Environmental Behavior and Fate of Chromium in Solidification/Stabilization Post-Remediation Sites: A Case Study of a Remediation Site in Central China
-
摘要: 为了探讨铬(Cr)在固化/稳定化修复后场地中的环境行为与归趋,通过浸出环境评价框架(LEAF)浸出评价、形态分级以及微观表征,对我国中部某修复后场地土壤中Cr的含量及形态进行3轮次跟踪监测. 结果表明:①跟踪监测试验发现,该修复后场地土壤中总Cr含量下降了18.92%. 在芥菜植株中Cr分布存在差异,其中,芥菜叶中Cr含量高达1.62 mg/kg (以干质量计),芥菜茎中Cr含量为0.69~0.77 mg/kg (以干质量计). 芥菜植株吸收Cr的能力为0.44~3.10 mg/m2,对土壤中总Cr减量化的贡献率最高仅为0.05%;另外,新鲜芥菜植株中Cr含量为0.12~0.69 mg/kg,超过GB 2762—2017《食品安全国家标准 食品中污染物限量》中规定限值(0.5 mg/kg),一旦食用该场地中的芥菜会对人体健康产生影响,增加了Cr在修复后场地中风险暴露的途径. ②土壤微观表征试验表明,修复后场地土壤中Cr主要以Cr2O3形式存在,土壤中的MnxOy能起到氧化Cr的作用. 在LEAF试验中,固化/稳定化的Cr被活化溶出;而BCR分析发现,Cr的可还原态占比随修复后时间的延长逐渐增加,由1.13%增至4.02%. ③土壤中Mn、Fe及植物等环境因子均会参与Cr的氧化还原、沉淀与溶解,以及植物吸收与富集等环境行为,并导致已被固化/稳定化的Cr溶解或再氧化成Cr(Ⅵ)而溶出,从而增加Cr的迁移性和毒性,造成环境风险,其中Mn(Ⅳ)是Cr活化的关键因子. 研究显示,修复后场地中Cr的环境行为会受到多种环境因素共同影响,尤其是在Mn含量较高的区域更易形成氧化氛围导致Cr的重新活化.Abstract: In this study, the environmental behavior and fate of Cr in post-remediation sites in central China were studied. Three rounds of follow-up monitoring of Cr contents and forms in the soils and plants were carried out. The leaching characteristics and form transformation of Cr were explored using LEAF, BCR procedures, and micro-characterization. The results show that: (1) The total amount of Cr in the soils decreased significantly, with an average decrease of 18.92%. The content of Cr (in dry weight) in Brassica juncea leaves was as high as 1.62 mg/kg, Cr (in dry weight) in stems was 0.69-0.77 mg/kg, and Cr content in fresh Brassica juncea was 0.12-0.69 mg/kg, which exceeds the National Standard for Food Safety-Limits of Contaminants in Foods (GB 2762—2017) standard limit (0.5 mg/kg). Although the contribution of Cr removal via plant harvest was less than 0.05%, the potential health implication should be addressed in the post-remediation phase. (2) The key mechanism of Cr solidification/stabilization was the conversion of highly toxic and mobile Cr(Ⅵ) to less toxic and mobile Cr(Ⅲ). However, the co-existing MnxOy could re-oxidize Cr, leading to high mobility of Cr as shown in the LEAF data. This finding was further supported by BCR analysis, which showed that the proportion of reducible Cr increased gradually from 1.13% to 4.02%. (3) Complicated environmental behaviors of Cr, such as oxidation/reduction and dissolution/precipitation in soils, as well as the migration and transformation associated with plants, were involved in the post-remediation site. The main influencing factors included pH, Mn, Fe and plants, while the Mn(Ⅳ) in soils played a crucial role, which leads to the dissolution/reoxidation of the solidified/stabilized Cr to Cr(Ⅵ) and the dissolution, thus increasing the mobility and toxicity of Cr and posing environmental risks. This study reveals that the environmental behavior of Cr in the post-remediation sites is affected by a variety of environmental factors, especially in the area with high Mn content, which is prone to the formation of oxidation atmosphere, leading to the reactivation of Cr.
