留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固化/稳定化修复后场地中铬的环境行为和归趋:以我国中部某修复后场地为例

冯明玉 韦黎华 胡清 王宏 罗培

冯明玉, 韦黎华, 胡清, 王宏, 罗培. 固化/稳定化修复后场地中铬的环境行为和归趋:以我国中部某修复后场地为例[J]. 环境科学研究, 2022, 35(5): 1131-1139. doi: 10.13198/j.issn.1001-6929.2022.03.01
引用本文: 冯明玉, 韦黎华, 胡清, 王宏, 罗培. 固化/稳定化修复后场地中铬的环境行为和归趋:以我国中部某修复后场地为例[J]. 环境科学研究, 2022, 35(5): 1131-1139. doi: 10.13198/j.issn.1001-6929.2022.03.01
FENG Mingyu, WEI Lihua, HU Qing, WANG Hong, LUO Pei. Environmental Behavior and Fate of Chromium in Solidification/Stabilization Post-Remediation Sites: A Case Study of a Remediation Site in Central China[J]. Research of Environmental Sciences, 2022, 35(5): 1131-1139. doi: 10.13198/j.issn.1001-6929.2022.03.01
Citation: FENG Mingyu, WEI Lihua, HU Qing, WANG Hong, LUO Pei. Environmental Behavior and Fate of Chromium in Solidification/Stabilization Post-Remediation Sites: A Case Study of a Remediation Site in Central China[J]. Research of Environmental Sciences, 2022, 35(5): 1131-1139. doi: 10.13198/j.issn.1001-6929.2022.03.01

固化/稳定化修复后场地中铬的环境行为和归趋:以我国中部某修复后场地为例

doi: 10.13198/j.issn.1001-6929.2022.03.01
基金项目: 国家重点研发计划项目(No.2018YFC1801403)
详细信息
    作者简介:

    冯明玉(1993-),女,湖北黄冈人,fengmy3@mail2.sysu.edu.cn

    通讯作者:

    罗培(1988-),男,湖北武汉人,博士,主要从事土壤污染控制与修复研究,luopei01@163.com

  • 中图分类号: X53

Environmental Behavior and Fate of Chromium in Solidification/Stabilization Post-Remediation Sites: A Case Study of a Remediation Site in Central China

Funds: National Key Research and Development Program of China (No.2018YFC1801403)
  • 摘要: 为了探讨铬(Cr)在固化/稳定化修复后场地中的环境行为与归趋,通过浸出环境评价框架(LEAF)浸出评价、形态分级以及微观表征,对我国中部某修复后场地土壤中Cr的含量及形态进行3轮次跟踪监测. 结果表明:①跟踪监测试验发现,该修复后场地土壤中总Cr含量下降了18.92%. 在芥菜植株中Cr分布存在差异,其中,芥菜叶中Cr含量高达1.62 mg/kg (以干质量计),芥菜茎中Cr含量为0.69~0.77 mg/kg (以干质量计). 芥菜植株吸收Cr的能力为0.44~3.10 mg/m2,对土壤中总Cr减量化的贡献率最高仅为0.05%;另外,新鲜芥菜植株中Cr含量为0.12~0.69 mg/kg,超过GB 2762—2017《食品安全国家标准 食品中污染物限量》中规定限值(0.5 mg/kg),一旦食用该场地中的芥菜会对人体健康产生影响,增加了Cr在修复后场地中风险暴露的途径. ②土壤微观表征试验表明,修复后场地土壤中Cr主要以Cr2O3形式存在,土壤中的MnxOy能起到氧化Cr的作用. 在LEAF试验中,固化/稳定化的Cr被活化溶出;而BCR分析发现,Cr的可还原态占比随修复后时间的延长逐渐增加,由1.13%增至4.02%. ③土壤中Mn、Fe及植物等环境因子均会参与Cr的氧化还原、沉淀与溶解,以及植物吸收与富集等环境行为,并导致已被固化/稳定化的Cr溶解或再氧化成Cr(Ⅵ)而溶出,从而增加Cr的迁移性和毒性,造成环境风险,其中Mn(Ⅳ)是Cr活化的关键因子. 研究显示,修复后场地中Cr的环境行为会受到多种环境因素共同影响,尤其是在Mn含量较高的区域更易形成氧化氛围导致Cr的重新活化.

