Spatio-Temporal Evolution and Influencing Factors of Carbon Emissions in Different Grade Cities in the Yangtze River Economic Belt
-
摘要: 厘清区域不同等级城市碳排放对实施差异化的城市碳减排行动方案具有重要的指导意义. 采用2000—2019年DMSP_OLS和NPP_VIIRS夜间灯光数据模拟长江经济带城市碳排放,运用空间自相关分析和空间面板杜宾模型分别探讨长江经济带整体和各等级城市碳排放的时空演变及其影响因素. 结果表明:①研究期间,长江经济带整体和各等级城市碳排放量均呈波动上升趋势,其中各等级城市碳排放量呈大型城市>中型城市>小型城市的特征,整体和各等级城市碳排放量的年均增长率均有所降低. ②除个别年份外,整体和各等级城市碳排放的全局Moran′s I值均大于0,分别在5%和10%水平下显著,高-高聚集区主要分布在上海市、江苏省和浙江省等东部地区的城市,高-低聚集区主要分布在重庆市,低-低聚集区主要分布在乐山市等城市. ③人口增长、城镇化率和经济增长等因素对整体碳排放有显著的直接正向影响,而城镇生活污水处理率和生活垃圾无害化处理率对整体碳排放有显著的直接负向影响;人口增长、经济增长及环境规制等因素对各等级城市碳排放的影响有明显差异. 研究显示,长江经济带整体和各等级城市碳排放的时空演变及其影响因素有显著差异,城市减碳行动方案的制定和实施需要注重差异性.Abstract: It is importance for implementing differentiated urban carbon emission reduction action plan to clarify the carbon emissions of different grade cities. In this study, the DMSP_OLS and NPP_VIIRS nighttime light data from 2000 to 2019 were used to simulate the urban carbon emissions in the Yangtze River Economic Belt. Additionally, spatial autocorrelation analysis and spatial panel Durbin model were used to analyze the spatio-temporal evolution, and the influencing factors of carbon emissions in the Yangtze River Economic Belt as a whole and in different grade cities. The results show that: Firstly, the overall carbon emissions of the Yangtze River Economic Belt and those of different grade cities showed a fluctuating upward trend during the study period. The carbon emissions of the different grade cities were large cities>medium cities>small cities. The average annual growth rate of carbon emissions in the overall and different grade cities decreased. Secondly, except for a few years, the values of Moran's I regarding carbon emissions in the overall and different grade cities were greater than 0, which was significant at 5% and 10% levels, respectively. Moreover, its High-High aggregation areas were mainly distributed in Shanghai City, Jiangsu Province, Zhejiang Province and other cities in the eastern region. High-Low aggregation areas were mainly distributed in Chongqing City. Low-Low aggregation areas were mainly located in Leshan City and other cities. Thirdly, population growth, urbanization rate, economic growth and other factors can exert significant, direct and positive impacts on overall carbon emissions. Moreover, the treatment rate of urban sewage and the harmless treatment rate of domestic garbage had significant, direct and negative impacts on overall carbon emissions. In addition, population growth, economic development, environmental regulation, and other factors had significantly different influences on carbon emissions from different grade cities. The research showed that there were significant differences in the spatio-temporal evolution and influencing factors of carbon emissions from overall and different grade cities in the Yangtze River Economic Belt. The formulation and implementation of urban carbon reduction action plans should pay attention to the differences.
