheric nitrogen and phosphorus deposition in spring and summer in Beili Lake in Hangzhou[J].Environmental Science and Technology,2010,23(6):66-70. doi: 10.3969/j.issn.1674-4829.2010.06.020 [34] 郑丹楠,王雪松,谢绍东,等.2010年中国大气氮沉降特征分析[J].中国环境科学,2014,34(5):1089-1097.ZHENG D N,WANG X S,XIE S D,et al.Simulation of atmospheric nitrogen deposition in China in 2010[J].China Environmental Science,2014,34(5):1089-1097. [35] ZHAI S J,YANG L Y,HU W P.Observations of atmospheric nitrogen and phosphorus deposition during the period of algal bloom formation in northern Lake Taihu,China[J].Environmental Management,2009,44(3):542-551. doi: 10.1007/s00267-009-9334-4 [36] 王燕,刘宁锴,王骏飞.太湖流域氮磷等大气沉降研究[J].环境科学与管理,2015,40(5):103-105.WANG Y,LIU N K,WANG J F.Study on atmospheric deposition of nitrogen and phosphorus in Taihu Lake[J].Environmental Science and Management,2015,40(5):103-105. [37] 牛勇,牛远,王琳杰,等.2009—2018年太湖大气湿沉降氮磷特征对比研究[J].环境科学研究,2020,33(1):122-129.NIU Y,NIU Y,WANG L J,et al.Comparative study on nitrogen and phosphorus characteristics of atmospheric wet deposition in Lake Taihu from 2009 to 2018[J].Research of Environmental Sciences,2020,33(1):122-129. [38] 许志波,杨仪,卞莉,等.太湖大气氮、磷干湿沉降特征[J].环境监控与预警,2019,11(4):37-42. doi: 10.3969/j.issn.1674-6732.2019.04.009XU Z B,YANG Y,BIAN L,et al.Dry and wet atmospheric deposition of nitrogen and phosphorus Taihu in lake[J].Environmental Monitoring and Forewarning,2019,11(4):37-42. doi: 10.3969/j.issn.1674-6732.2019.04.009 [39] 卢俊平,张晓晶,刘廷玺,等.京蒙沙源区水库大气氮沉降变化特征及源解析[J].中国环境科学,2021,41(3):1034-1044. doi: 10.3969/j.issn.1000-6923.2021.03.005LU J P,ZHANG X J,LIU T X,et al.Variation characteristics and source analysis of atmospheric nitrogen deposition flux on a reservoir in sand source areas of Beijing-Inner Mongolia[J].China Environmental Science,2021,41(3):1034-1044. doi: 10.3969/j.issn.1000-6923.2021.03.005 [40] 余博识,梁亮,郑丹萍,等.亚热带地区典型水库流域氮、磷湿沉降及入湖贡献率估算[J].湖泊科学,2020,32(5):1463-1472. doi: 10.18307/2020.0515YU B S,LIANG L,ZHENG D P,et al.Wet atmospheric deposition of nitrogen and phosphorus and estimation of their contributions to the lake in typical subtropical reservoir basins[J].Journal of Lake Sciences,2020,32(5):1463-1472. doi: 10.18307/2020.0515 [41] 刘京,郭劲松,方芳,等.三峡库区紫色土坡耕地小流域磷收支估算及污染潜势[J].环境科学研究,2011,24(12):1385-1392.LIU J,GUO J S,FANG F,et al.Phosphorous input-output budgets for a small watershed in purple soil sloped farmland in the Three Gorges area and its pollution potential[J].Research of Environmental Sciences,2011,24(12):1385-1392. [42] 陈海涛,王晓燕,黄静宇,等.密云水库周边小流域大气氮磷沉降特征研究[J].环境科学研究,2021.doi: 10.13198/j.issn.1001-6929.2021.11.29.CHEN H T,WANG X Y,HUANG J Y,et al.Dry and wet atmospheric deposition of nitrogen and phosphorus in small catchment around Miyun Reservoir[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2021.11.29. [43] XU W,ZHAO Y H,LIU X J,et al.Atmospheric nitrogen deposition in the Yangtze River Basin:spatial pattern and source attribution[J].Environmental Pollution,2018,232:546-555. doi: 10.1016/j.envpol.2017.09.086 [44] ZHANG Q,LI Y N,WANG M R,et al.Atmospheric nitrogen deposition:a review of quantification methods and its spatial pattern derived from the global monitoring networks[J].Ecotoxicology and Environmental Safety,2021,216:112180. doi: 10.1016/j.ecoenv.2021.112180 -