     

  • 图  1  修复后场地土壤中Cr含量的跟踪监测

    注:XT-ZBG-1、XT-ZBG-2、XT-ZBG-3分别表示采自2019年12月、2020年8月、2021年1月的土壤样品. 不同小写字母表示处理之间差异显著(P<0.05),下同.

    Figure  1.  Follow-up monitoring of chromium content in the soils of the post-remediation site

    图  2  修复后各场地中芥菜植株中总Cr的含量分布(n=3)

    Figure  2.  Distribution of total Cr content in Brassica juncea of the post-remediation site (n=3)

    图  3  修复后场地土壤成分表征

    Figure  3.  The characterization in soil composition of the post-remediation site

    图  4  修复后场地土壤中Cr的形态分析

    Figure  4.  Speciation analysis of Cr in the soils of the post-remediation site

    图  5  修复后场地土壤的pH和总Cr浸出特性

    Figure  5.  The pH value and the leaching characteristics of total chromium in the soils of the post-remediation site

    图  6  修复后场地土壤中Cr的LEAF浸出分析

    Figure  6.  The LEAF leaching analysis of Cr in the soils of the post-remediation site

    表  1  Cr(OH)3氧化途径

    Table  1.   The pathways of Cr(OH)3 oxidation

    氧化类型氧化环境氧化效果数据来源
    O2氧化 pH为9、10、11,500 mg/L Cr(OH)3 10、365 d后,O2氧化产生Cr(Ⅵ)的占比分别为10.2%和18.3% 文献[36]
    pH为8.3~8.7,125 μg/L Cr(Ⅲ)溶液 13 d后Cr(Ⅵ)浓度为3.8 μg/L 文献[37]
    Mn(Ⅳ)氧化 pH为9、10、11,500 mg/L Cr(OH)3与10 mg/L MnO2 10、365 d后,Mn(Ⅳ)氧化产生Cr(Ⅵ)的占比分别为93.5%和9.7% 文献[36]
    pH为5~9,770 μmol/L Cr(OH)3与436 μmol/L MnO2 随pH增加,Cr(Ⅵ)最大浓度由100 μmol/L增至200 μmol/L 文献[35]
    Mn(Ⅱ)-O2
    催化氧化
    pH为9、10、11,500 mg/L Cr(OH)3与0.2 mmol/L Mn(NO3)2 10、365 d后,Mn(Ⅱ)-O2氧化而产生Cr(Ⅵ)的占比分别为38.7%和79.7% 文献[36]
    pH 为7、8、9,CrxFe1-x(OH)3与MnCl2,初始Cr(Ⅲ)浓度为
    3.85 mmol/L,Mn(Ⅱ)浓度为545 μmol/L
    pH 为7、8、9时,200 h后Cr(Ⅵ)浓度分别为0、5、19 μmol/L 文献[38]
    下载: 导出CSV
  • [1] SHAHID M,SHAMSHAD S,RAFIQ M,et al.Chromium speciation,bioavailability,uptake,toxicity and detoxification in soil-plant system:a review[J].Chemosphere,2017,178:513-533. doi: 10.1016/j.chemosphere.2017.03.074
    [2] DARRIE G.Commercial extraction technology and process waste disposal in the manufacture of chromium chemicals from ore[J].Environmental Geochemistry and Health,2001,23(3):187-193. doi: 10.1023/A:1012295927081
    [3] 刘美丽,牛其建,俞洋洋,等.碳基材料负载纳米零价铁去除六价铬的研究进展[J].环境科学研究,2021.doi: 10.13198/j.issn.1001-6929.2021.07.13.

    LIU M L,NIU Q J,YU Y Y,et al.Progress in removal of hexavalent chromium by carbon-based materials loaded with nano zero-valent iron[J].Research of Environmental Sciences,2021.doi: 10.13198/j.issn.1001-6929.2021.07.13.
    [4] BELAY A A.Impacts of chromium from tannery effluent and evaluation of alternative treatment options[J].Journal of Environmental Protection,2010,1(1):53-58. doi: 10.4236/jep.2010.11007
    [5] 谷庆宝,马福俊,张倩,等.污染场地固化/稳定化修复的评价方法与标准[J].环境科学研究,2017,30(5):755-764.