-
表 1 Cr(OH)3氧化途径
Table 1. The pathways of Cr(OH)3 oxidation
氧化类型 氧化环境 氧化效果 数据来源 O2氧化 pH为9、10、11,500 mg/L Cr(OH)3 10、365 d后,O2氧化产生Cr(Ⅵ)的占比分别为10.2%和18.3% 文献[36] pH为8.3~8.7,125 μg/L Cr(Ⅲ)溶液 13 d后Cr(Ⅵ)浓度为3.8 μg/L 文献[37] Mn(Ⅳ)氧化 pH为9、10、11,500 mg/L Cr(OH)3与10 mg/L MnO2 10、365 d后,Mn(Ⅳ)氧化产生Cr(Ⅵ)的占比分别为93.5%和9.7% 文献[36] pH为5~9,770 μmol/L Cr(OH)3与436 μmol/L MnO2 随pH增加,Cr(Ⅵ)最大浓度由100 μmol/L增至200 μmol/L 文献[35] Mn(Ⅱ)-O2
催化氧化pH为9、10、11,500 mg/L Cr(OH)3与0.2 mmol/L Mn(NO3)2 10、365 d后,Mn(Ⅱ)-O2氧化而产生Cr(Ⅵ)的占比分别为38.7%和79.7% 文献[36] pH 为7、8、9,CrxFe1-x(OH)3与MnCl2,初始Cr(Ⅲ)浓度为
3.85 mmol/L,Mn(Ⅱ)浓度为545 μmol/LpH 为7、8、9时,200 h后Cr(Ⅵ)浓度分别为0、5、19 μmol/L 文献[38] -
[1] SHAHID M,SHAMSHAD S,RAFIQ M,et al.Chromium speciation,bioavailability,uptake,toxicity and detoxification in soil-plant system:a review[J].Chemosphere,2017,178:513-533. doi: 10.1016/j.chemosphere.2017.03.074 [2] DARRIE G.Commercial extraction technology and process waste disposal in the manufacture of chromium chemicals from ore[J].Environmental Geochemistry and Health,2001,23(3):187-193. doi: 10.1023/A:1012295927081 [3] 刘美丽,牛其建,俞洋洋,等.碳基材料负载纳米零价铁去除六价铬的研究进展[J].环境科学研究,2021.doi: 10.13198/j.issn.1001-6929.2021.07.13.LIU M L,NIU Q J,YU Y Y,et al.Progress in removal of hexavalent chromium by carbon-based materials loaded with nano zero-valent iron[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2021.07.13. [4] BELAY A A.Impacts of chromium from tannery effluent and evaluation of alternative treatment options[J].Journal of Environmental Protection,2010,1(1):53-58. doi: 10.4236/jep.2010.11007 [5] 谷庆宝,马福俊,张倩,等.污染场地固化/稳定化修复的评价方法与标准[J].环境科学研究,2017,30(5):755-764.GU Q B,MA F J,ZHANG Q,et al.Remediation of contaminated sites by solidification/stabilization:testing and performance criteria[J].Research of Environmental Sciences,2017,30(5):755-764. [6] QIN L P,WANG X L.Chromium isotope geochemistry[J].Reviews in Mineralogy and Geochemistry,2017,82:379-414. doi: 10.2138/rmg.2017.82.10 [7] BHATTACHARYA M,SHRIWASTAV A,BHOLE S,et al.Processes governing chromium contamination of groundwater and soil from a chromium waste source[J].ACS Earth and Space Chemistry,2020,4(1):35-49. doi: 10.1021/acsearthspacechem.9b00223 [8] GABERELL M,CHIN Y P,HUG S J,et al.Role of dissolved organic matter composition on the photoreduction of Cr(Ⅵ) to Cr(Ⅲ) in the presence of iron[J].Environmental Science & Technology,2003,37(19):4403-4409. [9] SLEJKO F F,PETRINI R,LUTMAN A,et al.Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia region,northern Italy[J].Isotopes in Environmental and Health Studies,2019,55(1):56-69. doi: 10.1080/10256016.2018.1560278 [10] HAUSLADEN D M,FENDORF S.Hexavalent chromium generation within naturally structured soils and sediments[J].Environmental Science & Technology,2017,51(4):2058-2067. [11] LUO Z T,ZHI T Y,LIU L,et al.Solidification/stabilization of chromium slag in red mud-based geopolymer[J].Construction and Building Materials,2022,316:125813. doi: 10.1016/j.conbuildmat.2021.125813 [12] 王湘徽,郭中豪.一种重金属污染晶化包封稳定化剂及其使用方法:201210212001.3[P].2015-09-30. [13] REMETEIOVÁ D,RUŽIČKOVÁ S,MIČKOVÁ V,et al.Evaluation of US EPA method 3052 microwave acid digestion for quantification of majority metals in waste printed circuit boards[J].Metals,2020,10(11):1511. doi: 10.3390/met10111511 [14] ALAHMAD W,TUNGKIJANANSIN N,KANETA T,et al.A colorimetric paper-based analytical device coupled with hollow fiber membrane liquid phase microextraction (HF-LPME) for highly sensitive detection of hexavalent chromium in water samples[J].Talanta,2018,190:78-84. doi: 10.1016/j.talanta.2018.07.056 [15] WEN J,YI Y J,ZENG G M.Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction[J].Journal of Environmental Management,2016,178:63-69. doi: 10.1016/j.jenvman.2016.04.046 [16] SUT-LOHMANN M,RAMEZANY S,KÄSTNER F,et al.Using modified Tessier sequential extraction to specify potentially toxic metals at a former sewage farm[J].Journal of Environmental Management,2022,304:114229. doi: 10.1016/j.jenvman.2021.114229 [17] 王丰,李润东,李彦龙,等.污泥飞灰中重金属不同浸出方法比较及综合毒性评价[J].环境科学,2018,39(1):292-299.WANG F,LI R D,LI Y L,et al.Comparison of different leaching methods for heavy metals in sludge fly ash and comprehensive toxicity evaluation[J].Environmental Science,2018,39(1):292-299. [18] 孔明,韩巍,纪中新,等.碱浸钢丝污泥热处理后的重金属形态及浸出特性[J].环境科学研究,2018,31(5):961-966.KONG M,HAN W,JI Z X,et al.Heavy metals forms and leaching characteristics of ALRS with heat treatment[J].Research of Environmental Sciences,2018,31(5):961-966. [19] 洪亚军,徐祖信,冯承莲,等.水葫芦/污泥共热解法制备生物炭粒及其对Cr3+的吸附特性[J].环境科学研究,2020,33(4):1052-1061.HONG Y J,XU Z X,FENG C L,et al.Co-pyrolysis of water hyacinth and sewage sludge for preparation of biochar particles and its adsorption properties for Cr3+[J].Research of Environmental Sciences,2020,33(4):1052-1061. [20] US EPA.Liquid-solid partitioning as a function of extract pH using a parallel batch extraction procedure[S].Washington DC:US EPA,2017. [21] US EPA.Liquid-solid partitioning as a function of liquid-solid ratio for constituents in solid materials using an up-flow percolation column procedure[S].Washington DC:US EPA,2017. [22] 张琢,李发生,王梅,等.基于用途和风险的重金属污染土壤稳定化修复后评估体系探讨[J].环境工程技术学报,2015,5(6):509-518. doi: 10.3969/j.issn.1674-991X.2015.06.080ZHANG Z,LI F S,WANG M,et al.Thinking on assessment framework of stabilization effect for heavy metals contaminated soil based on disposal scenarios and risks[J].Journal of Environmental Engineering Technology,2015,5(6):509-518. doi: 10.3969/j.issn.1674-991X.2015.06.080 [23] LIU J,DUAN C Q,ZHANG X H,et al.Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil[J].Journal of Hazardous Materials,2011,188:85-91. doi: 10.1016/j.jhazmat.2011.01.066 [24] PIKUŁA D,STĘPIEŃ W.Effect of the degree of soil contamination with heavy metals on their mobility in the soil profile in a microplot experiment[J].Agronomy,2021,11(5):878. doi: 10.3390/agronomy11050878 [25] XU Z R,CAI M L,CHEN S H,et al.High-affinity sulfate transporter Sultr1;2 is a major transporter for Cr(Ⅵ) uptake in plants[J].Environmental Science & Technology,2021,55:1576-1584. [26] GUO S Y,XIAO C Q,ZHOU N,et al.Speciation,toxicity,microbial remediation and phytoremediation of soil chromium contamination[J].Environmental Chemistry Letters,2021,19:1413-1431. doi: 10.1007/s10311-020-01114-6 [27] 王爱云,钟国锋,徐刚标,等.铬胁迫对芥菜型油菜生理特性和铬富集的影响[J].环境科学,2011,32(6):1717-1725.WANG A Y,ZHONG G F,XU G B,et al.Effects of Cr(Ⅵ) stress on physiological characteristics of Brassica juncea and its Cr uptake[J].Environmental Science,2011,32(6):1717-1725. [28] 王根才.闽西特产芥菜干加工新技术的研究[D].福州:福建农林大学,2009:5-7. [29] DAI C,ZUO X B,CAO B,et al.Homogeneous and heterogeneous (Fex,Cr1-x)(OH)3 precipitation:Implications for Cr sequestration[J].Environmental Science & Technology,2016,50(4):1741-1749. [30] MOLINARI S,MAGRO M,CARBONE C,et al.Environmental implications of one-century COPRs evolution in a single industrial site:from leaching impact to sustainable remediation of CrⅥ polluted groundwater[J].Chemosphere,2021,283:131211. doi: 10.1016/j.chemosphere.2021.131211 [31] HAI J,LIU L H,TAN W F,et al.Catalytic oxidation and adsorption of Cr(Ⅲ) on iron-manganese nodules under oxic conditions[J].Journal of Hazardous Materials,2020,390:122166. doi: 10.1016/j.jhazmat.2020.122166 [32] YANG W C,XI D D,LI C F,et al.