Application Characteristics and Potential Corrosion Risks of Chemical Oxidation Remediation Technology for Contaminated Sites in China
-
摘要: 化学氧化修复技术在国内有机污染场地修复中所占比例逐年快速增加,但是残留氧化剂、副产物等产生的再利用潜在腐蚀风险问题也引起了研究人员的关注. 首先,通过实际调研和网络检索对国内137个实际修复案例进行研究分析,总结出我国化学氧化法修复技术应用的4个主要特征,包括主要应用于中小型污染地块、水土协同修复且介质复杂、过硫酸盐占比过大且副产物较多、修复周期短且修复药剂过量现象严重;然后,针对应用最多的过硫酸盐氧化法修复技术,通过资料文献分析和国内外案例场地调研信息,梳理出修复后场地再利用过程中可能产生的残留氧化剂腐蚀、副产物盐分腐蚀及环境条件变化导致的微生物侵蚀等3种主要的腐蚀风险机理,以及定性及定量的腐蚀风险测试方法;最后,结合化学氧化过程及pH、氧化还原条件、盐分和微生物环境条件等发生短期、中期和长期的影响因素,提出了可将化学氧化修复后潜在腐蚀过程风险划分为三阶段的概念模型,以期为化学氧化修复技术实际应用及效果评估提供参考.Abstract: The proportion of chemical oxidation in the remediation of organically contaminated sites has increased rapidly in China, but the potential corrosion risk of residual oxidants and by-products to land reuse has attracted the attention of researchers. Through the actual investigation and literature research of 137 sites in China, four main characteristics of chemical oxidation remediation technology can be drawn: applications mainly in small and medium-sized contaminated site, soil and water co-remediation and complex remediation media, excessive persulfate application and various by-products, short repair cycle and overload of chemical oxidant. Then, for the most commonly used persulfate oxidation remediation technology, three main potential corrosion mechanisms were analyzed through literature review and field case studies. The residual oxidant corrosion, by-product salt corrosion and microbial erosion can occur during the redevelopment of the remediated sites. The qualitative and quantitative monitoring of corrosion risk was also investigated. Finally, a conceptual model that divides the potential post-remediation corrosion process into 3 different phases was proposed for chemical oxidation by persulfate based on the chemical oxidation process and the key factors in the short-term, mid-term and long-term, including pH, ORP, salt and microbial environmental conditions. This research can provide scientific references for the field application and effect verification of chemical oxidation remediation technology.
-
Key words:
- contaminated site /
- chemical oxidation /
- persulfate /
- environmental residual /
- corrosion risk
-
表 1 近期国内污染场地的过硫酸盐化学氧化修复应用和pH变化
Table 1. The recent application of persulfate chemical oxidation and change of pH in contaminated sites in China
污染物 药剂及用量 降解效果 土壤环境变化 数据来源 二氯乙烯、氯乙烯 1%过硫酸钠+0.1%氢氧化钠 20 d后达标 pH较高,在11左右 文献[42] 石油烃、苯系物和多环芳烃 4 t过硫酸钠+氢氧化钠 去除率在99.5%以上 pH较高,在10以上,硫酸盐含量升高 文献[43] 苯并[a]芘和二苯并[a,h]蒽 2%过硫酸盐+0.3%硫酸亚铁 6 d后去除率在90%以上 pH为7.8~8.1 文献[44] 1,1-二氯乙烷和三氯
甲烷1.5%过硫酸钠+0.03%氢氧化钠、
4%过硫酸钠+0.05%氢氧化钠4 h后去除率在98%以上 pH在10左右,硫酸盐含量升高 文献[45] 多环芳烃 2%过硫酸钠+2%生石灰 3 d后达标 硫酸盐和碱使土壤盐碱化,限制绿化用土 文献[46] 多环芳烃 2 mmol/g过硫酸盐+0.2 mmol/g硫酸亚铁 3 d后去除率在90%以上 处理后的土壤pH接近4 文献[47] 石油烃 3%过硫酸盐+4%氧化钙 2 d后去除率达68.7% CaO会提高反应体系的pH,最大为12.42 文献[40] 表 2 基于盐分对混凝土侵蚀模拟试验的情况总结
Table 2. The summary of the simulation test of concrete corrosion by salt