    GU Q B,MA F J,ZHANG Q,et al.Remediation of contaminated sites by solidification/stabilization:testing and performance criteria[J].Research of Environmental Sciences,2017,30(5):755-764.
    [6] QIN L P,WANG X L.Chromium isotope geochemistry[J].Reviews in Mineralogy and Geochemistry,2017,82:379-414. doi: 10.2138/rmg.2017.82.10
    [7] BHATTACHARYA M,SHRIWASTAV A,BHOLE S,et al.Processes governing chromium contamination of groundwater and soil from a chromium waste source[J].ACS Earth and Space Chemistry,2020,4(1):35-49. doi: 10.1021/acsearthspacechem.9b00223
    [8] GABERELL M,CHIN Y P,HUG S J,et al.Role of dissolved organic matter composition on the photoreduction of Cr(Ⅵ) to Cr(Ⅲ) in the presence of iron[J].Environmental Science & Technology,2003,37(19):4403-4409.
    [9] SLEJKO F F,PETRINI R,LUTMAN A,et al.Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia region,northern Italy[J].Isotopes in Environmental and Health Studies,2019,55(1):56-69. doi: 10.1080/10256016.2018.1560278
    [10] HAUSLADEN D M,FENDORF S.Hexavalent chromium generation within naturally structured soils and sediments[J].Environmental Science & Technology,2017,51(4):2058-2067.
    [11] LUO Z T,ZHI T Y,LIU L,et al.Solidification/stabilization of chromium slag in red mud-based geopolymer[J].Construction and Building Materials,2022,316:125813. doi: 10.1016/j.conbuildmat.2021.125813
    [12] 王湘徽,郭中豪.一种重金属污染晶化包封稳定化剂及其使用方法:201210212001.3[P].2015-09-30.
    [13] REMETEIOVÁ D,RUŽIČKOVÁ S,MIČKOVÁ V,et al.Evaluation of US EPA method 3052 microwave acid digestion for quantification of majority metals in waste printed circuit boards[J].Metals,2020,10(11):1511. doi: 10.3390/met10111511
    [14] ALAHMAD W,TUNGKIJANANSIN N,KANETA T,et al.A colorimetric paper-based analytical device coupled with hollow fiber membrane liquid phase microextraction (HF-LPME) for highly sensitive detection of hexavalent chromium in water samples[J].Talanta,2018,190:78-84. doi: 10.1016/j.talanta.2018.07.056
    [15] WEN J,YI Y J,ZENG G M.Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction[J].Journal of Environmental Management,2016,178:63-69. doi: 10.1016/j.jenvman.2016.04.046
    [16] SUT-LOHMANN M,RAMEZANY S,KÄSTNER F,et al.Using modified Tessier sequential extraction to specify potentially toxic metals at a former sewage farm[J].Journal of Environmental Management,2022,304:114229. doi: 10.1016/j.jenvman.2021.114229
    [17] 王丰,李润东,李彦龙,等.污泥飞灰中重金属不同浸出方法比较及综合毒性评价[J].环境科学,2018,39(1):292-299.

    WANG F,LI R D,LI Y L,et al.Comparison of different leaching methods for heavy metals in sludge fly ash and comprehensive toxicity evaluation[J].Environmental Science,2018,39(1):292-299.
    [18] 孔明,韩巍,纪中新,等.碱浸钢丝污泥热处理后的重金属形态及浸出特性[J].环境科学研究,2018,31(5):961-966.

    KONG M,HAN W,JI Z X,et al.Heavy metals forms and leaching characteristics of ALRS with heat treatment[J].Research of Environmental Sciences,2018,31(5):961-966.
    [19] 洪亚军,徐祖信,冯承莲,等.水葫芦/污泥共热解法制备生物炭粒及其对Cr3+的吸附特性[J].环境科学研究,2020,33(4):1052-1061.

