留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国省际服务业碳排放空间网络结构及其驱动因素

甘畅 王凯

甘畅, 王凯. 中国省际服务业碳排放空间网络结构及其驱动因素[J]. 环境科学研究, 2022, 35(10): 2264-2272. doi: 10.13198/j.issn.1001-6929.2022.02.28
引用本文: 甘畅, 王凯. 中国省际服务业碳排放空间网络结构及其驱动因素[J]. 环境科学研究, 2022, 35(10): 2264-2272. doi: 10.13198/j.issn.1001-6929.2022.02.28
GAN Chang, WANG Kai. Provincial Spatial Network Structure of Carbon Emissions from Service Industry and Driving Factors in China[J]. Research of Environmental Sciences, 2022, 35(10): 2264-2272. doi: 10.13198/j.issn.1001-6929.2022.02.28
Citation: GAN Chang, WANG Kai. Provincial Spatial Network Structure of Carbon Emissions from Service Industry and Driving Factors in China[J]. Research of Environmental Sciences, 2022, 35(10): 2264-2272. doi: 10.13198/j.issn.1001-6929.2022.02.28

中国省际服务业碳排放空间网络结构及其驱动因素

doi: 10.13198/j.issn.1001-6929.2022.02.28
基金项目: 国家自然科学基金项目(No.41971188);湖南省国内一流培育学科建设项目(No.5010002)
详细信息
    作者简介:

    甘畅(1994-),男,湖北武汉人,1902188840@qq.com

    通讯作者:

    王凯(1969-),男,湖南新宁人,教授,博士,主要从事低碳经济、区域旅游发展规划研究,kingviry@163.com

  • 中图分类号: X32

Provincial Spatial Network Structure of Carbon Emissions from Service Industry and Driving Factors in China

Funds: National Natural Science Foundation of China (No.41971188);Construction Program for First Class Disciplines of Hunan Province, China (No.5010002)
  • 摘要: 在碳达峰、碳中和的时代背景下,探索服务业碳排放空间网络结构及其驱动因素对于推进服务业节能减排具有重要的实践价值. 基于2000—2018年中国省际服务业碳排放的面板数据(不含西藏自治区及港澳台地区数据),综合运用修正后的引力模型和社会网络分析法刻画服务业碳排放空间网络结构特征并厘清其驱动因素. 结果表明:①研究期内中国服务业碳排放空间联系强度不断增大,服务业碳排放空间网络结构趋于复杂化且稳定性显著提升. ②上海市、北京市、江苏省和浙江省等省份在中国服务业碳排放空间网络结构中扮演“中心行动者”的角色,这些省份是其他省份进行服务业碳排放空间关联的重要“桥接”和“枢纽”,控制与主导中国服务业碳排放的空间关联和空间溢出. ③省份间的地理位置越邻近,产业结构优化、城镇化水平和科技发展水平的差异越大,中国服务业碳排放空间的联系越多;而服务业碳排放强度的差异越大,服务业碳排放空间的联系越少. 研究显示,中国省际服务业碳排放存在空间关联和空间溢出,但空间网络结构仍较为松散,未来在推进服务业节能减排的工作中,需重视建立省际协同减排机制.

     

  • 图  1  中国服务业碳排放空间联系强度(排名前30位的省份)

    注:弧线与圆的接触面积上的宽度表示省份之间的关系程度或比例关系,省份间的线条粗细程度表征服务业碳排放空间联系强弱.

    Figure  1.  Spatial connection strength of carbon emission from service industry in China (top 30 provinces)

    图  2  中国服务业碳排放整体空间网络结构特征

    Figure  2.  Overall spatial network structure characteristics regarding carbon emission of service industry in China

    表  1  能源消费类型及碳排放系数

    Table  1.   Type of energy consumption, and coefficient of carbon emission

    能源消费类型碳排放系数 能源消费类型碳排放系数
    煤炭1.98 柴油3.16
    焦煤3.04 燃料油3.24
    原油3.07 天然气2.18
    汽油3.01 电力6.2×10−4
    煤油3.1
    注:电力的碳排放系数单位为t/(kW·h),其他能源类别的碳排放系数无单位.
    下载: 导出CSV

    表  2  2018年中国服务业碳排放个体空间网络结构特征

    Table  2.   Individual spatial network structure characteristics regarding carbon emission from service industry in China in 2018