-
表 1 2000—2019年碳排放模拟回归结果
Table 1. The results of simulation regarding carbon emission from 2000 to 2019
2000—2009年 2010—2013年 2014—2019年 t检验 R2 k t检验 R2 k t检验 R2 k 27.41*** 0.87 0.05 17.01*** 0.87 0.06 23.23*** 0.89 0.03 注:k为拟合系数. *表示在10%水平(双侧)上相关显著, **表示在5%水平(双侧)上相关显著,***表示在1%水平(双侧)上相关显著. 下同. 表 2 LM、Robust-LM、Wald、LR、AIC和Hausman检验结果
Table 2. The results of LM, Robust-LM, Wald, LR, AIC and Hausman test
统计量 空间邻接矩阵 空间距离矩阵 经济距离矩阵 长江经济
带整体大型
城市中型
城市小型
城市长江经济
带整体大型
城市中型
城市小型
城市长江经济
带整体大型
城市中型
城市小型
城市LM-spatial lag 530.58*** — — — 468.85*** 137.87*** 410.49*** 320.38*** 11.43*** 246.17*** 70.88*** 159.57*** Robust LM-spatial lag 31.34*** — — — 32.00*** 16.65*** 16.59*** 4.75** 0.99 55.18*** 0.31 11.17*** LM-spatial error 857.51*** — — — 749.97*** 212.30*** 574.65*** 501.09*** 46.61*** 377.38*** 130.63*** 277.76*** Robust LM-spatial error 358.27*** — — — 313.12*** 91.08*** 180.75*** 185.45*** 36.17*** 186.38*** 60.07*** 129.36*** Wald-spatial lag 19.08** — — — 19.24** 42.15*** 48.72*** 21.61*** 31.17*** 52.89*** 66.09*** 26.37*** Wald-spatial error 17.97** — — — 21.68*** 36.85*** 53.76*** 21.38*** 28.50*** 54.76*** 65.37*** 26.01*** LR-spatial lag 18.97** — — — 19.17** 40.35*** 46.86*** 21.37*** 31.45*** 50.51*** 63.15*** 25.86*** LR-spatial error 17.90** — — — 21.57*** 35.72*** 51.15*** 21.13*** 29.87*** 52.62*** 62.98*** 25.33*** AIC −1654.20 — — — −1 644.60 −643.70 −777.70 −636.60 −1 633.60 −636.20 −780.10 −626.00 Hausman
检验双固定效应 40.69*** — — — — 142.80*** 57.89*** 28.20** — — — — 个体固定效应 56.41*** — — — — 29.60*** 28.61*** 20.54** — — — — 时点固定效应 244.07*** — — — — 94.18*** 30.39*** 129.39*** — — — — 注:LM-spatial lag表示空间滞后模型拉格朗日乘数检验;LM-spatial error表示空间误差模型拉格朗日乘数检验;Robust LM-spatial lag表示稳健性空间滞后模型拉格朗日乘数检验;Robust LM-spatial error表示稳健性空间误差模型拉格朗日乘数检验;Wald-spatial lag表示空间滞后模型沃尔德检验;Wald-spatial errorr表示空间误差模型沃尔德检验;LR-spatial lag表示空间滞后模型似然比检验;LR-spatial errorr表示空间误差模型似然比检验;AIC表示赤池信息准则. 表 3 长江经济带整体和各等级城市碳排放空间面板杜宾模型基本回归结果
Table 3. Basic regression results of the space panel Durbin mode for carbon emissions from overall, and different grade cities in the Yangtze River Economic Belt
变量 长江经济带整体 大型城市 中型城市 小型城市 Main-ln POP 0.30*** 0.72*** 0.64*** 0.04 Main-ln GDP 0.27*** 0.16*** 0.26*** 0.35*** Main-ln IS −0.04* 0.09*** −0.06 −0.02 Main-ln CU 0.06*** −0.02 0.26*** 0.11*** Main-ln SD 0.02*** 0.09*** 0.01 0.003 Main-ln SC1 −0.02** −0.04* 0.008 −0.04** Main-ln SC2 −0.09*** −0.11*** −0.05** −0.07*** Main-ln SC3 0.04** 0.15*** 0.16*** 0.004 Wx-ln POP −0.04 −0.23 0.20 0.34** Wx-ln GDP 0.09 0.13 −0.07 0.06 Wx-ln IS 0.05 0.03 −0.16** 0.19*** Wx-ln CU −0.05 0.46*** 0.29** 0.02 Wx-ln SD 0.001 0.11*** 0.11*** 0.008 Wx-ln SC1 0.05** −0.03 −0.05 0.08** Wx-ln SC2 0.01 −0.01 0.18*** −0.04 Wx-ln SC3 −0.07** 0.13 −0.21*** −0.02 Spatial rho 0.19*** −0.30*** −0.30*** 0.18*** sigma2_e 0.03*** 0.01*** 0.02*** 0.03*** N 2 120 460 740 920 注:Main-X、Wx-X、Spatial rho、sigma2_e分别表示解释变量的基本、滞后项、空间效应特异误差和个体效应特异误差的估计结果. N表示样本量. 下同. 表 4 长江经济带整体和各等级城市碳排放空间面板杜宾模型直接、间接和总效应回归结果
