Provincial Spatial Network Structure of Carbon Emissions from Service Industry and Driving Factors in China
-
摘要: 在碳达峰、碳中和的时代背景下,探索服务业碳排放空间网络结构及其驱动因素对于推进服务业节能减排具有重要的实践价值. 基于2000—2018年中国省际服务业碳排放的面板数据(不含西藏自治区及港澳台地区数据),综合运用修正后的引力模型和社会网络分析法刻画服务业碳排放空间网络结构特征并厘清其驱动因素. 结果表明:①研究期内中国服务业碳排放空间联系强度不断增大,服务业碳排放空间网络结构趋于复杂化且稳定性显著提升. ②上海市、北京市、江苏省和浙江省等省份在中国服务业碳排放空间网络结构中扮演“中心行动者”的角色,这些省份是其他省份进行服务业碳排放空间关联的重要“桥接”和“枢纽”,控制与主导中国服务业碳排放的空间关联和空间溢出. ③省份间的地理位置越邻近,产业结构优化、城镇化水平和科技发展水平的差异越大,中国服务业碳排放空间的联系越多;而服务业碳排放强度的差异越大,服务业碳排放空间的联系越少. 研究显示,中国省际服务业碳排放存在空间关联和空间溢出,但空间网络结构仍较为松散,未来在推进服务业节能减排的工作中,需重视建立省际协同减排机制.Abstract: In the era of carbon emission peak and carbon neutrality, it is of great practical value for promoting the energy conservation and emission reduction in the service industry to systematically explore the spatial network structure and its driving factors of carbon emissions from service industry. Based on the provincial panel data of carbon emissions (excluding the data of Tibet Autonomous Region, Hongkong, Macon and Taiwan) in China's service industry from 2000 to 2018, the modified gravity model and social network analysis (SNA) were used to analyze the characteristics of spatial network structure of carbon emissions in service industry and clarify the driving factors. The main results are as follows. Firstly, the spatial connection strength of carbon emissions in the service industry continued to increase. Additionally, the spatial network structure of carbon emissions in the service industry became increasingly complicated and stable. Secondly, Shanghai, Beijing, Jiangsu Province, Zhejiang Province, and other provinces played a role of ‘central actor’ in the spatial network structure of carbon emissions in China's service industry. Specifically, the above-mentioned provinces were also important ‘bridges’ for other provinces to implement network connections of carbon emissions in the service industry. Additionally, the ‘hub’ controls and dominates the spatial connection and the spatial spillover of carbon emissions from service industry in China. Thirdly, the closer the geographical location of provinces, the greater the differences in the optimization of industrial structure, the level of urbanization, and the ability of technological innovation, the more spatial connections of carbon emissions from service industry in China. On the contrary, the greater the difference in carbon emission intensity of the service industry, the less spatial connections of carbon emissions in the service industry. The research shows that there were spatial correlations and spatial spillover of carbon emissions in China's inter-provincial service industry, but the spatial network structure was still relatively loose. In the promotion of energy conservation and carbon emission reduction in the service industry, a synergistic inter-provincial emission reduction mechanism needs to be established.
-
表 1 能源消费类型及碳排放系数
Table 1. Type of energy consumption, and coefficient of carbon emission
能源消费类型 碳排放系数 能源消费类型 碳排放系数 煤炭 1.98 柴油 3.16 焦煤 3.04 燃料油 3.24 原油 3.07 天然气 2.18 汽油 3.01 电力 6.2×10−4 煤油 3.1 注:电力的碳排放系数单位为t/(kW·h),其他能源类别的碳排放系数无单位. 表 2 2018年中国服务业碳排放个体空间网络结构特征
Table 2. Individual spatial network structure characteristics regarding carbon emission from service industry in China in 2018
