【千岛湖水质风险挑战与控制专题】编者按:由于水库水量稳定、水质良好、管理简单,水库成为我国乃至世界上许多大城市的饮用水源地,许多水库还承担着旅游休闲和渔业生产等功能. 因此,良好水质的长期维持成为许多重要水库的管理挑战. 富营养化是水库经常面临的水质风险,氮磷过量输入经常导致水库季节性藻类异常增殖、局部水体缺氧、藻毒素超标、异味物质超标等问题. 由于水库独特的水文过程,水库的富营养化进程快,生态系统脆弱,水质灾害偶发性强,需要更多的观测数据和研究案例对该问题持续探索. 本专题在中国科学院野外站联盟项目“典型大城市水源地水库水环境质量评估”(No.KFJ-SW-YW036)、国家自然科学基金重点项目“水库藻类水华形成的气象水文动力学机制及调控策略研究”(No.41830757)及淳安县生态环境分局招标课题“千岛湖网格化加密监测及数据分析”等资助下,以我国东南丘陵山区成库时间早、城市供水量大、保护力度强的千岛湖为例,以大型深水水库的水质风险挑战与控制为主题,关注当前研究热点,研究内容包括山区流域营养盐来源过程及季节性变化特征、水库富营养化重要指标的时空分异规律、暴雨冲刷的营养盐效应及藻类响应、水库藻类异常增殖风险的模型预测及深水水库原位氮磷净化的工程技术等,从不同角度探讨了大型深水水库水源地的水质风险特征、周年演替过程、预测预警方法及应对控制技术,这些成果的发表可为相关研究及水源地水库水质安全管理提供参考.
Spatio-Temporal Variation of Nutrient Concentrations and Environmental Challenges of Qiandaohu Reservoir, China
-
摘要: 为揭示亚热带深水水库水环境变化特征及其驱动力,于2020年5月—2021年4月在千岛湖布设100个监测点,开展了为期1年的逐月水环境调查,分析营养盐时空分布特征及水质风险. 结果表明:千岛湖水体总氮(TN)、总磷(TP)、叶绿素a(Chla)、浮游植物生物量(PB)等关键水环境指标时空差异大,全库年均TN浓度为0.92 mg/L,其中月均最大值出现在3月,为1.04 mg/L,最小值出现在8月,为0.78 mg/L,安徽段库区年均值为1.60 mg/L,而东南库湾年均值为0.83 mg/L;全库年均TP浓度为0.021 mg/L,其中月均最大值出现在7月,为0.033 mg/L,最小值出现在11月,为0.013 mg/L,安徽段库区年均值为0.052 mg/L,而东南库湾年均值为0.015 mg/L;全库年均Chla浓度为5.1 µg/L,其中月均最大值出现在7月,为10.0 µg/L,最小值出现在11月,为1.6 µg/L,安徽段库区年均值为11.4 µg/L,而东南库湾年均值为3.0 µg/L;全库全年Chla浓度最大层PB平均值为2.396 mg/L,月均最大值为8.246 mg/L(8月),最小值为0.557 mg/L(11月);在空间上,PB最高值出现在城中湖,年均值为3.688 mg/L,最低值出现在西南库湾,年均值为1.740 mg/L. 尽管千岛湖部分水质断面能阶段性保持贫营养水平,但较大比例水域已处于中营养,且在时间上存在不稳定性,暴雨入库期全库TP平均值可达枯水期的3倍,不同月份PB差异可达15倍,表明千岛湖水质的稳定达标存在较大挑战. 在大型深水水库中,气象水文过程对局部库湾水环境指标的冲击较大,藻类对外源负荷入库产生明显放大作用,在水库水环境保护中应将外源负荷控制作为水质风险防控的关键,并重视水库生态系统结构的调控,防控蓝藻和硅藻等水华优势属藻类的过度增殖.Abstract: In order to understand the changing characteristics and drivers of environmental indicators in subtropical deep reservoirs, a one-year monthly 100-point survey of nutrient concentrations and water quality risks in Qiandaohu Reservoir was undertaken from May, 2020 to April, 2021. It was found that the water quality parameters such as total nitrogen (TN), total phosphorus (TP), chlorophyll a (Chla) and phytoplankton biomass (PB) were significantly different. The annual average TN of the whole lake was 0.92 mg/L, with the highest value of 1.04 mg/L in March, and the lowest value of 0.78 mg/L in August. The Anhui section of the reservoir had the highest annual average TN of 1.60 mg/L, and the lowest TN of 0.83 mg/L in the southeast bay. The annual average TP of the whole lake was 0.021 mg/L, with the highest value of 0.033 mg/L in July, and the lowest value of 0.013 mg/L in November. The Anhui section of the reservoir had highest yearly average TP of 0.052 mg/L, and the lowest TP of 0.015 mg/L in the southeast bay. The annual whole lake average Chla was 5.1 µg/L, with the highest value of 10.0 µg/L in July, and the lowest value of 1.6 µg/L in November. The Anhui section of the reservoir had the highest annual average Chla of 11.4 µg/L, and the lowest Chla of 3.0 µg/L in the southeast bay. The annual whole lake average PB was 2.396 mg/L, with the highest value of 8.246 mg/L in August, and the lowest value of 0.557 mg/L in November. The Chun'an urban bay of the reservoir had the highest annual average PB of 3.688 mg/L, while the lowest PB of 1.740 mg/L in the southwest bay. Although the downstream part of Qiandaohu Reservoir was in an oligotrophic state, a major part of the reservoir was already in a meso-trophic state. The important water parameters were temporarily unstable. The TP concentration in the flood season was 3 times higher than that in