Table 4. Regression results of direct, indirect, and total effect estimation of the space panel Durbin model for carbon emissions from overall, and different grade cities in the Yangtze River Economic Belt
变量 长江经济
带整体大型
城市中型
城市小型
城市变量 长江经济
带整体大型
城市中型
城市小型
城市变量 长江经济
带整体大型
城市中型
城市小型
城市D-ln POP 0.30*** 0.75*** 0.64*** 0.05 IND-ln POP 0.04 −0.35 0.02 0.42** T-ln POP 0.34** 0.40 0.66*** 0.47** D-ln GDP 0.27*** 0.15*** 0.26*** 0.36*** IND-ln GDP 0.17** 0.07 −0.11* 0.15 T-ln GDP 0.45*** 0.22* 0.15** 0.50*** D-ln IS −0.03* 0.10*** −0.05 −0.01 IND-ln IS 0.05 0.002 −0.12** 0.22** T-ln IS 0.01 0.10** −0.17** 0.21** D-ln CU 0.06*** −0.06 0.24*** 0.11*** IND-ln CU −0.04 0.40*** 0.19* 0.06 T-ln CU 0.03 0.35*** 0.43*** 0.17* D-ln SD 0.02*** 0.09*** 0.007 0.003 IND-ln SD 0.005 0.07** 0.08*** 0.01 T-ln SD 0.02 0.16*** 0.09*** 0.01 D-ln SC1 −0.02* −0.03* 0.01 −0.03** IND-ln SC1 0.06** −0.01 −0.04 0.09** T-ln SC1 0.04 −0.05 −0.03 0.06 D-ln SC2 −0.09*** −0.11*** −0.06*** −0.08*** IND-ln SC2 −0.009 0.01 0.15*** −0.07 T-ln SC2 −0.10*** −0.09** 0.10** −0.14** D-ln SC3 0.04** 0.14*** 0.17*** 0.003 IND-ln SC3 −0.07* 0.07 −0.21*** −0.02 T-ln SC3 −0.03 0.21*** −0.04 −0.02 注:D-ln X、IND-ln X和T-ln X分别表示解释变量的直接、间接和总效应估计结果. -
[1] 习近平.继往开来,开启全球应对气候变化新征程:在气候雄心峰会上的讲话(2020年12月12日,北京)[N].北京:人民日报,2020-12-13(2). [2] 王深,吕连宏,张保留,等.基于多目标模型的中国低成本碳达峰、碳中和路径[J].环境科学研究,2021,34(9):2044-2055. doi: 10.13198/j.issn.1001-6929.2021.06.18WANG S,LÜ L H,ZHANG B L,et al.Multi objective programming model of low-cost path for China's peaking carbon dioxide emissions and carbon neutrality[J].Research of Environmental Sciences,2021,34(9):2044-2055. doi: 10.13198/j.issn.1001-6929.2021.06.18 [3] 王少剑,苏泳娴,赵亚博.中国城市能源消费碳排放的区域差异、空间溢出效应及影响因素[J].地理学报,2018,73(3):414-428. doi: 10.11821/dlxb201803003WANG S J,SU Y X,ZHAO Y B.Regional inequality,spatial spillover effects and influencing factors of China's city-level energy-related carbon emissions[J].Acta Geographica Sinica,2018,73(3):414-428. doi: 10.11821/dlxb201803003 [4] 李庆.长江经济带城市二氧化碳排放空间异质性分析[J].生态经济,2020,36(12):21-26.LI Q.Analysis of spatial heterogeneity of carbon dioxide emissions from cities in the Yangtze River Economic Belt[J].Ecological Economy,2020,36(12):21-26. [5] 王勇,赵晗.中国碳交易市场启动对地区碳排放效率的影响[J].中国人口·资源与环境,2019,29(1):50-58.WANG Y,ZHAO H.The impact of China's carbon trading market on regional carbon emission efficiency[J].China Population,Resources and Environment,2019,29(1):50-58. [6] PLANT G,KORT E A,FLOERCHINGER C,et al.Large fugitive methane emissions from urban centers along the US east coast[J].Geophysical Research Letters,2019,46(14):8500-8507. [7] MOSIKARI T J,EITA J H.CO2 emissions,urban population,energy consumption and economic growth in selected African countries:a Panel Smooth Transition Regression (PSTR)[J].OPEC Energy Review,2020,44(3):319-333. [8] FALAHATKAR S,REZAEI F.Towards low carbon cities:spatio-temporal dynamics of urban form and carbon