    HONG Y J,XU Z X,FENG C L,et al.Co-pyrolysis of water hyacinth and sewage sludge for preparation of biochar particles and its adsorption properties for Cr3+[J].Research of Environmental Sciences,2020,33(4):1052-1061.
    [20] US EPA.Liquid-solid partitioning as a function of extract pH using a parallel batch extraction procedure[S].Washington DC:US EPA,2017.
    [21] US EPA.Liquid-solid partitioning as a function of liquid-solid ratio for constituents in solid materials using an up-flow percolation column procedure[S].Washington DC:US EPA,2017.
    [22] 张琢,李发生,王梅,等.基于用途和风险的重金属污染土壤稳定化修复后评估体系探讨[J].环境工程技术学报,2015,5(6):509-518. doi: 10.3969/j.issn.1674-991X.2015.06.080

    ZHANG Z,LI F S,WANG M,et al.Thinking on assessment framework of stabilization effect for heavy metals contaminated soil based on disposal scenarios and risks[J].Journal of Environmental Engineering Technology,2015,5(6):509-518. doi: 10.3969/j.issn.1674-991X.2015.06.080
    [23] LIU J,DUAN C Q,ZHANG X H,et al.Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil[J].Journal of Hazardous Materials,2011,188:85-91. doi: 10.1016/j.jhazmat.2011.01.066
    [24] PIKUŁA D,STĘPIEŃ W.Effect of the degree of soil contamination with heavy metals on their mobility in the soil profile in a microplot experiment[J].Agronomy,2021,11(5):878. doi: 10.3390/agronomy11050878
    [25] XU Z R,CAI M L,CHEN S H,et al.High-affinity sulfate transporter Sultr1;2 is a major transporter for Cr(Ⅵ) uptake in plants[J].Environmental Science & Technology,2021,55:1576-1584.
    [26] GUO S Y,XIAO C Q,ZHOU N,et al.Speciation,toxicity,microbial remediation and phytoremediation of soil chromium contamination[J].Environmental Chemistry Letters,2021,19:1413-1431. doi: 10.1007/s10311-020-01114-6
    [27] 王爱云,钟国锋,徐刚标,等.铬胁迫对芥菜型油菜生理特性和铬富集的影响[J].环境科学,2011,32(6):1717-1725.

    WANG A Y,ZHONG G F,XU G B,et al.Effects of Cr(Ⅵ) stress on physiological characteristics of Brassica juncea and its Cr uptake[J].Environmental Science,2011,32(6):1717-1725.
    [28] 王根才.闽西特产芥菜干加工新技术的研究[D].福州:福建农林大学,2009:5-7.
    [29] DAI C,ZUO X B,CAO B,et al.Homogeneous and heterogeneous (Fex,Cr1-x)(OH)3 precipitation:Implications for Cr sequestration[J].Environmental Science & Technology,2016,50(4):1741-1749.
    [30] MOLINARI S,MAGRO M,CARBONE C,et al.Environmental implications of one-century COPRs evolution in a single industrial site:from leaching impact to sustainable remediation of Cr polluted groundwater[J].Chemosphere,2021,283:131211. doi: 10.1016/j.chemosphere.2021.131211
    [31] HAI J,LIU L H,TAN W F,et al.Catalytic oxidation and adsorption of Cr(Ⅲ) on iron-manganese nodules under oxic conditions[J].Journal of Hazardous Materials,2020,390:122166. doi: 10.1016/j.jhazmat.2020.122166
    [32] YANG W C,XI D D,LI C F,et al.‘In-situ synthesized’ iron-based bimetal promotes efficient removal of Cr(Ⅵ) in by zero-valent iron-loaded hydroxyapatite[J].Journal of Hazardous Materials,2021,420:126540. doi: 10.1016/j.jhazmat.2021.126540
    [33] LIANG J L,HUANG X M,YAN J W,et al.A review of the formation of Cr(Ⅵ) via Cr(Ⅲ) oxidation in soils and groundwater[J].Science of the Total Environment,2021,774:145762. doi: 10.1016/j.scitotenv.2021.145762
    [34] KOTAŚ J,STASICKA Z.Chromium occurrence in the environment and methods of its speciation[J].Environmental Pollution,2000,107(3):263-283. doi: 10.1016/S0269-7491(99)00168-2
    [35] PAN C,LIU H,CATALANO J G,et al.Understanding the roles of dissolution and diffusion in Cr(OH)3 oxidation by δ-MnO2[J].ACS Earth and Space Chemistry,2019,3(3):357-365. doi: 10.1021/acsearthspacechem.8b00129
    [36] LIU W Z,LI J,ZHENG J Y,et al.Different pathways for Cr(Ⅲ) oxidation:implications for Cr(Ⅵ) reoccurrence in reduced chromite ore processing residue[J].Environmental Science & Technology,2020,54(19):11971-11979.
    [37] SCHROEDER D C,LEE G F.Potential transformations of chromium in natural waters[J].Water,Air,and Soil Pollution,1975,4:355-365. doi: 10.1007/BF00280721
    [38] QIAN A,PAN C,YUAN S H,et al.Cr(Ⅵ) formation from CrxFe1-x(OH)3 induced by Mn(II) oxidation on the surface of CrxFe1-x(OH)3[J].ACS Earth and Space Chemistry,2020,4(9):1558-1564. doi: 10.1021/acsearthspacechem.0c00142
    [39] HOU S,DONG H C,DU X K,et al.Early warning on risk development in compound lead and cadmium contaminated sites[J].Journal of Hazardous Materials,2021,416:126174. doi: 10.1016/j.jhazmat.2021.126174
    [40] HU L G,CAI Y,JIANG G B.Occurrence and speciation of polymeric chromium(Ⅲ),monomeric chromium(Ⅲ) and chromium(Ⅵ) in environmental samples[J].Chemosphere,2016,156:14-20. doi: 10.1016/j.chemosphere.2016.04.100
    [41] PRASAD S,YADAV K K,KUMAR S,et al.Chromium contamination and effect on environmental health and its remediation:a sustainable approaches[J].Journal of Environmental Management,2021,285:112174. doi: 10.1016/j.jenvman.2021.112174
    [42] 可欣,周燕,张飞杰,等.污染场地修复药剂安全利用问题及对策[J].环境科学研究,2021,34(6):1473-1481.