试验对象 盐分种类 试验条件 暴露时间 试验结果 数据来源 混凝土 硫酸钠 硫酸钠溶液浓度分别为5%、10%、30%,实验室干湿循环加速试验 120 d 硫酸钠溶液浓度为30%时,试块减重达到180 g 文献[49] 球墨铸铁管 碳酸盐 自然条件下沙质土壤 17 a HCO3−浓度越高,腐蚀风险概率越大 文献[50] 混凝土建筑 硫酸盐 不同硫酸盐浓度但浓度持续偏高的河流 28 d SO42−对不同类型混凝土存在不同程度的损害行为 文献[51] 混凝土 硫酸盐 硫酸钠溶液浓度为5%,实验室干湿循环加速试验 1 522、2 022、
2 572 d提出了混凝土在微观水平上受到外部硫酸盐侵蚀的化学-力学(C-M)有限元模型 文献[52] 混凝土 硫酸盐 硫酸盐溶液浓度分别为5%、10%,实验室加速试验 800 d 混凝土中的硫酸盐侵蚀由硫酸盐离子和水泥水化产物间的一系列复杂反应形成,使材料内部产生膨胀和微裂纹 文献[53] 混凝土 硫酸盐 硫酸盐溶液浓度分别为0%、2.1%、15%,在干湿循环条件下进行混凝土侵蚀试验 360、720 d 高浓度条件下呈现两阶段演化模型;类场暴露条件下呈现三阶段演化模型 文献[34] 混凝土 硫酸盐、
硝酸盐等0.01 mol/L 硫酸钠+0.01 mol/L 碳酸氢钠和0.01 mol/L氯化钠+0.01 mol/L硝酸钠 阴离子能降低电荷转移电阻,阴离子的腐蚀性表现为SO42−> HCO3−>NO3− 文献[54] 混凝土 硫酸钠 硫酸钠溶液浓度为10%,室内加速试验 120 d 存在明显质量损失,其范围为6%~23% 文献[48] -
[1] NAIDU R,SMITH E,WONG M H,et al.Remediation of site contamination[J].Water,Air,& Soil Pollution,2013,224(12):1-2. [2] 骆永明,滕应.我国土壤污染的区域差异与分区治理修复策略[J].中国科学院院刊,2018,33(2):145-152.LUO Y M,TENG Y.Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J].Bulletin of Chinese Academy of Sciences,2018,33(2):145-152. [3] 宋昕,林娜,殷鹏华.中国污染场地修复现状及产业前景分析[J].土壤,2015,47(1):1-7.SONG X,LIN N,YIN P H.Contaminated site remediation industry in China:current state and future trends[J].Soils,2015,47(1):1-7. [4] US EPA.Superfund Remedy Report (16th Edition) Fact Sheet[R].Washington DC:US EPA,2020. [5] ZHAO F J,MA Y B,ZHU Y G,et al.Soil contamination in China:current status and mitigation strategies[J].Environmental Science & Technology,2015,49(2):750-759. [6] 姜林,梁竞,钟茂生,等.复杂污染场地的风险管理挑战及应对[J].环境科学研究,2021,34(2):458-467.JIANG L,LIANG J,ZHONG M S,et al.Challenges and response to risk management of complex contaminated sites[J].Research of Environmental Sciences,2021,34(2):458-467. [7] 杨苑,张倩,彭昌盛,等.过硫酸钠缓释材料的释放性能及其对2,4-二硝基甲苯的降解效果[J].环境科学研究,2020,33(3):769-776.YANG Y,ZHANG Q,PENG C S,et al.Sustained-release of sodium persulfate composite and degradation of 2,4-dinitrotoluene[J].Research of Environmental Sciences,2020,33(3):769-776. [8] SIRGUEY C,TEREZA-DE-SOUZA E S P,SCHWARTZ C,et al.Impact of chemical oxidation on soil quality[J].Chemosphere,2008,72(2):282-289. doi: 10.1016/j.chemosphere.2008.01.027 [9] BRUSSEAU M L,CARROLL K C,ALLEN T,et al.Impact of in situ chemical oxidation on contaminant mass discharge:linking source-zone and plume-scale characterizations of remediation performance[J].Environmental Science & Technology,2011,45(12):5352-5358. [10] CHANG Y C,CHEN T Y,TSAI Y P,et al.Remediation of trichloroethene (TCE)-contaminated groundwater by persulfate oxidation:a field-scale study[J].RSC Advances,2018,8(5):2433-2440. doi: 10.1039/C7RA10860E [11] ZHOU Z,LIU X T,SUN K,et al.Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation:a review[J].Chemical Engineering Journal,2019,372:836-851. doi: 10.1016/j.cej.2019.04.213 [12] 宋刚练,江建斌,祝可成,等.土壤修复氧化/还原试剂对高压旋喷设备腐蚀性研究[J].