留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江经济带不同等级城市碳排放的时空演变及其影响因素

王兆峰 李竹 吴卫

王兆峰, 李竹, 吴卫. 长江经济带不同等级城市碳排放的时空演变及其影响因素[J]. 环境科学研究, 2022, 35(10): 2273-2281. doi: 10.13198/j.issn.1001-6929.2022.02.29
引用本文: 王兆峰, 李竹, 吴卫. 长江经济带不同等级城市碳排放的时空演变及其影响因素[J]. 环境科学研究, 2022, 35(10): 2273-2281. doi: 10.13198/j.issn.1001-6929.2022.02.29
WANG Zhaofeng, LI Zhu, WU Wei. Spatio-Temporal Evolution and Influencing Factors of Carbon Emissions in Different Grade Cities in the Yangtze River Economic Belt[J]. Research of Environmental Sciences, 2022, 35(10): 2273-2281. doi: 10.13198/j.issn.1001-6929.2022.02.29
Citation: WANG Zhaofeng, LI Zhu, WU Wei. Spatio-Temporal Evolution and Influencing Factors of Carbon Emissions in Different Grade Cities in the Yangtze River Economic Belt[J]. Research of Environmental Sciences, 2022, 35(10): 2273-2281. doi: 10.13198/j.issn.1001-6929.2022.02.29

长江经济带不同等级城市碳排放的时空演变及其影响因素

doi: 10.13198/j.issn.1001-6929.2022.02.29
基金项目: 国家自然科学基金项目(No.41771162,41971188);湖南省国内一流培育学科建设项目(No.5010002)
详细信息
    作者简介:

    王兆峰(1965-),男,湖南桑植人,教授,博士,博导,主要从事旅游地理研究,jdwzf@126.com

  • 中图分类号: X321

Spatio-Temporal Evolution and Influencing Factors of Carbon Emissions in Different Grade Cities in the Yangtze River Economic Belt

Funds: National Natural Science Foundation of China (No.41771162, 41971188);Construction Program for First Class Disciplines of Hunan Province, China (No.5010002)
  • 摘要: 厘清区域不同等级城市碳排放对实施差异化的城市碳减排行动方案具有重要的指导意义. 采用2000—2019年DMSP_OLS和NPP_VIIRS夜间灯光数据模拟长江经济带城市碳排放,运用空间自相关分析和空间面板杜宾模型分别探讨长江经济带整体和各等级城市碳排放的时空演变及其影响因素. 结果表明:①研究期间,长江经济带整体和各等级城市碳排放量均呈波动上升趋势,其中各等级城市碳排放量呈大型城市>中型城市>小型城市的特征,整体和各等级城市碳排放量的年均增长率均有所降低. ②除个别年份外,整体和各等级城市碳排放的全局Moran′s I值均大于0,分别在5%和10%水平下显著,高-高聚集区主要分布在上海市、江苏省和浙江省等东部地区的城市,高-低聚集区主要分布在重庆市,低-低聚集区主要分布在乐山市等城市. ③人口增长、城镇化率和经济增长等因素对整体碳排放有显著的直接正向影响,而城镇生活污水处理率和生活垃圾无害化处理率对整体碳排放有显著的直接负向影响;人口增长、经济增长及环境规制等因素对各等级城市碳排放的影响有明显差异. 研究显示,长江经济带整体和各等级城市碳排放的时空演变及其影响因素有显著差异,城市减碳行动方案的制定和实施需要注重差异性.

     

  • 图  1  长江经济带整体和各等级城市碳排放的时序演变

    Figure  1.  Temporal evolution of carbon emissions from overall, and different grade cities in the Yangtze River Economic Belt

    图  2  长江经济带整体和各等级城市碳排放的空间集聚情况

    Figure  2.  Spatial agglomeration of carbon emissions from overall, and different grade cities in the Yangtze River Economic Belt

    表  1  2000—2019年碳排放模拟回归结果

    Table  1.   The results of simulation regarding carbon emission from 2000 to 2019