the dry season. PB concentration in August was on average 15 times higher than that in November. The annual survey indicates that it is a huge challenge to maintain stable good water quality. As a huge deep reservoir, hydrological and weather processed strongly influence important water quality parameters, such as nutrient concentration and algal biomass. The proliferation of harmful algae shows great uncertainty and poses water quality risks in the huge deep reservoir. To mitigate the high water quality risks, stricter external load control should be the first task. Moreover, it is also necessary to strengthen ecological structure adjustment to prevent excessive proliferation of cyanobacteria and diatoms under suitable weather conditions.
-
Key words:
- large deep reservoir /
- eutrophication /
- phytoplankton /
- phosphorus /
- storm flow
-
-
[1] YANG X,LU X.Drastic change in China's lakes and reservoirs over the past decades[J].Scientific Reports,2014,4:6041. [2] 肖喆,李文攀,张靖天,等.长潭水库生态问题诊断与对策研究[J].环境工程技术学报,2021,11(4):670-677. doi: 10.12153/j.issn.1674-991X.20200168XIAO Z,LI W,ZHANG J,et al.Diagnosis and countermeasures of eco-environmental problems in Changtan Reservoir[J].Journal of Environmental Engineering Technology,2021,11(4):670-677. doi: 10.12153/j.issn.1674-991X.20200168 [3] ZONG J M,WANG X X,ZHONG Q Y,et al.Increasing outbreak of cyanobacterial blooms in large lakes and reservoirs under pressures from climate change and anthropogenic interferences in the middle-lower Yangtze River Basin[J].Remote Sensing,2019,11(15):1754. doi: 10.3390/rs11151754 [4] SU M,ZHU Y P,JIA Z Y,et al.Identification of MIB producers and odor risk assessment using routine data:a case study of an estuary drinking water reservoir[J].Water Research,2021,192:116848. doi: 10.1016/j.watres.2021.116848 [5] SU M,YU J W,ZHANG J Z,et al.MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir:distribution and odor producing potential[J].Water Research,2015,68:444-453. doi: 10.1016/j.watres.2014.09.038 [6] 王敏,刘祥,陈求稳,等.洋河水库微囊藻毒素及产毒株种群丰度的时空分布特征[J].环境科学学报,2017,37(4):1307-1315.WANG M,LIU X,CHEN Q W,et al.Spatio-temporal distribution of microcystins and microcystin-producing cells in the Yanghe Reservoir[J].Acta Scientiae Circumstantiae,2017,37(4):1307-1315. [7] GUO C X,ZHU G W,PAERL H W,et al.Extreme weather event may induce Microcystis blooms in the Qiantang River,southeast China[J].Environmental Science and Pollution Research International,2018,25(22):22273-22284. doi: 10.1007/s11356-018-2216-7 [8] OLSEN B K,CHISLOCK M F,WILSON A E.Eutrophication mediates a common off-flavor compound,2-methylisoborneol,in a drinking water reservoir[J].Water Research,2016,92:228-234. doi: 10.1016/j.watres.2016.01.058 [9] WU T H,ZHU G W,ZHU M Y,et al.Effects of algae proliferation and density current on the vertical distribution of odor compounds in drinking water reservoirs in summer[J].Environmental Pollution,2021,288:117683. doi: 10.1016/j.envpol.2021.117683 [10] 刘其根,陈立侨,陈勇.千岛湖水华发生与主要环境因子的相关性分析[J].