建筑科技,2017,1(2):39-41.SONG G L,JIANG J B,ZHU K C,et al.Study of the corrosiveness of soil remediation oxidation/reduction reagents to high pressure rotary jet equipments[J].Building Technology,2017,1(2):39-41. [13] COLE I S,MARNEY D.The science of pipe corrosion:a review of the literature on the corrosion of ferrous metals in soils[J].Corrosion Science,2012,56:5-16. doi: 10.1016/j.corsci.2011.12.001 [14] USHER K M,KAKSONEN A H,COLE I,et al.Critical review:Microbially influenced corrosion of buried carbon steel pipes[J].International Biodeterioration & Biodegradation,2014,93:84-106. [15] 王孙崯,汪福旺,韩进,等.原位化学氧化技术过硫酸钠使用后残留硫酸盐的影响探讨[J].农业环境与发展,2013,30(4):24-28.WANG S Y,WANG F W,HAN J,et al.The influence of sulfate due to the use of sodium persulfate in in situ chemical oxidation (ISCO) soil remediation[J].Agro-Environment & Development,2013,30(4):24-28. [16] 董聪慧,张惠,梅祖明.过硫酸盐修复有机污染场地建筑物腐蚀性研究[J].佳木斯大学学报(自然科学版),2018,36(5):754-757.DONG C H,ZHANG H,MEI Z M.Building corrosion evaluation for persulfate remediating organic contaminated site[J].Journal of Jiamusi University (Natural Science Edition),2018,36(5):754-757. [17] 陈妍希,严登明,朱明山.外场效应强化过硫酸盐氧化技术去除有机污染物的研究进展[J].环境科学研究,2022,35(1):131-140.CHEN Y X,YAN D M,ZHU M S.Recent progress in removal of organic pollutants by external-field effect enhanced persulfate oxidation processes[J].Research of Environmental Sciences,2022,35(1):131-140. [18] USMAN M,HANNA K,HADERLEIN S.Fenton oxidation to remediate PAHs in contaminated soils:a critical review of major limitations and counter-strategies[J].Science of the Total Environment,2016,569/570:179-190. doi: 10.1016/j.scitotenv.2016.06.135 [19] VAGI M C,PETSAS A S.Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by Directive 2013/39/EU from environmental matrices by using advanced oxidation processes:an overview (2007-2018)[J].Journal of Environmental Chemical Engineering,2020,8(1):102940. doi: 10.1016/j.jece.2019.102940 [20] WACŁAWEK S,LUTZE H V,GRÜBEL K,et al.Chemistry of persulfates in water and wastewater treatment:a review[J].Chemical Engineering Journal,2017,330:44-62. doi: 10.1016/j.cej.2017.07.132 [21] 陈素云,王慧玲,张靖婷,等.探讨原位化学氧化法氧化剂分散技术[J].环境与发展,2018,30(1):113-114.CHEN S Y,WANG H L,ZHANG J T,et al.In situ chemical oxidation oxidizer dispersion technology[J].Environment and Development,2018,30(1):113-114. [22] 孙兴凯,黄海,王海东,等.大型污染场地修复过程中的问题探讨与工程实践[J].环境工程技术学报,2020,10(5):883-890. doi: 10.12153/j.issn.1674-991X.20190216SUN X K,HUANG H,WANG H D,et al.Discussion of problems in the process of large-scale contaminate sites remediation and project practice[J].Journal of Environmental Engineering Technology,2020,10(5):883-890. doi: 10.12153/j.issn.1674-991X.20190216 [23] SIEGRIST R L,CRIMI M,SIMPKIN T J.In situ chemical oxidation for groundwater remediation[M].New York:Springer,2011. [24] SERDP.Impacts on groundwater quality following the application of isco:understanding the cause of and designing mitigation for metals mobilization[R].Washington DC:SERDP Project ER-2132,2015. [25] LEE J,VON-GUNTEN U,KIM J H.Persulfate-based advanced oxidation:critical assessment of opportunities and roadblocks[J].Environmental Science & Technology,2020,54(6):3064-3081. [26] SRA K S,THOMSON N R,BARKER J F.Persistence of persulfate in uncontaminated aquifer materials[J].Environmental Science & Technology,2010,44(8):3098-3104. [27] LEMAIRE J,BUÈS M,KABECHE T,et al.Oxidant selection to treat an aged PAH contaminated soil by in situ chemical oxidation[J].Journal of Environmental Chemical Engineering,2013,1(4):1261-1268. doi: 10.1016/j.jece.2013.09.018 [28] 王一凡,李小蝶,侯美茹.