省份 度数中心度 接近中心度 中间中心度 点入度 点出度 总度数 中心度 排名 中心度 排名 中心度 排名 北京市 26 7 33 89.655 2 90.625 2 24.263 1 天津市 12 4 16 44.828 6 64.444 6 3.964 5 河北省 3 4 7 13.793 24 53.704 24 0.030 28 山西省 1 5 6 17.241 19 54.717 19 0.067 23 内蒙古自治区 1 2 3 6.897 30 51.786 30 0.010 30 辽宁省 1 3 4 10.345 29 52.727 29 0.030 28 吉林省 0 4 4 13.793 24 53.704 24 0.067 23 黑龙江省 0 4 4 13.793 24 53.704 24 0.067 23 上海市 27 7 34 93.103 1 93.548 1 24.188 2 江苏省 22 4 26 75.862 3 80.556 3 12.979 3 浙江省 15 2 17 51.724 4 67.442 4 4.633 4 安徽省 3 4 7 13.793 24 53.704 24 0.056 27 福建省 0 6 6 20.690 11 55.769 11 0.097 17 江西省 2 5 7 20.690 11 55.769 11 0.157 14 山东省 7 5 12 27.586 7 58.000 7 0.508 7 河南省 5 5 10 24.138 8 56.863 8 0.382 9 湖北省 2 5 7 17.241 19 54.717 19 0.095 18 湖南省 3 5 8 20.690 11 55.769 11 0.157 14 广东省 11 7 18 48.276 5 65.909 5 3.251 6 广西壮族自治区 2 5 7 20.690 11 55.769 11 0.095 18 海南省 0 6 6 20.690 11 55.769 11 0.095 18 重庆市 3 5 8 20.690 11 55.769 11 0.161 13 四川省 1 6 7 20.690 11 55.769 11 0.226 12 贵州省 2 5 7 17.241 19 54.717 19 0.090 22 云南省 0 5 5 17.241 19 54.717 19 0.095 18 陕西省 0 5 5 17.241 19 54.717 19 0.150 16 甘肃省 0 7 7 24.138 8 56.863 8 0.382 9 青海省 0 7 7 24.138 8 56.863 8 0.493 8 宁夏回族自治区 0 4 4 13.793 24 53.704 24 0.067 23 新疆维吾尔自治区 0 6 6 20.690 11 55.769 11 0.239 11 平均值 4.967 4.967 9.933 28.046 — 59.463 — 2.570 — 表 3 中国服务业碳排放空间网络结构的驱动因素回归结果
Table 3. Regression results of the driving factors regarding spatial network structure of carbon emission from service industry in China
变量 2000年 2006年 2012年 2018年 地理空间邻近性 0.150***
(0.001)0.152***
(0.000)0.162***
(0.000)0.166***
(0.000)服务业碳排放强度差异 −0.054
(0.216)−0.067*
(0.061)−0.149***
(0.001)−0.092*
(0.075)环境规制强度差异 0.078
(0.116)0.058
(0.144)−0.019
(0.335)−0.036*
(0.054)产业结构优化差异 0.536***
(0.000)0.283***
(0.000)0.367***
(0.001)0.320***
(0.000)城镇化水平差异 0.167***
(0.005)0.327***
(0.000)0.371***
(0.000)0.379***
(0.000)投资水平差异 −0.114
(0.124)−0.067
(0.498)−0.060
(0.134)−0.054
(0.129)科技发展水平差异 0.172*
(0.083)0.307***
(0.000)0.275***
(0.000)0.374***
(0.000)截距项 −0.152***
(0.001)−0.109***
(0.000)−0.083***
(0.000)−0.091***
(0.000)R2 0.231 0.284 0.298 0.327 调整后R2 0.226 0.279 0.293 0.322 重复迭代次数 2 000 2 000 2 000 2 000 样本数量 870 870 870 870 注:括号中数值为P值. ***、**和*分别表示在0.01、0.05和0.1水平上显著相关. -
[1] 王深,吕连宏,张保留,等.基于多目标模型的中国低成本碳达峰、碳中和路径[J].环境科学研究,2021,34(9):2044-2055. doi: 10.13198/j.issn.1001-6929.2021.06.18WANG S,LV L H,ZHANG B L,et al.Multi objective programming mode low-cost path for China's peaking carbon dioxide emissions and carbon neutrality[J].Research of Environmental Sciences,2021,34(9):2044-2055. doi: 10.13198/j.issn.1001-6929.2021.06.18 [2] 王许亮,王恕立,滕泽伟.中国服务业碳生产率的空间收敛性研究[J].中国人口·资源与环境,2020,30(2):70-79.WANG X L,WANG S L,TENG Z W.Research on spatial convergence of carbon productivity in China's service industry[J].China Population,Resources and Environment,2020,30(2):70-79. [3] WANG R Z,HAO J X,WANG C N,et al.Embodied CO2 emissions and efficiency of the service sector:evidence from China[J].Journal of Cleaner Production,2020,247:119116. doi: 10.1016/j.jclepro.2019.119116 [4] 韩峰,谢锐.生产性服务业集聚降低碳排放了吗?对我国地级及以上城市面板数据的空间计量分析[J].数量经济技术经济研究,2017,34(3):40-58.HAN F,XIE R.Does the agglomeration of producer services reduce carbon emissions?[J].The Journal of Quantitative & Technical Economics,2017,34(3):40-58. [5] 陆凤芝,王群勇.相向而行还是背道而驰:生产性服务业集聚与污染减排[J].