dioxide emissions[J].Remote Sensing Applications:Society and Environment,2020,18:100317. [9] PETROVIĆ N,BOJOVIĆ N,PETROVIĆ J.Appraisal of urbanization and traffic on environmental quality[J].Journal of CO2 Utilization,2016,16:428-430. [10] FREMSTAD A,UNDERWOOD A,ZAHRAN S.The environmental impact of sharing:household and urban economies in CO2 emissions[J].Ecological Economics,2018,145:137-147. [11] KHAN Z,ZHU S S,YANG S Q.Environmental regulations an option:asymmetry effect of environmental regulations on carbon emissions using non-linear ARDL[J].Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2019,41(2):137-155. [12] DU X Y,SHEN L Y,WONG S W,et al.Night-time light data based decoupling relationship analysis between economic growth and carbon emission in 289 Chinese cities[J].Sustainable Cities and Society,2021,73:103119. [13] MANCIA A,CHADWICK D R,WATERS S M,et al.Uncertainties in direct N2O emissions from grazing ruminant excreta (EF3PRP) in national greenhouse gas inventories[J].Science of the Total Environment,2022,803:149935. [14] XIE Z H,WU R,WANG S J.How technological progress affects the carbon emission efficiency?evidence from national panel quantile regression[J].Journal of Cleaner Production,2021,307:127133. [15] LI H Z,LI B K,LIU H Y,et al.Spatial distribution and convergence of provincial carbon intensity in China and its influencing factors:a spatial panel analysis from 2000 to 2017[J].Environmental Science and Pollution Research,2021,28(39):54575-54593. [16] SUN Y,ZHENG S,WU Y Z,et al.Spatiotemporal variations of city-level carbon emissions in China during 2000-2017 using nighttime light data[J].Remote Sensing,2020,12(18):2916. [17] 戚伟,刘盛和,金浩然.中国城市规模划分新标准的适用性研究[J].地理科学进展,2016,35(1):47-56.QI W,LIU S H,JIN H R.Applicability of the new standard of city-size classification in China[J].Progress in Geography,2016,35(1):47-56. [18] WANG S,WANG H,ZHANG L,et al.Provincial carbon emissions efficiency and its influencing factors in China[J].Sustainability,2019,11(8):2355. [19] WANG W Z,LIU L C,LIAO H,et al.Impacts of urbanization on carbon emissions:an empirical analysis from OECD countries[J].Energy Policy,2021,151:112171. [20] LI J X,CHENG Z H.Study on total-factor carbon emission efficiency of China's manufacturing industry when considering technology heterogeneity[J].Journal of Cleaner Production,2020,260:121021. [21] SONG Y J,MA F W,QU J Y.Impacts of cultural diversity on carbon emission effects:from the perspective of environmental regulations[J].International Journal of Environmental Research and Public Health,2020,17(17):6109. [22] 曹子阳,吴志峰,匡耀求,等.DMSP/OLS夜间灯光影像中国区域的校正及应用[J].