锰基氧化物活化过硫酸盐降解水中有机污染物的研究进展[J].环境科学研究,2021,34(8):1899-1907.WANG Y Y,LI X D,HOU M R.Activation of persulfate with Mn-based oxides for degradation of organic pollutants in water:a review[J].Research of Environmental Sciences,2021,34(8):1899-1907. [29] 刘楚琛,阎秀兰,刘琼枝,等.Fenton试剂和活化过硫酸钠氧化降解土壤中的二氯酚和三氯酚[J].环境工程学报,2018,12(6):1749-1758. doi: 10.12030/j.cjee.201712066LIU C C,YAN X L,LIU Q Z,et al.Oxidative degradation of dichlorophenol and trichlorophenol in soils by Fenton reagent and activated persulfate[J].Chinese Journal of Environmental Engineering,2018,12(6):1749-1758. doi: 10.12030/j.cjee.201712066 [30] HULING S G,ROSS R R,MEEKER PRESTBO K.In situ chemical oxidation:permanganate oxidant volume design considerations[J].Groundwater Monitoring & Remediation,2017,37(2):78-86. [31] STOTT J F D,JOHN G.Corrosion in soils[J].Liquid Corrosion Environment,2010,2:1149-1168. [32] CEULEMANS P,LABEEUW V.Code of good practice:in-situ chemical oxidation[R].Los Angeles:City Chlor,2013. [33] ZHANG Z Y,JIN X G,LUO W.Long-term behaviors of concrete under low-concentration sulfate attack subjected to natural variation of environmental climate conditions[J].Cement and Concrete Research,2019,116:217-230. doi: 10.1016/j.cemconres.2018.11.017 [34] CHEN K F,CHANG Y C,CHIOU W T.Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community:a comparison study[J].Journal of Chemical Technology & Biotechnology,2016,91(6):1877-1888. [35] 叶渊,许学慧,李彦希,等.热处理修复方式对污染土壤性质及生态功能的影响[J].环境工程技术学报,2021,11(2):371-377. doi: 10.12153/j.issn.1674-991X.20200134YE Y,XU X H,LI Y X,et al.Effects of thermal treatment on properties and ecological functions of contaminated soil[J].Journal of Environmental Engineering Technology,2021,11(2):371-377. doi: 10.12153/j.issn.1674-991X.20200134 [36] WU Y H,LIU T M,LUO S X,et al.Corrosion characteristics of Q235 steel in simulated Yingtan soil solutions[J].Materialwissenschaft Und Werkstofftechnik,2010,41(3):142-146. doi: 10.1002/mawe.201000559 [37] LI G X,WANG L W,WU H L,et al.Dissolution kinetics of the sulfide-oxide complex inclusion and resulting localized corrosion mechanism of X70 steel in deaerated acidic environment[J].Corrosion Science,2020,174:108815. doi: 10.1016/j.corsci.2020.108815 [38] YAN M C,SUN C,XU J,et al.Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J].Corrosion Science,2014,80:309-317. doi: 10.1016/j.corsci.2013.11.037 [39] 杨春杰,焦龙进,邓榕呈.铁活化过硫酸盐技术降解土壤中有机污染物的效果研究[J].节能与环保,2020(8):54-57. doi: 10.3969/j.issn.1009-539X.2020.08.023YANG C J,JIAO L J,DENG R C.Effect of iron activated persulfate on degradation of organic pollutants in soil[J].Energy Conservation & Environmental Protection,2020(8):54-57. doi: 10.3969/j.issn.1009-539X.2020.08.023 [40] 张汝壮.活化过硫酸钠氧化处理TPH污染污泥的试验研究[J].