    2000—2009年2010—2013年2014—2019年
    t检验R2kt检验R2kt检验R2k
    27.41***0.870.0517.01***0.870.0623.23***0.890.03
    注:k为拟合系数. *表示在10%水平(双侧)上相关显著, **表示在5%水平(双侧)上相关显著,***表示在1%水平(双侧)上相关显著. 下同.
    下载: 导出CSV

    表  2  LM、Robust-LM、Wald、LR、AIC和Hausman检验结果

    Table  2.   The results of LM, Robust-LM, Wald, LR, AIC and Hausman test

    统计量空间邻接矩阵空间距离矩阵经济距离矩阵
    长江经济
    带整体
    大型
    城市
    中型
    城市
    小型
    城市
    长江经济
    带整体
    大型
    城市
    中型
    城市
    小型
    城市
    长江经济
    带整体
    大型
    城市
    中型
    城市
    小型
    城市
    LM-spatial lag530.58***468.85***137.87***410.49***320.38***11.43***246.17***70.88***159.57***
    Robust LM-spatial lag31.34***32.00***16.65***16.59***4.75**0.9955.18***0.3111.17***
    LM-spatial error857.51***749.97***212.30***574.65***501.09***46.61***377.38***130.63***277.76***
    Robust LM-spatial error358.27***313.12***91.08***180.75***185.45***36.17***186.38***60.07***129.36***
    Wald-spatial lag19.08**19.24**42.15***48.72***21.61***31.17***52.89***66.09***26.37***
    Wald-spatial error17.97**21.68***36.85***53.76***21.38***28.50***54.76***65.37***26.01***
    LR-spatial lag18.97**19.17**40.35***46.86***21.37***31.45***50.51***63.15***25.86***
    LR-spatial error17.90**21.57***35.72***51.15***21.13***29.87***52.62***62.98***25.33***
    AIC−1654.20−1 644.60−643.70−777.70−636.60−1 633.60−636.20−780.10−626.00
    Hausman
    检验
    双固定效应40.69***142.80***57.89***28.20**
    个体固定效应56.41***29.60***28.61***20.54**
    时点固定效应244.07***94.18***30.39***129.39***
    注:LM-spatial lag表示空间滞后模型拉格朗日乘数检验;LM-spatial error表示空间误差模型拉格朗日乘数检验;Robust LM-spatial lag表示稳健性空间滞后模型拉格朗日乘数检验;Robust LM-spatial error表示稳健性空间误差模型拉格朗日乘数检验;Wald-spatial lag表示空间滞后模型沃尔德检验;Wald-spatial errorr表示空间误差模型沃尔德检验;LR-spatial lag表示空间滞后模型似然比检验;LR-spatial errorr表示空间误差模型似然比检验;AIC表示赤池信息准则.
    下载: 导出CSV

    表  3  长江经济带整体和各等级城市碳排放空间面板杜宾模型基本回归结果

    Table  3.   Basic regression results of the space panel Durbin mode for carbon emissions from overall, and different grade cities in the Yangtze River Economic Belt

    变量长江经济带整体大型城市中型城市小型城市
    Main-ln POP0.30***0.72***0.64***0.04
    Main-ln GDP0.27***0.16***0.26***0.35***
    Main-ln IS−0.04*0.09***−0.06−0.02
    Main-ln CU0.06***−0.020.26***0.11***
    Main-ln SD0.02***0.09***0.010.003
    Main-ln SC1−0.02**−0.04*0.008−0.04**
    Main-ln SC2−0.09***−0.11***−0.05**−0.07***
    Main-ln SC30.04**0.15***0.16***0.004
    Wx-ln POP−0.04−0.230.200.34**
    Wx-ln GDP0.090.13−0.070.06
    Wx-ln IS0.050.03−0.16**0.19***
    Wx-ln CU−0.050.46***0.29**0.02
    Wx-ln SD0.0010.11***0.11***0.008
    Wx-ln SC10.05**−0.03−0.050.08**
    Wx-ln SC20.01−0.010.18***−0.04
    Wx-ln SC3−0.07**0.13−0.21***−0.02
    Spatial rho0.19***−0.30***−0.30***0.18***
    sigma2_e0.03***0.01***0.02***0.03***
    N2 120460740920
    注:Main-X、Wx-X、Spatial rho、sigma2_e分别表示解释变量的基本、滞后项、空间效应特异误差和个体效应特异误差的估计结果. N表示样本量. 下同.
    下载: 导出CSV