海洋湖沼通报,2007(1):117-124. doi: 10.3969/j.issn.1003-6482.2007.01.017LIU Q G,CHEN L Q,CHEN Y.Correlation between biomass reduction of silver carp and bighead carp and the occurrence of algal blooms in Lake Qiandaohu[J].Transactions of Oceanology and Limnology,2007(1):117-124. doi: 10.3969/j.issn.1003-6482.2007.01.017 [11] HUANG Q F,LI N,LI Y.Long-term trend of heat waves and potential effects on phytoplankton blooms in Lake Qiandaohu,a key drinking water reservoir[J].Environmental Science and Pollution Research,2021,28(48):68448-68459. doi: 10.1007/s11356-021-15414-z [12] LI Y,SHI K,ZHANG Y L,et al.Analysis of water clarity decrease in Xin'anjiang Reservoir,China,from 30-Year Landsat TM,ETM+,and OLI observations[J].Journal of Hydrology,2020,590:125476. doi: 10.1016/j.jhydrol.2020.125476 [13] CHEN D Q,LI H P,ZHANG W S,et al.Spatiotemporal dynamics of nitrogen transport in the Qiandao Lake Basin,a large hilly monsoon basin of southeastern China[J].Water,2020,12(4):1075. doi: 10.3390/w12041075 [14] PUEPPKE S G,ZHANG W S,LI H P,et al.An integrative framework to control nutrient loss:insights from two hilly basins in China's Yangtze River Delta[J].Water,2019,11(10):2036. doi: 10.3390/w11102036 [15] JIN Z F,CEN J R,HU Y M,et al.Quantifying nitrate sources in a large reservoir for drinking water by using stable isotopes and a Bayesian isotope mixing model[J].Environmental Science and Pollution Research,2019,26(20):20364-20376. doi: 10.1007/s11356-019-05296-7 [16] YANG H Y,LI W D,LIU Q.Historical trends and chiral signatures of organochlorine pesticides in sediments of Qiandao Lake,China[J].Bulletin of Environmental Contamination and Toxicology,2017,99(3):350-353. doi: 10.1007/s00128-017-2131-5 [17] ZHANG Y L,WU Z X,LIU M L,et al.Thermal structure and response to long-term climatic changes in Lake Qiandaohu,a deep subtropical reservoir in China[J].Limnology and Oceanography,2014,59(4):1193-1202. doi: 10.4319/lo.2014.59.4.1193 [18] ZHANG Y L,WU Z X,LIU M L,et al.Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu,China)[J].Water Research,2015,75:249-258. doi: 10.1016/j.watres.2015.02.052 [19] ZHANG Y B,SHI K,ZHANG Y L,et al.River plume monitoring in a deep valley reservoir using HJ-1 A/B images[J].Journal of Hydrology,2020,587:125031. doi: 10.1016/j.jhydrol.2020.125031 [20] ZHOU Y Q,LIU M,ZHOU L,et al.Rainstorm events shift the molecular composition and export of dissolved organic matter in a large drinking water reservoir in China:high frequency buoys and field observations[J].Water Research,2020,187:116471. doi: 10.1016/j.watres.2020.116471 [21] ZHOU Y Q,ZHANG Y L,JEPPESEN E,et al.Inflow rate-driven changes in the composition and dynamics of chromophoric dissolved organic matter in a large drinking water lake[J].Water Research,2016,100:211-221. doi: 10.1016/j.watres.2016.05.021 [22] 于佳,刘佳睿,王利,等.基于Ecopath模型的千岛湖生态系统结构和功能分析[J].水生生物学报,2021,45(2):308-317. doi: 10.7541/2021.2019.128YU J,LIU J R,WANG L,et al.Analysis on the ecosystem structure and function of lake Qiandao based on ecopath model[J].Acta Hydrobiologica Sinica,2021,45(2):308-317. doi: 10.7541/2021.2019.128 [23] 陈马康,何光喜,陈来生.千岛湖主要支流生态与渔业功能[M].上海:上海科学技术出版社,2014. [24] EBINA J,TSUTSUI T,SHIRAI T.Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation[J].Water Research,1983,17(12):1721-1726. doi: 10.1016/0043-1354(83)90192-6 [25] JESPERSEN A,CHRISTOFFERSEN K.Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent[J].Archiv Für Hydrobiologie,1987,109(3):445-454. [26] 胡鸿钧,魏印心.中国淡水藻类:系统、分类及生态[M].北京:科学出版社,2006. [27] 虞功亮,宋立荣,李仁辉.中国淡水微囊藻属常见种类的分类学讨论:以滇池为例[J].植物分类学报,2007,45(5):727-741. doi: 10.1360/aps06156YU G L,SONG L R,LI R H.Taxonomic notes on water bloom forming Microcystis species (Cyanophyta) from China:an example from samples of the Dianchi Lake[J].Acta Phytotaxonomica Sinica,2007,45(5):727-741. doi: 10.1360/aps06156 [28] LIU M,ZHANG Y L,SHI K,et al.Spatial variations of subsurface chlorophyll maxima during thermal stratification in a large,deep subtropical reservoir[J].Journal of Geophysical Research:Biogeosciences,2020,125:e2019JG00548. [29] 吴志旭,刘明亮,兰佳,等.