华中科技大学学报(社会科学版),2021,35(2):41-53.LU F Z,WANG Q Y.Positive correlation or negative correlation:a study of agglomeration of producer services and pollution reduction[J].Journal of Huazhong University of Science and Technology (Social Science Edition),2021,35(2):41-53. [6] 李博,张文忠,余建辉.服务业发展、信息化水平与全要素碳生产率增长:基于门限效应的实证研究[J].地理研究,2016,35(5):953-965.LI B,ZHANG W Z,YU J H.Development of service industry,level of informationization and growth of total factor carbon productivity:an empirical study based on threshold effect[J].Geographical Research,2016,35(5):953-965. [7] LI L,HONG X F,PENG K.A spatial panel analysis of carbon emissions,economic growth and high-technology industry in China[J].Structural Change and Economic Dynamics,2019,49:83-92. doi: 10.1016/j.strueco.2018.09.010 [8] ZHANG W C,PENG S J,SUN C W.CO2 emissions in the global supply chains of services:an analysis based on a multi-regional input-output model[J].Energy Policy,2015,86:93-103. doi: 10.1016/j.enpol.2015.06.029 [9] 王丽萍,刘明浩.基于投入产出法的中国物流业碳排放测算及影响因素研究[J].资源科学,2018,40(1):195-206.WANG L P,LIU M H.Carbon emission measurement for China's logistics industry and its influence factors based on input-output method[J].Resources Science,2018,40(1):195-206. [10] FARRENY R,GABARRELL X,RIERADEVALL J.Energy intensity and greenhouse gas emission of a purchase in the retail park service sector:an integrative approach[J].Energy Policy,2008,36(6):1957-1968. doi: 10.1016/j.enpol.2008.02.013 [11] 王凯,李娟,唐宇凌,等.中国服务业能源消费碳排放量核算及影响因素分析[J].中国人口·资源与环境,2013,23(5):21-28. doi: 10.3969/j.issn.1002-2104.2013.05.004WANG K,LI J,TANG Y L,et al.Carbon emissions accounting and decomposition analysis of energy consumption of service industry in China[J].China Population,Resources and Environment,2013,23(5):21-28. doi: 10.3969/j.issn.1002-2104.2013.05.004 [12] MAIRET N,DECELLAS F.Determinants of energy demand in the french service sector:a decomposition analysis[J].Energy Policy,2009,37(7):2734-2744. doi: 10.1016/j.enpol.2009.03.002 [13] 王许亮,王恕立.服务业能源生产率变迁及收敛性分析:基于全球40个经济体细分行业数据的经验研究[J].数量经济技术经济研究,2018,35(1):42-59.WANG X L,WANG S L.Study on the changes and convergence of energy productivity in service sectors:a cross-country (region) analysis[J].The Journal of Quantitative & Technical Economics,2018,35(1):42-59. [14] MULDER P,GROOT H L F.Sectoral energy and labour-productivity convergence[J].Environmental and Resource Economics,2007,36(1):85-112. doi: 10.1007/s10640-006-9042-y [15] 滕泽伟,胡宗彪,蒋西艳.中国服务业碳生产率变动的差异及收敛性研究[J].数量经济技术经济研究,2017,34(3):78-94.TENG Z W,HU Z B,JIANG X Y.Study on the difference and convergence of carbon productivity in China's service industry[J].The Journal of Quantitative & Technical Economics,2017,34(3):78-94. [16] SCHLEICH J,GRUBER E.Beyond case studies:barriers to energy efficiency in commerce and the services sector[J].Energy Economics,2008,30(2):449-464. doi: 10.1016/j.eneco.2006.08.004 [17] FANG C Y,HU J L,LOU T K.Environment-adjusted total-factor energy efficiency of Taiwan's service sectors[J].Energy Policy,2013,63:1160-1168. doi: 10.1016/j.enpol.2013.07.124 [18] IPCC.IPCC guidelines for national green gas inventories:volume Ⅱ[EB/OL].Kanagawa:IGES,(2006-07-01)[2021-11-28].http://www.ipcc.eh/ipccreports/Methodology-reports.htm. [19] 李小建.经济地理学[M].2版.北京:高等教育出版社,2006. [20] MA F,WANG Y X,YUEN K F,et al.The evolution of the spatial association effect of carbon emissions in transportation:a social network perspective[J].International Journal of Environmental Research and Public Health,2019,16(12):2154. doi: 10.3390/ijerph16122154 [21] 刘华军,刘传明,孙亚男.