    表  4  长江经济带整体和各等级城市碳排放空间面板杜宾模型直接、间接和总效应回归结果

    Table  4.   Regression results of direct, indirect, and total effect estimation of the space panel Durbin model for carbon emissions from overall, and different grade cities in the Yangtze River Economic Belt

    变量长江经济
    带整体
    大型
    城市
    中型
    城市
    小型
    城市
    变量长江经济
    带整体
    大型
    城市
    中型
    城市
    小型
    城市
    变量长江经济
    带整体
    大型
    城市
    中型
    城市
    小型
    城市
    D-ln POP0.30***0.75***0.64***0.05IND-ln POP0.04−0.350.020.42**T-ln POP0.34**0.400.66***0.47**
    D-ln GDP0.27***0.15***0.26***0.36***IND-ln GDP0.17**0.07−0.11*0.15T-ln GDP0.45***0.22*0.15**0.50***
    D-ln IS−0.03*0.10***−0.05−0.01IND-ln IS0.050.002−0.12**0.22**T-ln IS0.010.10**−0.17**0.21**
    D-ln CU0.06***−0.060.24***0.11***IND-ln CU−0.040.40***0.19*0.06T-ln CU0.030.35***0.43***0.17*
    D-ln SD0.02***0.09***0.0070.003IND-ln SD0.0050.07**0.08***0.01T-ln SD0.020.16***0.09***0.01
    D-ln SC1−0.02*−0.03*0.01−0.03**IND-ln SC10.06**−0.01−0.040.09**T-ln SC10.04−0.05−0.030.06
    D-ln SC2−0.09***−0.11***−0.06***−0.08***IND-ln SC2−0.0090.010.15***−0.07T-ln SC2−0.10***−0.09**0.10**−0.14**
    D-ln SC30.04**0.14***0.17***0.003IND-ln SC3−0.07*0.07−0.21***−0.02T-ln SC3−0.030.21***−0.04−0.02
    注:D-ln X、IND-ln X和T-ln X分别表示解释变量的直接、间接和总效应估计结果.
    下载: 导出CSV
  • [1] 习近平.继往开来,开启全球应对气候变化新征程:在气候雄心峰会上的讲话(2020年12月12日,北京)[N].北京:人民日报,2020-12-13(2).
    [2] 王深,吕连宏,张保留,等.基于多目标模型的中国低成本碳达峰、碳中和路径[J].环境科学研究,2021,34(9):2044-2055. doi: 10.13198/j.issn.1001-6929.2021.06.18

    WANG S,LÜ L H,ZHANG B L,et al.Multi objective programming model of low-cost path for China's peaking carbon dioxide emissions and carbon neutrality[J].Research of Environmental Sciences,2021,34(9):2044-2055. doi: 10.13198/j.issn.1001-6929.2021.06.18
    [3] 王少剑,苏泳娴,赵亚博.中国城市能源消费碳排放的区域差异、空间溢出效应及影响因素[J].地理学报,2018,73(3):414-428. doi: 10.11821/dlxb201803003

    WANG S J,SU Y X,ZHAO Y B.Regional inequality,spatial spillover effects and influencing factors of China's city-level energy-related carbon emissions[J].Acta Geographica Sinica,2018,73(3):414-428. doi: 10.11821/dlxb201803003
    [4] 李庆.长江经济带城市二氧化碳排放空间异质性分析[J].生态经济,2020,36(12):21-26.

    LI Q.Analysis of spatial heterogeneity of carbon dioxide emissions from cities in the Yangtze River Economic Belt[J].Ecological Economy,2020,36(12):21-26.
    [5] 王勇,赵晗.中国碳交易市场启动对地区碳排放效率的影响[J].中国人口·资源与环境,2019,29(1):50-58.