新安江水库(千岛湖)湖泊区夏季热分层期间垂向理化及浮游植物特征[J].湖泊科学,2012,24(3):460-465. doi: 10.3969/j.issn.1003-5427.2012.03.019WU Z X,LIU M L,LAN J,et al.Vertical distribution of phytoplankton and physico-chemical characteristics in the lacustrine zone of Xin'anjiang Reservoir (Lake Qiandao) in subtropic China during summer stratification[J].Journal of Lake Sciences,2012,24(3):460-465. doi: 10.3969/j.issn.1003-5427.2012.03.019 [30] KIMMEL B L,GROEGER A W.Factors controlling primary production in lakes and reservoirs:a perspective[J].Lake and Reservoir Management,1984,1(1):277-281. doi: 10.1080/07438148409354524 [31] ZHANG Y L,SHI K,ZHOU Y Q,et al.Monitoring the river plume induced by heavy rainfall events in large,shallow,Lake Taihu using MODIS 250 m imagery[J].Remote Sensing of Environment,2016,173:109-121. doi: 10.1016/j.rse.2015.11.020 [32] MOURI G,SHIIBA M,HORI T,et al.Modeling reservoir sedimentation associated with an extreme flood and sediment flux in a mountainous granitoid catchment,Japan[J].Geomorphology,2011,125(2):263-270. doi: 10.1016/j.geomorph.2010.09.026 [33] 黄诚,黄廷林,李扬,等.金盆水库暴雨径流时空演变过程及水质评价[J].环境科学,2021,42(3):1380-1390.HUANG C,HUANG T L,LI Y,et al.Temporal and spatial evolution of storm runoff and water quality assessment in Jinpen Reservoir[J].Environmental Science,2021,42(3):1380-1390. [34] XU H,QIN B Q,PAERL H W,et al.Environmental controls of harmful cyanobacterial blooms in Chinese inland waters[J].Harmful Algae,2021,110:102127. doi: 10.1016/j.hal.2021.102127 [35] PAERL H W,HUISMAN J.Blooms like it hot[J].Science,2008,320(5872):57-58. doi: 10.1126/science.1155398 [36] HUISMAN J,CODD G A,PAERL H W,et al.Cyanobacterial blooms[J].Nature Reviews Microbiology,2018,16(8):471-483. doi: 10.1038/s41579-018-0040-1 [37] 陈倩,李秋华,胡月敏,等.贵州百花水库浮游藻类功能群时空分布特征及影响因子分析[J].环境科学研究,2018,31(7):1266-1274.CHEN Q,LI Q H,HU Y M,et al.Spatial and temporal distribution characteristics of phytoplankton functional groups and their influencing factors in Baihua Reservoir,Guizhou Province[J].Research of Environmental Sciences,2018,31(7):1266-1274. [38] 朱广伟,金颖薇,任杰,等.太湖流域水库型水源地硅藻水华发生特征及对策分析[J].湖泊科学,2016,28(1):9-21. doi: 10.18307/2016.0102ZHU G,JIN Y,REN J,et al.Characteristics of diatom blooms in a reservoir-water supply area and the countermeasures in Taihu Basin,China[J].Journal of Lake Sciences,2016,28(1):9-21. doi: 10.18307/2016.0102 [39] YANG Z J,XU P,LIU D F,et al.Hydrodynamic mechanisms underlying periodic algal blooms in the tributary bay of a subtropical reservoir[J].Ecological Engineering,2018,120:6-13. doi: 10.1016/j.ecoleng.2018.05.003 [40] 张含笑,白雪,霍守亮,等.于桥水库藻类群落演替过程及影响因素[J].环境科学研究,2020,33(12):2802-2809.ZHANG H X,BAI X,HUO S L,et al.Succession of phytoplankton algae community and influencing factors in Yuqiao Resevoir[J].Research of Environmental Sciences,2020,33(12):2802-2809. [41] 王书航,王雯雯,姜霞,等.丹江口水库水体氮的时空分布及入库通量[J].环境科学研究,2016,29(7):995-1005.WANG S H,WANG W W,JIANG X,et al.Spatial and temporal distribution and flux of nitrogen in water of Danjiangkou Reservoir[J].Research of Environmental Sciences,2016,29(7):995-1005. [42] CARLSON R E.A trophic state index for lakes[J].Limnology and Oceanography,1977,22(2):361-369. doi: 10.4319/lo.1977.22.2.0361 -