    KE X,ZHOU Y,ZHANG F J,et al.Problems and strategies of safe utilization of agents for contaminated sites[J].Research of Environmental Sciences,2021,34(6):1473-1481.
    [43] HE L,WANG Z,GU W B.Evolution of freeze-thaw properties of cement-lime solidified contaminated soil[J].Environmental Technology & Innovation,2021,21:101189.
    [44] ZHU H,WU C F,WANG J,et al.The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents[J].Environmental Science and Pollution Research,2018,25:17499-17508. doi: 10.1007/s11356-018-1929-y
    [45] 许中坚,李方文,刘广深,等.模拟酸雨对红壤中铬释放的影响研究[J].环境科学研究,2005,18(2):9-12. doi: 10.3321/j.issn:1001-6929.2005.02.002

    XU Z J,LI F W,LIU G S,et al.Study on release of chromium from red soils under the influence by simulated acid rain[J].Research of Environmental Sciences,2005,18(2):9-12. doi: 10.3321/j.issn:1001-6929.2005.02.002
    [46] BARTLETT R,JAMES B.Behavior of chromium in soils:Ⅲ.oxidation[J].Journal of Environmental Quality,1979,8(1):31-35.
    [47] TU Y M,LIU D Y,WANG T F,et al.Evaluation on later-age performance of concrete subjected to early-age freeze-thaw damage[J].Construction and Building Materials,2021,270:121491. doi: 10.1016/j.conbuildmat.2020.121491
    [48] ZHAO Y P,XIANG W,HUANG C L,et al.Production of hydroxyl radicals following water-level drawdown in peatlands:a new induction mechanism for enhancing laccase activity in carbon cycling[J].Soil Biology and Biochemistry,2021,156:108241. doi: 10.1016/j.soilbio.2021.108241
    [49] LIAO Y P,MIN X B,YANG Z H,et al.Assessment of the stability of chromium in remedied soils by Pannonibacter phragmitetus BB and its risk to groundwater[J].Journal of Soils and Sediments,2014,14:1098-1106. doi: 10.1007/s11368-014-0860-1
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  211
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 修回日期:  2022-02-17
  • 网络出版日期:  2022-05-17

目录

    /

    返回文章
    返回