    WANG Y,ZHAO H.The impact of China's carbon trading market on regional carbon emission efficiency[J].China Population,Resources and Environment,2019,29(1):50-58.
    [6] PLANT G,KORT E A,FLOERCHINGER C,et al.Large fugitive methane emissions from urban centers along the US east coast[J].Geophysical Research Letters,2019,46(14):8500-8507.
    [7] MOSIKARI T J,EITA J H.CO2 emissions,urban population,energy consumption and economic growth in selected African countries:a Panel Smooth Transition Regression (PSTR)[J].OPEC Energy Review,2020,44(3):319-333.
    [8] FALAHATKAR S,REZAEI F.Towards low carbon cities:spatio-temporal dynamics of urban form and carbon dioxide emissions[J].Remote Sensing Applications:Society and Environment,2020,18:100317.
    [9] PETROVIĆ N,BOJOVIĆ N,PETROVIĆ J.Appraisal of urbanization and traffic on environmental quality[J].Journal of CO2 Utilization,2016,16:428-430.
    [10] FREMSTAD A,UNDERWOOD A,ZAHRAN S.The environmental impact of sharing:household and urban economies in CO2 emissions[J].Ecological Economics,2018,145:137-147.
    [11] KHAN Z,ZHU S S,YANG S Q.Environmental regulations an option:asymmetry effect of environmental regulations on carbon emissions using non-linear ARDL[J].Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2019,41(2):137-155.
    [12] DU X Y,SHEN L Y,WONG S W,et al.Night-time light data based decoupling relationship analysis between economic growth and carbon emission in 289 Chinese cities[J].Sustainable Cities and Society,2021,73:103119.
    [13] MANCIA A,CHADWICK D R,WATERS S M,et al.Uncertainties in direct N2O emissions from grazing ruminant excreta (EF3PRP) in national greenhouse gas inventories[J].Science of the Total Environment,2022,803:149935.
    [14] XIE Z H,WU R,WANG S J.How technological progress affects the carbon emission efficiency?evidence from national panel quantile regression[J].Journal of Cleaner Production,2021,307:127133.
    [15] LI H Z,LI B K,LIU H Y,et al.Spatial distribution and convergence of provincial carbon intensity in China and its influencing factors:a spatial panel analysis from 2000 to 2017[J].Environmental Science and Pollution Research,2021,28(39):54575-54593.
    [16] SUN Y,ZHENG S,WU Y Z,et al.Spatiotemporal variations of city-level carbon emissions in China during 2000-2017 using nighttime light data[J].Remote Sensing,2020,12(18):2916.
    [17] 戚伟,刘盛和,金浩然.中国城市规模划分新标准的适用性研究[J].地理科学进展,2016,35(1):47-56.

    QI W,LIU S H,JIN H R.Applicability of the new standard of city-size classification in China[J].Progress in Geography,2016,35(1):47-56.
    [18] WANG S,WANG H,ZHANG L,et al.Provincial carbon emissions efficiency and its influencing factors in China[J].Sustainability,2019,11(8):2355.
    [19] WANG W Z,LIU L C,LIAO H,et al.Impacts of urbanization on carbon emissions:an empirical analysis from OECD countries[J].Energy Policy,2021,151:112171.
    [20] LI J X,CHENG Z H.Study on total-factor carbon emission efficiency of China's manufacturing industry when considering technology heterogeneity[J].Journal of Cleaner Production,2020,260:121021.
    [21] SONG Y J,MA F W,QU J Y.Impacts of cultural diversity on carbon emission effects:from the perspective of environmental regulations[J].International Journal of Environmental Research and Public Health,2020,17(17):6109.
    [22] 曹子阳,吴志峰,匡耀求,等.DMSP/OLS夜间灯光影像中国区域的校正及应用[J].地球信息科学学报,2015,17(9):1092-1102.

