留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EEM-PARAFAC解析厌氧生物滤池对城市污染河流中DOM的转化特性

杨垒 李晓彤 任勇翔 刘志逸 郭盾 梁庆凯 邵亚辉 郭淋凯

杨垒, 李晓彤, 任勇翔, 刘志逸, 郭盾, 梁庆凯, 邵亚辉, 郭淋凯. 基于EEM-PARAFAC解析厌氧生物滤池对城市污染河流中DOM的转化特性[J]. 环境科学研究, 2022, 35(7): 1615-1624. doi: 10.13198/j.issn.1001-6929.2022.02.22
引用本文: 杨垒, 李晓彤, 任勇翔, 刘志逸, 郭盾, 梁庆凯, 邵亚辉, 郭淋凯. 基于EEM-PARAFAC解析厌氧生物滤池对城市污染河流中DOM的转化特性[J]. 环境科学研究, 2022, 35(7): 1615-1624. doi: 10.13198/j.issn.1001-6929.2022.02.22
YANG Lei, LI Xiaotong, REN Yongxiang, LIU Zhiyi, GUO Dun, LIANG Qingkai, SHAO Yahui, GUO Linkai. Analysis of DOM Transformation in Polluted Urban Rivers by Anaerobic Biofilter Based on EEM-PARAFAC[J]. Research of Environmental Sciences, 2022, 35(7): 1615-1624. doi: 10.13198/j.issn.1001-6929.2022.02.22
Citation: YANG Lei, LI Xiaotong, REN Yongxiang, LIU Zhiyi, GUO Dun, LIANG Qingkai, SHAO Yahui, GUO Linkai. Analysis of DOM Transformation in Polluted Urban Rivers by Anaerobic Biofilter Based on EEM-PARAFAC[J]. Research of Environmental Sciences, 2022, 35(7): 1615-1624. doi: 10.13198/j.issn.1001-6929.2022.02.22

基于EEM-PARAFAC解析厌氧生物滤池对城市污染河流中DOM的转化特性

doi: 10.13198/j.issn.1001-6929.2022.02.22
基金项目: 陕西省重点研发计划项目(No.2019ZDLSF06-06);国家自然科学基金项目(No.51878537)
详细信息
    作者简介:

    杨垒(1988-),男,陕西西安人,讲师,博士,主要从事污水生物处理理论与技术研究,yangleixauat@126.com

    通讯作者:

    任勇翔(1968-),男,陕西铜川人,教授,博士,主要从事污水生物处理理论与技术研究,ryx@xauat.edu.cn

  • 中图分类号: X703

Analysis of DOM Transformation in Polluted Urban Rivers by Anaerobic Biofilter Based on EEM-PARAFAC

Funds: Key Research and Development Project of Shaanxi Province, China (No.2019ZDLSF06-06); National Natural Science Foundation of China (No.51878537)
  • 摘要: 为探究厌氧生物滤池(AF)处理城市污染河流的最佳工况和运行效能,以新河河水为研究对象,运用三维荧光光谱结合平行因子法(EEM-PARAFAC),研究AF中试试验系统在不同水力停留时间(HRT)及温度条件下对溶解性有机物(DOM)的转化特性. 结果表明:①河水中DOM主要包含3种荧光组分,其中,C1为类腐殖质物质,C2为类蛋白物质,C3为类腐殖质物质,类蛋白和类腐殖质物质平均占比分别为53.45%和46.55%. ②AF运行稳定后COD平均去除率为30.75%,出水UV254降低19.80%;荧光组分分析表明,DOM的降低主要归因于C2和C3的有效转化,且提高温度和HRT有助于DOM的进一步降低. ③UV254和<10 kDa的DOM沿程逐步减小,3~10 kDa和<3 kDa的DOM去除率分别为64.29%和22.81%;沿程出水三维荧光光谱显示,AF前端微生物活性较高,C1和C3变化较小,C2先升高后逐步下降,最终出水DOM总荧光强度出现明显的降低,表明AF第1级滤层是DOM去除和转化的主要区域. 研究显示,常温且HRT=24 h工况下,AF能够在一定程度上将难降解有机物转化为易降解有机物,有效去除城市污染河流中的DOM,可作为处理城市污染河流的潜在预处理手段.

     

  • 图  1  厌氧生物滤池(AF)中试装置示意

    注:1~11表示取样口编号.