    省份度数中心度接近中心度中间中心度
    点入度点出度总度数中心度排名中心度排名中心度排名
    北京市2673389.655290.625224.2631
    天津市1241644.828664.44463.9645
    河北省34713.7932453.704240.03028
    山西省15617.2411954.717190.06723
    内蒙古自治区1236.8973051.786300.01030
    辽宁省13410.3452952.727290.03028
    吉林省04413.7932453.704240.06723
    黑龙江省04413.7932453.704240.06723
    上海市2773493.103193.548124.1882
    江苏省2242675.862380.556312.9793
    浙江省1521751.724467.44244.6334
    安徽省34713.7932453.704240.05627
    福建省06620.6901155.769110.09717
    江西省25720.6901155.769110.15714
    山东省751227.586758.00070.5087
    河南省551024.138856.86380.3829
    湖北省25717.2411954.717190.09518
    湖南省35820.6901155.769110.15714
    广东省1171848.276565.90953.2516
    广西壮族自治区25720.6901155.769110.09518
    海南省06620.6901155.769110.09518
    重庆市35820.6901155.769110.16113
    四川省16720.6901155.769110.22612
    贵州省25717.2411954.717190.09022
    云南省05517.2411954.717190.09518
    陕西省05517.2411954.717190.15016
    甘肃省07724.138856.86380.3829
    青海省07724.138856.86380.4938
    宁夏回族自治区04413.7932453.704240.06723
    新疆维吾尔自治区06620.6901155.769110.23911
    平均值4.9674.9679.93328.04659.4632.570
    下载: 导出CSV

    表  3  中国服务业碳排放空间网络结构的驱动因素回归结果

    Table  3.   Regression results of the driving factors regarding spatial network structure of carbon emission from service industry in China

    变量2000年2006年2012年2018年
    地理空间邻近性0.150***
    (0.001)
    0.152***
    (0.000)
    0.162***
    (0.000)
    0.166***
    (0.000)
    服务业碳排放强度差异−0.054
    (0.216)
    −0.067*
    (0.061)
    −0.149***
    (0.001)
    −0.092*
    (0.075)
    环境规制强度差异0.078
    (0.116)
    0.058
    (0.144)
    −0.019
    (0.335)
    −0.036*
    (0.054)
    产业结构优化差异0.536***
    (0.000)
    0.283***
    (0.000)
    0.367***
    (0.001)
    0.320***
    (0.000)
    城镇化水平差异0.167***
    (0.005)
    0.327***
    (0.000)
    0.371***
    (0.000)
    0.379***
    (0.000)
    投资水平差异−0.114
    (0.124)
    −0.067
    (0.498)
    −0.060
    (0.134)
    −0.054
    (0.129)
    科技发展水平差异0.172*
    (0.083)
    0.307***
    (0.000)
    0.275***
    (0.000)
    0.374***
    (0.000)
    截距项−0.152***
    (0.001)
    −0.109***
    (0.000)
    −0.083***
    (0.000)
    −0.091***
    (0.000)
    R20.2310.2840.2980.327
    调整后R20.2260.2790.2930.322
    重复迭代次数2 0002 0002 0002 000
    样本数量870870870870
    注:括号中数值为P值. ******分别表示在0.01、0.05和0.1水平上显著相关.
    下载: 导出CSV
  • [1] 王深,吕连宏,张保留,等.基于多目标模型的中国低成本碳达峰、碳中和路径[J].环境科学研究,2021,34(9):2044-2055. doi: 10.13198/j.issn.1001-6929.2021.06.18

    WANG S,LV L H,ZHANG B L,et al.Multi objective programming mode low-cost path for China's peaking carbon dioxide emissions and carbon neutrality[J].Research of Environmental Sciences,2021,34(9):2044-2055. doi: 10.13198/j.issn.1001-6929.2021.06.18
    [2] 王许亮,王恕立,滕泽伟.中国服务业碳生产率的空间收敛性研究[J].中国人口·资源与环境,2020,30(2):70-79.

    WANG X L,WANG S L,TENG Z W.Research on spatial convergence of carbon productivity in China's service industry[J].China Population,Resources and Environment,2020,30(2):70-79.
    [3] WANG R Z,HAO J X,WANG C N,et al.Embodied CO2 emissions and efficiency of the service sector:evidence from China[J].Journal of Cleaner Production,2020,247:119116. doi: 10.1016/j.jclepro.2019.119116
    [4] 韩峰,谢锐.生产性服务业集聚降低碳排放了吗?对我国地级及以上城市面板数据的空间计量分析[J].数量经济技术经济研究,2017,34(3):40-58.

    HAN F,XIE R.Does the agglomeration of producer services reduce carbon emissions?[J].The Journal of Quantitative & Technical Economics,2017,34(3):40-58.
    [5] 陆凤芝,王群勇.相向而行还是背道而驰:生产性服务业集聚与污染减排[J].华中科技大学学报(社会科学版),2021,35(2):41-53.