环境卫生工程,2019,27(3):31-36. doi: 10.3969/j.issn.1005-8206.2019.03.008ZHANG R Z.Experimental study on oxidation of TPH contaminated sludge by activated sodium persulfate system[J].Environmental Sanitation Engineering,2019,27(3):31-36. doi: 10.3969/j.issn.1005-8206.2019.03.008 [41] 宋晓芳,张可刚.碱性条件下碳钢的缝隙腐蚀行为[J].腐蚀与防护,2008,29(10):593-595.SONG X F,ZHANG K G.Crevice corrosion behavior of carbon steel under alkali condition[J].Corrosion & Protection,2008,29(10):593-595. [42] 余湛,郑阳,胡佳晨,等.典型氯代烃污染场地地下水化学氧化修复实验分析[J].环境保护科学,2019,45(5):122-126.YU Z,ZHENG Y,HU J C,et al.Chemical oxidation remediation analysis of groundwater in a typical chlorinated hydrocarbons contaminated site with a lab-scale[J].Environmental Protection Science,2019,45(5):122-126. [43] 张晶,张峰,马烈.多相抽提和原位化学氧化联合修复技术应用:某有机复合污染场地地下水修复工程案例[J].环境保护科学,2016,42(3):154-158.ZHANG J,ZHANG F,MA L.Combined application of multiple remediation technologies by multi-phase extraction and in situ chemical oxidation:a case study of one groundwater remediation engineering project at an organic compound contaminated site[J].Environmental Protection Science,2016,42(3):154-158. [44] 翟宇嘉.过硫酸盐异位氧化修复土壤多环芳烃污染技术应用实例[J].广东化工,2017,44(14):65-66. doi: 10.3969/j.issn.1007-1865.2017.14.031ZHAI Y J.Application examples of persulfate in off-site oxidation remediation technology for PAHs polluted soil[J].Guangdong Chemical Industry,2017,44(14):65-66. doi: 10.3969/j.issn.1007-1865.2017.14.031 [45] 廖长君,杨建建,赵志勇,等.化工场地氯代烃污染地下水氧化修复研究[J].广东化工,2020,47(4):57-60. doi: 10.3969/j.issn.1007-1865.2020.04.025LIAO C J,YANG J J,ZHAO Z Y,et al.Study on remediation of groundwater polluted by chlorinated hydrocarbons by alkali activated sodium persulfate and modified Fenton oxidation system[J].Guangdong Chemical Industry,2020,47(4):57-60. doi: 10.3969/j.issn.1007-1865.2020.04.025 [46] 冯凯.活化过硫酸钠高级氧化环境修复技术综述[J].环境科技,2017,30(5):75-78.FENG K.A review on activated sodium persulfate oxidation technology[J].Environmental Science and Technology (China),2017,30(5):75-78. [47] LIAO X Y,WU Z Y,LI Y,et al.Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs (China)[J].Chemosphere,2019,226:483-491. doi: 10.1016/j.chemosphere.2019.03.126 [48] BASSUONI M T,RAHMAN M M.Response of concrete to accelerated physical salt attack exposure[J].Cement and Concrete Research,2016,79:395-408. doi: 10.1016/j.cemconres.2015.02.006 [49] ALYAMI M H,ALRASHIDI R S,MOSAVI H,et al.Potential accelerated test methods for physical sulfate attack on concrete[J].Construction and Building Materials,2019,229:116920. doi: 10.1016/j.conbuildmat.2019.116920 [50] KAJIYAMA F,KOYAMA Y.Statistical analyses of field corrosion data for ductile cast iron pipes buried in sandy marine sediments[J].CORROSION,1997,53(2):156-162. doi: 10.5006/1.3280453 [51] BELLMANN F,ERFURT W,LUDWIG H M.Field performance of concrete exposed to sulphate and low pH conditions from natural and industrial sources[J].Cement and Concrete Composites,2012,34(1):86-93. doi: 10.1016/j.cemconcomp.2011.07.009 [52] IDIART A E,LÓPEZ C M,CAROL I.Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack:a meso-scale model[J].Cement and Concrete Composites,2011,33(3):411-423. doi: 10.1016/j.cemconcomp.2010.12.001 [53] CEFIS N,COMI C.Chemo-mechanical modelling of the external sulfate attack in concrete[J].Cement and Concrete Research,2017,93:57-70. doi: 10.1016/j.cemconres.2016.12.003 [54] LIU T M,WU Y H,LUO S X,et al.Effect of soil compositions on the electrochemical corrosion behavior of carbon steel in simulated soil solution[J].Materialwissenschaft und Werkstofftechnik,2010,41(4):228-233. doi: 10.1002/mawe.201000578 [55] LI X,KAPPLER U,JIANG G M,et al.The ecology of acidophilic microorganisms in the corroding concrete sewer environment[J].Frontiers in Microbiology,2017,8:683. doi: 10.3389/fmicb.2017.00683 [56] HOU B R,LI X G,MA X M,et al.The cost of corrosion in China[J].Materials Degradation,2017,1:1-10. doi: 10.1038/s41529-017-0001-6 [57] SCHÜTZ M K,SCHLEGEL M L,LIBERT M,et al.Impact of iron-reducing bacteria on the corrosion rate of carbon steel under simulated geological disposal conditions[J].Environmental Science & Technology,2015,49(12):7483-7490. [58] HEITZ E.Mechanistically based prevention strategies of flow-induced corrosion[J].Electrochimica Acta,1996,41(4):503-509. doi: 10.1016/0013-4686(95)00336-3 [59] 刘丹,杨纯田,周恩泽,等.海洋用金属材料的微生物腐蚀研究进展[J].表面技术,2019,48(7):166-174.LIU D,YANG C T,ZHOU E Z,et al.Progress in microbiologically influenced corrosion of metallic materials in marine environment[J].Surface Technology,2019,48(7):166-174. [60] LI X,O'MOORE L,SONG Y R,et al.The rapid chemically induced corrosion of concrete sewers at high H2S concentration[J].Water Research,2019,162:95-104. doi: 10.1016/j.watres.2019.06.062 [61] DALL'AGNOL L T,CORDAS C M,MOURA J J G.Influence of respiratory substrate in carbon steel corrosion by a sulphate reducing prokaryote model organism[J].Bioelectrochemistry,2014,97:43-51. doi: 10.1016/j.bioelechem.2013.10.006 [62] WEI B X,XU J,FU Q,et al.Effect of sulfate-reducing bacteria on corrosion of X80 pipeline steel under disbonded coating in a red soil solution[J].Journal of Materials Science & Technology,2021,87:1-17. [63] WEI B X,QIN Q Y,FU Q,et al.X80 steel corrosion induced by alternating current in water-saturated acidic soil[J].Corrosion,2020,76(3):248-267. doi: 10.5006/3418 [64] GU T Y,JIA R,UNSAL T,et al.Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria[J].Journal of Materials Science & Technology,2019,35(4):631-636. [65] ENNING D,VENZLAFF H,GARRELFS J,et al.Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust[J].Environmental Microbiology,2012,14(7):1772-1787. doi: 10.1111/j.1462-2920.2012.02778.x [66] DONG Z H,LIU T,LIU H F.Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion[J].Biofouling,2011,27(5):487-495. doi: 10.1080/08927014.2011.584369 [67] WU T Q,YAN M C,YU L B,et al.Stress corrosion of pipeline steel under disbonded coating in a SRB-containing environment[J].Corrosion Science,2019,157:518-530. doi: 10.1016/j.corsci.2019.06.026 -