‘In-situ synthesized’ iron-based bimetal promotes efficient removal of Cr(Ⅵ) in by zero-valent iron-loaded hydroxyapatite[J].Journal of Hazardous Materials,2021,420:126540. doi: 10.1016/j.jhazmat.2021.126540 [33] LIANG J L,HUANG X M,YAN J W,et al.A review of the formation of Cr(Ⅵ) via Cr(Ⅲ) oxidation in soils and groundwater[J].Science of the Total Environment,2021,774:145762. doi: 10.1016/j.scitotenv.2021.145762 [34] KOTAŚ J,STASICKA Z.Chromium occurrence in the environment and methods of its speciation[J].Environmental Pollution,2000,107(3):263-283. doi: 10.1016/S0269-7491(99)00168-2 [35] PAN C,LIU H,CATALANO J G,et al.Understanding the roles of dissolution and diffusion in Cr(OH)3 oxidation by δ-MnO2[J].ACS Earth and Space Chemistry,2019,3(3):357-365. doi: 10.1021/acsearthspacechem.8b00129 [36] LIU W Z,LI J,ZHENG J Y,et al.Different pathways for Cr(Ⅲ) oxidation:implications for Cr(Ⅵ) reoccurrence in reduced chromite ore processing residue[J].Environmental Science & Technology,2020,54(19):11971-11979. [37] SCHROEDER D C,LEE G F.Potential transformations of chromium in natural waters[J].Water,Air,and Soil Pollution,1975,4:355-365. doi: 10.1007/BF00280721 [38] QIAN A,PAN C,YUAN S H,et al.Cr(Ⅵ) formation from CrxFe1-x(OH)3 induced by Mn(II) oxidation on the surface of CrxFe1-x(OH)3[J].ACS Earth and Space Chemistry,2020,4(9):1558-1564. doi: 10.1021/acsearthspacechem.0c00142 [39] HOU S,DONG H C,DU X K,et al.Early warning on risk development in compound lead and cadmium contaminated sites[J].Journal of Hazardous Materials,2021,416:126174. doi: 10.1016/j.jhazmat.2021.126174 [40] HU L G,CAI Y,JIANG G B.Occurrence and speciation of polymeric chromium(Ⅲ),monomeric chromium(Ⅲ) and chromium(Ⅵ) in environmental samples[J].Chemosphere,2016,156:14-20. doi: 10.1016/j.chemosphere.2016.04.100 [41] PRASAD S,YADAV K K,KUMAR S,et al.Chromium contamination and effect on environmental health and its remediation:a sustainable approaches[J].Journal of Environmental Management,2021,285:112174. doi: 10.1016/j.jenvman.2021.112174 [42] 可欣,周燕,张飞杰,等.污染场地修复药剂安全利用问题及对策[J].环境科学研究,2021,34(6):1473-1481.KE X,ZHOU Y,ZHANG F J,et al.Problems and strategies of safe utilization of agents for contaminated sites[J].Research of Environmental Sciences,2021,34(6):1473-1481. [43] HE L,WANG Z,GU W B.Evolution of freeze-thaw properties of cement-lime solidified contaminated soil[J].Environmental Technology & Innovation,2021,21:101189. [44] ZHU H,WU C F,WANG J,et al.The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents[J].Environmental Science and Pollution Research,2018,25:17499-17508. doi: 10.1007/s11356-018-1929-y [45] 许中坚,李方文,刘广深,等.模拟酸雨对红壤中铬释放的影响研究[J].环境科学研究,2005,18(2):9-12. doi: 10.3321/j.issn:1001-6929.2005.02.002XU Z J,LI F W,LIU G S,et al.Study on release of chromium from red soils under the influence by simulated acid rain[J].Research of Environmental Sciences,2005,18(2):9-12. doi: 10.3321/j.issn:1001-6929.2005.02.002 [46] BARTLETT R,JAMES B.Behavior of chromium in soils:Ⅲ.oxidation[J].Journal of Environmental Quality,1979,8(1):31-35. [47] TU Y M,LIU D Y,WANG T F,et al.Evaluation on later-age performance of concrete subjected to early-age freeze-thaw damage[J].Construction and Building Materials,2021,270:121491. doi: 10.1016/j.conbuildmat.2020.121491 [48] ZHAO Y P,XIANG W,HUANG C L,et al.Production of hydroxyl radicals following water-level drawdown in peatlands:a new induction mechanism for enhancing laccase activity in carbon cycling[J].Soil Biology and Biochemistry,2021,156:108241. doi: 10.1016/j.soilbio.2021.108241 [49] LIAO Y P,MIN X B,YANG Z H,et al.Assessment of the stability of chromium in remedied soils by Pannonibacter phragmitetus BB and its risk to groundwater[J].Journal of Soils and Sediments,2014,14:1098-1106. doi: 10.1007/s11368-014-0860-1 -