    Figure  1.  Schematic diagram of pilot-scale AF

    图  2  基于PARAFAC解析的3个荧光组分及各荧光区域组分占比

    Figure  2.  Fluorescence spectra of three components identified by PARAFAC model and component proportion of each fluorescence region

    图  3  各工况下进出水COD浓度和UV254的变化

    Figure  3.  Variations of COD concentration and UV254 in influent and effluent under different operating conditions

    图  4  各工况下各荧光组分进出水荧光强度的变化

    Figure  4.  Variations of fluorescence intensity of each component in influent and effluent under different operating conditions

    图  5  不同HRT下各取样口出水COD浓度和UV254的变化

    Figure  5.  Variations of COD concentration and UV254 in effluent from each sample tap under different HRT

    图  6  HRT为24 h下各取样口出水三维荧光光谱及各荧光组分的变化情况

    Figure  6.  3-D fluorescence spectra of the effluent and variations of the fluorescence components in the effluent from each sample tap at HRT=24 h

    图  7  HRT为24 h下AF出水各分子量范围DOM的UV254和组分占比变化

    Figure  7.  Variations of UV254 and fraction in each molecular weight DOM of AF effluent at HRT=24 h

    表  1  AF不同运行工况参数

    Table  1.   Parameters of AF under different operating conditions

    工况条件运行温度/
    流量/
    (m3/h)
    水力负荷/
    [m3/(m2·d)]
    水力停留
    时间/h
    运行阶段
    工况025~350.061.0924启动阶段
    工况115~300.061.0924常温运行
    阶段
    工况215~300.091.6316
    工况315~300.193.458
    工况415~300.376.714
    工况515~300.7413.492
    工况65~150.061.0924低温运行
    阶段
    工况75~150.091.6316
    工况85~150.193.458
    工况95~150.376.714
    工况105~150.7413.492
    下载: 导出CSV

    表  2  不同运行阶段的进水水质条件

    Table  2.   Water quality of influent in different operation periods

    运行阶段温度/℃pHDO浓度/
    (mg/L)
    浊度/
    NTU
    CODCr浓度/
    (mg/L)
    NH4+-N浓度/
    (mg/L)
    NO2-N浓度/
    (mg/L)
    NO3-N浓度/
    (mg/L)
    TN浓度/
    (mg/L)
    常温15~307.56~7.873.77~5.231.5~235.332.56~194.920.85~5.350.30~1.333.31~11.2110.33~16.99
    低温5~157.22~7.884.02~5.788.3~109.230.98~152.822.46~5.450.58~0.955.75~12.9112.33~17.94
    下载: 导出CSV

    表  3  新河河水3个荧光组分的特征

    Table  3.   Characteristics of three fluorescent components in water of Xin River

    组分λEx/λEm表征物质其他研究对应波长
    C1240(300) nm/400 nm类富里酸(类腐殖质)250(310) nm/425 nm[23]
    C2235(280) nm/344 nm类色氨酸(类蛋白)220~230(280) nm/320~336 nm[25]
    C3255(360) nm/450 nm类腐殖酸(类腐殖质)270(380) nm/450 nm[23]
    下载: 导出CSV
  • [1] MIAO S,LYU H,XU J,et al.Characteristics of the chromophoric dissolved organic matter of urban black-odor rivers using fluorescence and UV-Visible spectroscopy[J].Environmental Pollution,2021,268:115763. doi: 10.1016/j.envpol.2020.115763
    [2] WEN T,SHENG S,AN S Q.Relationships between stream ecosystem properties and landscape composition at multiple spatial scales along a heavily polluted stream in China:implications for restoration[J].Ecological Engineering,2016,97:493-502. doi: 10.1016/j.ecoleng.2016.10.028
    [3] 王海珊,邹平,付先萍,等.黑臭水体组合生物净化技术研究进展[J].环境工程技术学报,2020,10(1):56-62. doi: 10.12153/j.issn.1674-991X.20190038

    WANG H S,ZOU P,FU X P,et al.Research progress on combined biological purification technologies for black and smelly water bodies[J].Journal of Environmental Engineering Technology,2020,10(1):56-62. doi: 10.12153/j.issn.1674-991X.20190038
    [4] GÜCKER B,SILVA R C S,GRAEBER D,et al.Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments[J].Science of the Total Environment,2016,550:785-792. doi: 10.1016/j.scitotenv.2016.01.158
    [5] PARR T B,CRONAN C S,OHNO T,et al.Urbanization changes the composition and bioavailability of dissolved organic matter in headwater streams[J].Limnology and Oceanography,2015,60(3):885-900. doi: 10.1002/lno.10060
    [6] BAI X Y,ZHU X F,JIANG H B,et al.Purification effect of sequential constructed wetland for the polluted water in urban river[J].Water,2020,12(4):1054. doi: 10.3390/w12041054
    [7] LEI Z,YANG S M,LI Y Y,et al.Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature:a review of achievements,challenges,and perspectives[J].Bioresource Technology,2018,267:756-768. doi: 10.1016/j.biortech.2018.07.050
    [8] BHATTACHARYA J,DEV S,DAS B.Low cost wastewater bioremediation technology:innovative treatment of sulfate and metal-rich wastewater[M]. Oxford, England: Butterworth Heinemann,2018:265-313.
    [9] HAN W,YUE Q Y,WU S Q,et al.Application and advantages of novel clay ceramic particles (CCPs) in an up-flow anaerobic bio-filter (UAF) for wastewater treatment[J].Bioresource Technology,2013,137:171-178. doi: 10.1016/j.biortech.2013.03.124
    [10] MANARIOTIS L D,GRIGOROPOULOS S G.Municipal-wastewater treatment using upflow-anaerobic filters[J].Water Environment Research:A Research Publication of the Water Environment Federation,2006,78(3):233-242. doi: 10.2175/106143005X90029
    [11] 杨忠启,刘秀红,李海鑫,等.上向流厌氧滤池(UAF)处理城市生活污水的运行效能[J].环境科学,2019,40(9):4121-4127.