地球信息科学学报,2015,17(9):1092-1102.CAO Z Y,WU Z F,KUANG Y Q,et al.Correction of DMSP/OLS night-time light images and its application in China[J].Journal of Geo-Information Science,2015,17(9):1092-1102. [23] ZHAO M,ZHOU Y Y,LI X C,et al.Building a series of consistent night-time light data (1992-2018) in southeast Asia by integrating DMSP-OLS and NPP-VIIRS[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(3):1843-1856. [24] YU B L,TANG M,WU Q S,et al.Urban built-up area extraction from log- transformed NPP-VIIRS nighttime light composite data[J].IEEE Geoscience and Remote Sensing Letters,2018,15(8):1279-1283. [25] LI X,LI D R,XU H M,et al.Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria's major human settlement during Syrian Civil War[J].International Journal of Remote Sensing,2017,38(21):5934-5951. [26] 杜海波,魏伟,张学渊,等.黄河流域能源消费碳排放时空格局演变及影响因素:基于DMSP/OLS与NPP/VIIRS夜间灯光数据[J].地理研究,2021,40(7):2051-2065. doi: 10.11821/dlyj020200646DU H B,WEI W,ZHANG X Y,et al.Spatio-temporal evolution and influencing factors of energy-related carbon emissions in the Yellow River Basin:based on the DMSP/OLS and NPP/VIIRS nighttime light data[J].Geographical Research,2021,40(7):2051-2065. doi: 10.11821/dlyj020200646 [27] IPCC.IPCC Guidelines for national green gas inventories:volume Ⅱ[EB/OL].Hayama:IGES,(2006-07-01)[2021-11-28].http://www.ipcc.eh/ipccreports/Methodology-reports.htm. [28] 范建双,虞晓芬,周琳.南京市土地利用结构碳排放效率增长及其空间相关性[J].地理研究,2018,37(11):2177-2192.FAN J S,YU X F,ZHOU L.Carbon emission efficiency growth of land use structure and its spatial correlation:a case study of Nanjing City[J].Geographical Research,2018,37(11):2177-2192. [29] 武娜,沈镭,钟帅.基于夜间灯光数据的晋陕蒙能源消费碳排放时空格局[J].地球信息科学学报,2019,21(7):1040-1050. doi: 10.12082/dqxxkx.2019.190010WU N,SHEN L,ZHONG S.Spatio-temporal pattern of carbon emissions based on nightlight data of the Shanxi-Shaanxi-Inner Mongolia Region of China[J].Journal of Geo-Information Science,2019,21(7):1040-1050. doi: 10.12082/dqxxkx.2019.190010 [30] 杨喜,卢新海.空间效应视角下中国城市土地城镇化的驱动因素[J].中国人口·资源与环境,2021,31(1):156-164.YANG X,LU X H.Driving factors of urban land urbanization in China from the perspective of spatial effects[J].China Population,Resources and Environment,2021,31(1):156-164. [31] 杨荣金,孙美莹,张乐,等.长江经济带生态环境保护的若干战略问题[J].环境科学研究,2020,33(8):1795-1804. doi: 10.13198/j.issn.1001-6929.2020.05.36YANG R J,SUN M Y,ZHANG L,et al.Strategic issues of ecological environment protection in the Yangtze River Economic Belt[J].Research of Environmental Sciences,2020,33(8):1795-1804. doi: 10.13198/j.issn.1001-6929.2020.05.36 [32] 赵明轩,吕连宏,张保留,等.中国能源消费、经济增长与碳排放之间的动态关系[J].环境科学研究,2021,34(6):1509-1522. doi: 10.13198/j.issn.1001-6929.2020.12.20ZHAO M X,LÜ L H,ZHANG B L,et al.Dynamic relationship among energy consumption,economic growth and carbon emissions in China[J].Research of Environmental Sciences,2021,34(6):1509-1522. doi: 10.13198/j.issn.1001-6929.2020.12.20 [33] 燕波,孙启宏,李小敏,等.差异化标准下长江经济带省际环境绩效比较研究[J].环境工程技术学报,2020,10(3):504-511. doi: 10.12153/j.issn.1674-991X.20190198YAN B,SUN Q H,LI X M,et al.Comparative study of environmental performance in Yangtze River Economic Belt under different standards[J].Journal of Environmental Engineering Technology,2020,10(3):504-511. doi: 10.12153/j.issn.1674-991X.20190198 -