中国能源消费的空间关联网络结构特征及其效应研究[J].中国工业经济,2015(5):83-95. doi: 10.19581/j.cnki.ciejournal.2015.05.008LIU H J,LIU C M,SUN Y N.Spatial correlation network structure of energy consumption and its effect in China[J].China Industrial Economics,2015(5):83-95. doi: 10.19581/j.cnki.ciejournal.2015.05.008 [22] 童磊,王运鹏.省域碳排放的空间网络结构特征与影响因素研究:基于产业转移视角[J].经济问题,2020(3):18-24.TONG L,WANG Y P.Spatial network structure characteristics and influencing factors of provincial carbon emissions:based on the perspective of industrial transfer[J].On Economic Problems,2020(3):18-24. [23] BAI C Q,ZHOU L,XIA M L,et al.Analysis of the spatial association network structure of China's transportation carbon emissions and its driving factors[J].Journal of Environmental Management,2020,253:109765. doi: 10.1016/j.jenvman.2019.109765 [24] 王凯,张淑文,甘畅,等.我国旅游业碳排放的空间关联性及其影响因素[J].环境科学研究,2019,32(6):938-947.WANG K,ZHANG S W,GAN C,et al.Spatial correlation of carbon emissions in tourism industry and its influencing factors in China[J].Research of Environmental Sciences,2019,32(6):938-947. [25] 魏燕茹,陈松林.福建省土地利用碳排放空间关联性与碳平衡分区[J].生态学报,2021,41(14):5814-5824.WEI Y R,CHEN S L.Spatial correlation and carbon balance zoning of land use carbon emissions in Fujian Province[J].Acta Ecologica Sinica,2021,41(14):5814-5824. [26] 张红霞,苏勤,张影莎.社会网络分析在国外旅游研究中的应用进展[J].地理科学进展,2019,38(4):520-532. doi: 10.18306/dlkxjz.2019.04.005ZHANG H X,SU Q,ZHANG Y S.Progress in the application of social network analysis in international tourism research[J].Progress in Geography,2019,38(4):520-532. doi: 10.18306/dlkxjz.2019.04.005 [27] 张帅,袁长伟,赵小曼.中国交通运输碳排放空间聚类与关联网络结构分析[J].经济地理,2019,39(1):122-129. doi: 10.15957/j.cnki.jjdl.2019.01.015ZHANG S,YUAN C W,ZHAO X M.Spatial clustering and correlation network structure analysis of transportation carbon emissions in China[J].Economic Geography,2019,39(1):122-129. doi: 10.15957/j.cnki.jjdl.2019.01.015 [28] SU Y,YU Y Q.Spatial association effect of regional pollution control[J].Journal of Cleaner Production,2019,213:540-552. doi: 10.1016/j.jclepro.2018.12.121 [29] 吴晓慧,余亚东,梁赛.广东省CO2排放变化的社会经济影响因素[J].环境科学研究,2021,34(3):772-782.WU X H,YU Y D,LIANG S.Socioeconomic factors influencing CO2 emissions in Guangdong Province[J].Research of Environmental Sciences,2021,34(3):772-782. [30] 张晓敏,邬娜,吴佳,等.环境规制内涵、表征及应用述评[J].环境工程技术学报,2021,11(6):1250-1257. doi: 10.12153/j.issn.1674-991X.20210056ZHANG X M,WU N,WU J,et al.Review on the connotation,characterization and application of environmental regulation[J].Journal of Environmental Engineering Technology,2021,11(6):1250-1257. doi: 10.12153/j.issn.1674-991X.20210056 [31] 秦腾,佟金萍,章恒全.环境约束下中国省际水资源效率空间关联网络构建及演化因素[J].中国人口·资源与环境,2020,30(12):84-94.QIN T,TONG J P,ZHANG H Q.Construction and evolutionary factors of spatial correlation network of China's provincial water resource efficiency under environmental constraints[J].China Population,Resources and Environment,2020,30(12):84-94. [32] WANG F,GAO M N,LIU J,et al.The spatial network structure of China's regional carbon emissions and its network effect[J].Energies,2018,11(10):2706. doi: 10.3390/en11102706 [33] MEIJERS E,HOEKSTRA J,LEIJTEN M,et al.Connecting the periphery:distributive effects of new infrastructure[J].Journal of Transport Geography,2012,22:187-198. doi: 10.1016/j.jtrangeo.2012.01.005 -