    YANG Z Q,LIU X H,LI H X,et al.Performances analysis of an upflow anaerobic filter for domestic sewage treatment[J].Environmental Science,2019,40(9):4121-4127.
    [12] 焦宇欣,李东阳,龚天成,等.基于光谱色谱分析热解温度对沼渣生物炭DOM组成特性的影响[J].环境科学研究,2021,34(10):2468-2476.

    JIAO Y X,LI D Y,GONG T C,et al.Effect of pyrolysis temperature on composition characteristics of DOM of biogas residue biochar based on spectral and chromatographic analysis[J].Research of Environmental Sciences,2021,34(10):2468-2476.
    [13] 李程遥,黄廷林,温成成,等.汛期暴雨径流对饮用水水库溶解性有机质(DOM)光谱特征的影响[J].环境科学,2021,42(3):1391-1402.

    LI C Y,HUANG T L,WEN C C,et al.Influence of storm runoff on the spectral characteristics of dissolved organic matter (DOM) in a drinking water reservoir during the flood season[J].Environmental Science,2021,42(3):1391-1402.
    [14] 孙伟,胡泓,赵茜,等.达里诺尔湖水体DOM荧光特征及其来源解析[J].环境科学研究,2020,33(9):2084-2093.

    SUN W,HU H,ZHAO Q,et al.Fluorescence characteristics and source analysis of dissolved organic matter in Dali-nor Lake[J].Research of Environmental Sciences,2020,33(9):2084-2093.
    [15] SGROI M,ROCCARO P,KORSHIN G V,et al.Use of fluorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants[J].Journal of Hazardous Materials,2017,323:367-376. doi: 10.1016/j.jhazmat.2016.05.035
    [16] WANG Y L,HU Y Y,YANG C M,et al.Variations of DOM quantity and compositions along WWTPs-river-lake continuum:implications for watershed environmental management[J].Chemosphere,2019,218:468-476. doi: 10.1016/j.chemosphere.2018.11.037
    [17] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [18] 刘志逸.厌氧生物滤池对污染河流中难降解有机物强化去除途经研究[D].西安:西安建筑科技大学,2020:26.
    [19] 张恒亮,段亮,姚美辰,等.MBBR-MBR组合工艺处理生活污水效能及膜污染研究[J].环境工程技术学报,2019,9(3):245-251. doi: 10.12153/j.issn.1674-991X.2019.01.240

    ZHANG H L,DUAN L,YAO M C,et al.Study on performance and membrane fouling of MBBR-MBR combined process for treatment of domestic wastewater[J].Journal of Environmental Engineering Technology,2019,9(3):245-251. doi: 10.12153/j.issn.1674-991X.2019.01.240
    [20] STEDMON C A,BRO R.Characterizing dissolved organic matter fluorescence with parallel factor analysis:a tutorial[J].Limnology and Oceanography:Methods,2008,6(11):572-579. doi: 10.4319/lom.2008.6.572
    [21] KOWALCZUK P,COOPER W J,DURAKO M J,et al.Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model:relationships between fluorescence and its components,absorption coefficients and organic carbon concentrations[J].Marine Chemistry,2010,118(1/2):22-36.
    [22] 李敏,付丽亚,谭煜,等.Mn-Ce/γ-Al2O3催化臭氧氧化深度处理石化废水中试研究[J].环境科学研究,2021,34(10):2380-2388.