    CAO Z Y,WU Z F,KUANG Y Q,et al.Correction of DMSP/OLS night-time light images and its application in China[J].Journal of Geo-Information Science,2015,17(9):1092-1102.
    [23] ZHAO M,ZHOU Y Y,LI X C,et al.Building a series of consistent night-time light data (1992-2018) in southeast Asia by integrating DMSP-OLS and NPP-VIIRS[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(3):1843-1856.
    [24] YU B L,TANG M,WU Q S,et al.Urban built-up area extraction from log- transformed NPP-VIIRS nighttime light composite data[J].IEEE Geoscience and Remote Sensing Letters,2018,15(8):1279-1283.
    [25] LI X,LI D R,XU H M,et al.Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria's major human settlement during Syrian Civil War[J].International Journal of Remote Sensing,2017,38(21):5934-5951.
    [26] 杜海波,魏伟,张学渊,等.黄河流域能源消费碳排放时空格局演变及影响因素:基于DMSP/OLS与NPP/VIIRS夜间灯光数据[J].地理研究,2021,40(7):2051-2065. doi: 10.11821/dlyj020200646

    DU H B,WEI W,ZHANG X Y,et al.Spatio-temporal evolution and influencing factors of energy-related carbon emissions in the Yellow River Basin:based on the DMSP/OLS and NPP/VIIRS nighttime light data[J].Geographical Research,2021,40(7):2051-2065. doi: 10.11821/dlyj020200646
    [27] IPCC.IPCC Guidelines for national green gas inventories:volume Ⅱ[EB/OL].Hayama:IGES,(2006-07-01)[2021-11-28].http://www.ipcc.eh/ipccreports/Methodology-reports.htm.
    [28] 范建双,虞晓芬,周琳.南京市土地利用结构碳排放效率增长及其空间相关性[J].地理研究,2018,37(11):2177-2192.

    FAN J S,YU X F,ZHOU L.Carbon emission efficiency growth of land use structure and its spatial correlation:a case study of Nanjing City[J].Geographical Research,2018,37(11):2177-2192.
    [29] 武娜,沈镭,钟帅.基于夜间灯光数据的晋陕蒙能源消费碳排放时空格局[J].地球信息科学学报,2019,21(7):1040-1050. doi: 10.12082/dqxxkx.2019.190010

    WU N,SHEN L,ZHONG S.Spatio-temporal pattern of carbon emissions based on nightlight data of the Shanxi-Shaanxi-Inner Mongolia Region of China[J].Journal of Geo-Information Science,2019,21(7):1040-1050. doi: 10.12082/dqxxkx.2019.190010
    [30] 杨喜,卢新海.空间效应视角下中国城市土地城镇化的驱动因素[J].中国人口·资源与环境,2021,31(1):156-164.

    YANG X,LU X H.Driving factors of urban land urbanization in China from the perspective of spatial effects[J].China Population,Resources and Environment,2021,31(1):156-164.
    [31] 杨荣金,孙美莹,张乐,等.长江经济带生态环境保护的若干战略问题[J].环境科学研究,2020,33(8):1795-1804. doi: 10.13198/j.issn.1001-6929.2020.05.36

    YANG R J,SUN M Y,ZHANG L,et al.Strategic issues of ecological environment protection in the Yangtze River Economic Belt[J].Research of Environmental Sciences,2020,33(8):1795-1804. doi: 10.13198/j.issn.1001-6929.2020.05.36
    [32] 赵明轩,吕连宏,张保留,等.中国能源消费、经济增长与碳排放之间的动态关系[J].环境科学研究,2021,34(6):1509-1522. doi: 10.13198/j.issn.1001-6929.2020.12.20

    ZHAO M X,LÜ L H,ZHANG B L,et al.Dynamic relationship among energy consumption,economic growth and carbon emissions in China[J].Research of Environmental Sciences,2021,34(6):1509-1522. doi: 10.13198/j.issn.1001-6929.2020.12.20
    [33] 燕波,孙启宏,李小敏,等.差异化标准下长江经济带省际环境绩效比较研究[J].环境工程技术学报,2020,10(3):504-511. doi: 10.12153/j.issn.1674-991X.20190198

    YAN B,SUN Q H,LI X M,et al.Comparative study of environmental performance in Yangtze River Economic Belt under different standards[J].Journal of Environmental Engineering Technology,2020,10(3):504-511. doi: 10.12153/j.issn.1674-991X.20190198
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  86
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-07
  • 修回日期:  2022-01-20
  • 网络出版日期:  2022-10-11

目录

    /

    返回文章
    返回