    LU F Z,WANG Q Y.Positive correlation or negative correlation:a study of agglomeration of producer services and pollution reduction[J].Journal of Huazhong University of Science and Technology (Social Science Edition),2021,35(2):41-53.
    [6] 李博,张文忠,余建辉.服务业发展、信息化水平与全要素碳生产率增长:基于门限效应的实证研究[J].地理研究,2016,35(5):953-965.

    LI B,ZHANG W Z,YU J H.Development of service industry,level of informationization and growth of total factor carbon productivity:an empirical study based on threshold effect[J].Geographical Research,2016,35(5):953-965.
    [7] LI L,HONG X F,PENG K.A spatial panel analysis of carbon emissions,economic growth and high-technology industry in China[J].Structural Change and Economic Dynamics,2019,49:83-92. doi: 10.1016/j.strueco.2018.09.010
    [8] ZHANG W C,PENG S J,SUN C W.CO2 emissions in the global supply chains of services:an analysis based on a multi-regional input-output model[J].Energy Policy,2015,86:93-103. doi: 10.1016/j.enpol.2015.06.029
    [9] 王丽萍,刘明浩.基于投入产出法的中国物流业碳排放测算及影响因素研究[J].资源科学,2018,40(1):195-206.

    WANG L P,LIU M H.Carbon emission measurement for China's logistics industry and its influence factors based on input-output method[J].Resources Science,2018,40(1):195-206.
    [10] FARRENY R,GABARRELL X,RIERADEVALL J.Energy intensity and greenhouse gas emission of a purchase in the retail park service sector:an integrative approach[J].Energy Policy,2008,36(6):1957-1968. doi: 10.1016/j.enpol.2008.02.013
    [11] 王凯,李娟,唐宇凌,等.中国服务业能源消费碳排放量核算及影响因素分析[J].中国人口·资源与环境,2013,23(5):21-28. doi: 10.3969/j.issn.1002-2104.2013.05.004

    WANG K,LI J,TANG Y L,et al.Carbon emissions accounting and decomposition analysis of energy consumption of service industry in China[J].China Population,Resources and Environment,2013,23(5):21-28. doi: 10.3969/j.issn.1002-2104.2013.05.004
    [12] MAIRET N,DECELLAS F.Determinants of energy demand in the french service sector:a decomposition analysis[J].Energy Policy,2009,37(7):2734-2744. doi: 10.1016/j.enpol.2009.03.002
    [13] 王许亮,王恕立.服务业能源生产率变迁及收敛性分析:基于全球40个经济体细分行业数据的经验研究[J].数量经济技术经济研究,2018,35(1):42-59.

    WANG X L,WANG S L.Study on the changes and convergence of energy productivity in service sectors:a cross-country (region) analysis[J].The Journal of Quantitative & Technical Economics,2018,35(1):42-59.
    [14] MULDER P,GROOT H L F.Sectoral energy and labour-productivity convergence[J].Environmental and Resource Economics,2007,36(1):85-112. doi: 10.1007/s10640-006-9042-y
    [15] 滕泽伟,胡宗彪,蒋西艳.中国服务业碳生产率变动的差异及收敛性研究[J].数量经济技术经济研究,2017,34(3):78-94.

    TENG Z W,HU Z B,JIANG X Y.Study on the difference and convergence of carbon productivity in China's service industry[J].The Journal of Quantitative & Technical Economics,2017,34(3):78-94.
    [16] SCHLEICH J,GRUBER E.Beyond case studies:barriers to energy efficiency in commerce and the services sector[J].Energy Economics,2008,30(2):449-464. doi: 10.1016/j.eneco.2006.08.004
    [17] FANG C Y,HU J L,LOU T K.Environment-adjusted total-factor energy efficiency of Taiwan's service sectors[J].Energy Policy,2013,63:1160-1168. doi: 10.1016/j.enpol.2013.07.124
    [18] IPCC.IPCC guidelines for national green gas inventories:volume Ⅱ[EB/OL].Kanagawa:IGES,(2006-07-01)[2021-11-28].http://www.ipcc.eh/ipccreports/Methodology-reports.htm.
    [19] 李小建.经济地理学[M].2版.北京:高等教育出版社,2006.
    [20] MA F,WANG Y X,YUEN K F,et al.The evolution of the spatial association effect of carbon emissions in transportation:a social network perspective[J].International Journal of Environmental Research and Public Health,2019,16(12):2154. doi: 10.3390/ijerph16122154
    [21] 刘华军,刘传明,孙亚男.中国能源消费的空间关联网络结构特征及其效应研究[J].中国工业经济,2015(5):83-95. doi: 10.19581/j.cnki.ciejournal.2015.05.008

    LIU H J,LIU C M,SUN Y N.Spatial correlation network structure of energy consumption and its effect in China[J].China Industrial Economics,2015(5):83-95. doi: 10.19581/j.cnki.ciejournal.2015.05.008
    [22] 童磊,王运鹏.省域碳排放的空间网络结构特征与影响因素研究:基于产业转移视角[J].经济问题,2020(3):18-24.