    LI M,FU L Y,TAN Y,et al.Pilot study of advanced treatment of petrochemical wastewater by Mn-Ce/γ-Al2O3 catalytic ozonation[J].Research of Environmental Sciences,2021,34(10):2380-2388.
    [23] XU X T,KANG J,SHEN J M,et al.EEM-PARAFAC characterization of dissolved organic matter and its relationship with disinfection by-products formation potential in drinking water sources of northeastern China[J].Science of the Total Environment,2021,774:145297. doi: 10.1016/j.scitotenv.2021.145297
    [24] YANG X L,YU X B,CHENG J R,et al.Impacts of land-use on surface waters at the watershed scale in southeastern China:insight from fluorescence excitation-emission matrix and PARAFAC[J].Science of the Total Environment,2018,627:647-657. doi: 10.1016/j.scitotenv.2018.01.279
    [25] LIU Q,JIANG Y,TIAN Y L,et al.Impact of land use on the DOM composition in different seasons in a subtropical river flowing through a region undergoing rapid urbanization[J].Journal of Cleaner Production,2019,212:1224-1231. doi: 10.1016/j.jclepro.2018.12.030
    [26] WU J H,CHEN G C,GU J J,et al.Effects of hydraulic retention time and nitrobenzene concentration on the performance of sequential upflow anaerobic filter and air lift reactors in treating nitrobenzene-containing wastewater[J].Environmental Science and Pollution Research,2014,21(22):12800-12810. doi: 10.1007/s11356-014-3225-9
    [27] 刘智斌,刘秀红,周桐,等.温度对城市污水厌氧生物滤池运行效果与菌群结构的影响[J].环境科学,2020,41(9):4141-4149.

    LIU Z B,LIU X H,ZHOU T,et al.Effect of temperature on performance and microbial community structure of anaerobic biofilter-treated domestic wastewater[J].Environmental Science,2020,41(9):4141-4149.
    [28] 闫晓寒,韩璐,刘勇丽,等.基于UV-Vis辽河保护区地表水DOM的时空分布特征[J].环境科学研究,2022,35(1):51-59.

    YAN X H,HAN L,LIU Y L,et al.Spatiotemporal distribution of DOM in surface water of Liaohe reservation zone based on UV-Vis absorption spectra[J].Research of Environmental Sciences,2022,35(1):51-59.
    [29] ZHENG L C,SONG Z F,MENG P P,et al.Seasonal characterization and identification of dissolved organic matter (DOM) in the Pearl River,China[J].Environmental Science and Pollution Research,2016,23(8):7462-7469. doi: 10.1007/s11356-015-5999-9
    [30] 姜浩,章婷曦,杨帆,等.生活污水处理过程荧光光谱及紫外光谱特征分析[J].环境科学与技术,2019,42(6):151-156.

    JIANG H,ZHANG T X,YANGFAN,et al.Characteristics of fluorescence and ultraviolet spectra during domestic wastewater treatment process[J].Environmental Science & Technology (China),2019,42(6):151-156.
    [31] YANG L Y,HUR J,ZHUANG W E.Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications:a review[J].Environmental Science and Pollution Research,2015,22(9):6500-6510. doi: 10.1007/s11356-015-4214-3
    [32] YU H R,QU F S,SUN L P,et al.Relationship between soluble microbial products (SMP) and effluent organic matter (EfOM):characterized by fluorescence excitation emission matrix coupled with parallel factor analysis[J].Chemosphere,2015,121:101-109. doi: 10.1016/j.chemosphere.2014.11.037
    [33] 黄健,凌玲,张华,等.ASBR处理食品废水中DOM转化过程的荧光光谱[J].中国环境科学,2016,36(6):1746-1751. doi: 10.3969/j.issn.1000-6923.2016.06.021

    HUANG J,LING L,ZHANG H,et al.Fluorescence spectra of dissolved organic matter in food wastewater treatment by ASBR process[J].China Environmental Science,2016,36(6):1746-1751. doi: 10.3969/j.issn.1000-6923.2016.06.021
    [34] 张雅晶,缪恒锋,张晓夏,等.AAO-MBR工艺污水处理系统中消毒副产物前体物变化规律[J].环境科学研究,2018,31(12):2037-2046.

    ZHANG Y J,MIAO H F,ZHANG X X,et al.Variation of disinfection by-product precursors during anaerobic-anoxic-oxic-membrane-bioreactor (AAO-MBR) process in the sewage treatment plant[J].Research of Environmental Sciences,2018,31(12):2037-2046.
    [35] MEDINA S C,ZAMORA-VACCA N,LUNA H J,et al.SMP production in an anaerobic submerged membrane bioreactor (AnMBR) at different organic loading rates[J].Membranes,2020,10(11):317. doi: 10.3390/membranes10110317
    [36] KOMATSU K,ONODERA T,KOHZU A,et al.Characterization of dissolved organic matter in wastewater during aerobic,anaerobic,and anoxic treatment processes by molecular size and fluorescence analyses[J].Water Research,2020,171:115459. doi: 10.1016/j.watres.2019.115459
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  57
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2022-02-17

目录

    /

    返回文章
    返回