    TONG L,WANG Y P.Spatial network structure characteristics and influencing factors of provincial carbon emissions:based on the perspective of industrial transfer[J].On Economic Problems,2020(3):18-24.
    [23] BAI C Q,ZHOU L,XIA M L,et al.Analysis of the spatial association network structure of China's transportation carbon emissions and its driving factors[J].Journal of Environmental Management,2020,253:109765. doi: 10.1016/j.jenvman.2019.109765
    [24] 王凯,张淑文,甘畅,等.我国旅游业碳排放的空间关联性及其影响因素[J].环境科学研究,2019,32(6):938-947.

    WANG K,ZHANG S W,GAN C,et al.Spatial correlation of carbon emissions in tourism industry and its influencing factors in China[J].Research of Environmental Sciences,2019,32(6):938-947.
    [25] 魏燕茹,陈松林.福建省土地利用碳排放空间关联性与碳平衡分区[J].生态学报,2021,41(14):5814-5824.

    WEI Y R,CHEN S L.Spatial correlation and carbon balance zoning of land use carbon emissions in Fujian Province[J].Acta Ecologica Sinica,2021,41(14):5814-5824.
    [26] 张红霞,苏勤,张影莎.社会网络分析在国外旅游研究中的应用进展[J].地理科学进展,2019,38(4):520-532. doi: 10.18306/dlkxjz.2019.04.005

    ZHANG H X,SU Q,ZHANG Y S.Progress in the application of social network analysis in international tourism research[J].Progress in Geography,2019,38(4):520-532. doi: 10.18306/dlkxjz.2019.04.005
    [27] 张帅,袁长伟,赵小曼.中国交通运输碳排放空间聚类与关联网络结构分析[J].经济地理,2019,39(1):122-129. doi: 10.15957/j.cnki.jjdl.2019.01.015

    ZHANG S,YUAN C W,ZHAO X M.Spatial clustering and correlation network structure analysis of transportation carbon emissions in China[J].Economic Geography,2019,39(1):122-129. doi: 10.15957/j.cnki.jjdl.2019.01.015
    [28] SU Y,YU Y Q.Spatial association effect of regional pollution control[J].Journal of Cleaner Production,2019,213:540-552. doi: 10.1016/j.jclepro.2018.12.121
    [29] 吴晓慧,余亚东,梁赛.广东省CO2排放变化的社会经济影响因素[J].环境科学研究,2021,34(3):772-782.

    WU X H,YU Y D,LIANG S.Socioeconomic factors influencing CO2 emissions in Guangdong Province[J].Research of Environmental Sciences,2021,34(3):772-782.
    [30] 张晓敏,邬娜,吴佳,等.环境规制内涵、表征及应用述评[J].环境工程技术学报,2021,11(6):1250-1257. doi: 10.12153/j.issn.1674-991X.20210056

    ZHANG X M,WU N,WU J,et al.Review on the connotation,characterization and application of environmental regulation[J].Journal of Environmental Engineering Technology,2021,11(6):1250-1257. doi: 10.12153/j.issn.1674-991X.20210056
    [31] 秦腾,佟金萍,章恒全.环境约束下中国省际水资源效率空间关联网络构建及演化因素[J].中国人口·资源与环境,2020,30(12):84-94.

    QIN T,TONG J P,ZHANG H Q.Construction and evolutionary factors of spatial correlation network of China's provincial water resource efficiency under environmental constraints[J].China Population,Resources and Environment,2020,30(12):84-94.
    [32] WANG F,GAO M N,LIU J,et al.The spatial network structure of China's regional carbon emissions and its network effect[J].Energies,2018,11(10):2706. doi: 10.3390/en11102706
    [33] MEIJERS E,HOEKSTRA J,LEIJTEN M,et al.Connecting the periphery:distributive effects of new infrastructure[J].Journal of Transport Geography,2012,22:187-198. doi: 10.1016/j.jtrangeo.2012.01.005
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  61
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2022-02-05
  • 网络出版日期:  2022-10-11

目录

    /

    返回文章
    返回