留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米钯铜改性毛竹炭三维电催化还原水中硝酸盐氮的机理研究

吴雨晴 朱宗强 张立浩 董翼 刘霜霜 朱义年 李艳红

吴雨晴, 朱宗强, 张立浩, 董翼, 刘霜霜, 朱义年, 李艳红. 纳米钯铜改性毛竹炭三维电催化还原水中硝酸盐氮的机理研究[J]. 环境科学研究, 2022, 35(9): 2156-2164. doi: 10.13198/j.issn.1001-6929.2022.04.03
引用本文: 吴雨晴, 朱宗强, 张立浩, 董翼, 刘霜霜, 朱义年, 李艳红. 纳米钯铜改性毛竹炭三维电催化还原水中硝酸盐氮的机理研究[J]. 环境科学研究, 2022, 35(9): 2156-2164. doi: 10.13198/j.issn.1001-6929.2022.04.03
WU Yuqing, ZHU Zongqiang, ZHANG Lihao, DONG Yi, LIU Shuangshuang, ZHU Yinian, LI Yanhong. Electrocatalytic Reduction of Nitrate on Pd/Cu Bamboo Biochar Particle Electrodes[J]. Research of Environmental Sciences, 2022, 35(9): 2156-2164. doi: 10.13198/j.issn.1001-6929.2022.04.03
Citation: WU Yuqing, ZHU Zongqiang, ZHANG Lihao, DONG Yi, LIU Shuangshuang, ZHU Yinian, LI Yanhong. Electrocatalytic Reduction of Nitrate on Pd/Cu Bamboo Biochar Particle Electrodes[J]. Research of Environmental Sciences, 2022, 35(9): 2156-2164. doi: 10.13198/j.issn.1001-6929.2022.04.03

纳米钯铜改性毛竹炭三维电催化还原水中硝酸盐氮的机理研究

doi: 10.13198/j.issn.1001-6929.2022.04.03
基金项目: 国家自然科学基金项目(No.51978188);广西科技计划项目(No.2020GXNSFAA159017);中国博士后面上项目(No.2019M650869)
详细信息
    作者简介:

    吴雨晴(1997-),女,广西梧州人,814871049@qq.com

    通讯作者:

    ①朱宗强(1982-),男,广西北海人,研究员,博士,博导,主要从事环境功能材料制备及应用研究,zhuzongqiang@glut.edu.cn

    ②张立浩(1989-),男,湖北荆州人,实验师,硕士,主要从事环境功能材料制备及应用研究 ,lhzhang@glut.edu.cn

  • 中图分类号: X523

Electrocatalytic Reduction of Nitrate on Pd/Cu Bamboo Biochar Particle Electrodes

Funds: National Natural Science Foundation of China (No.51978188);Science and Technology Planning Projects of Guangxi, China (2020GXNSFAA159017);Chinese Postdoctoral Science Foundation (No.2019M650869)
  • 摘要: 为揭示三维粒子电极对电催化还原水中硝酸盐氮(NO3-N)的贡献及机理,以毛竹生物炭为模板,通过钯铜盐浸渍、焙烧及氢气有限表面还原等手段,制备了纳米钯铜改性毛竹炭(Nano-Pd/Cu-BC),以其为三维粒子电极搭建三维电催化还原体系,以强化传统电催化还原体系(无三维粒子电极)对NO3-N的去除效果. 结果表明:①制备的Nano-Pd/Cu-BC保留了毛竹天然的遗态分级多孔结构特征,表面存在均匀分散的纳米Pd0和纳米Cu0金属粒子. ②三维电催化还原体系对水中NO3-N具有更高的去除率,在反应240 min内,对NO3-N的质量催化活性达0.069 mg/mg,较传统电催化还原体系提升5.35倍. ③三维电催化还原体系N2的生成率为13.4%,较传统电极电催化还原体系提升2.84倍. 研究显示,采用Nano-Pd/Cu-BC搭建的三维电催化还原体系可以提升水中NO3-N的去除率和N2生成选择率.

     

  • 图  1  三维电催化还原NO3-N的试验装置示意

    注:1—直流电源;2—钛钌网阳极;3—钛钌网阴极;4—质子交换膜;5—纳米钯铜改性毛竹生物炭催化剂;6—磁力搅拌子.

    Figure  1.  Schematic diagram of an experimental device for 3D electrocatalytic reduction of nitrate

    图  2  不同催化剂的SEM-EDS图

    Figure  2.  SEM-EDS diagram of different catalytic materials

    图  3  不同纳米金属改性催化剂的粒径分布

    注:d为粒子的平均直径.

    Figure  3.  The particle size distribution of different nano-metal modified particle catalyst

    图  4  不同纳米金属改性催化剂的XRD图

    Figure  4.  XRD patterns of different nano-metal modified catalysts

    图  5  不同纳米金属改性催化剂电化学阻抗测试EIS图

    Figure  5.  EIS diagram of electrochemical impedance test of different nano-metal modified catalysts

    图  6  不同电催化体系对NO3-N的去除效果

    Figure  6.  Removal effects of different electrocatalytic systems on NO3-N

    图  7  不同催化剂对NO3-N的去除效果

    Figure  7.  Removal effects of different catalysts on NO3-N

    图  8  不同Nano-Pd/Cu-BC投加量对NO3-N的去除效果

    Figure  8.  Removal effects of Nano-Pd/Cu-BC on NO3-N at different dosages

    图  9  电催化还原NO3-N的机理和过程示意

    Figure  9.  Mechanism and process of electrocatalytic reduction of NO3-N

  • [1] ROSCA V,DUCA M,DE-GROOT M T,et al.Nitrogen cycle electrocatalysis[J].Chemical Reviews,2009,109(6):2209-2244. doi: 10.1021/cr8003696
    [2] BHATNAGAR A,SILLANPÄÄ M.A review of emerging adsorbents for nitrate removal from water[J].Chemical Engineering Journal,2011,168(2):493-504. doi: 10.1016/j.cej.2011.01.103
    [3] DUCA M,KOPER M T M.Powering denitrification:the perspectives of electrocatalytic nitrate reduction[J].Energy & Environmental Science,2012,5(12):9726.
    [4] COMER B M,FUENTES P,DIMKPA C O,et al.Prospects and challenges for solar fertilizers[J].Joule,2019,3(7):1578-1605. doi: 10.1016/j.joule.2019.05.001
    [5] 唐诗琴,熊丽丽,蒋睿,等.生物质-硫磺混合营养反硝化体系对尾水中NO3-N的去除效果[J].环境工程技术学报,2020,10(3):414-423. doi: 10.12153/j.issn.1674-991X.20190143

    TANG S Q,XIONG L L,JIANG R,et al.Removal of nitrate in tail water by biomass-sulfur mixed denitrification process[J].Journal of Environmental Engineering Technology,2020,10(3):414-423. doi: 10.12153/j.issn.1674-991X.20190143
    [6] 束韫,龙红艳,张凡,等.生物质基活性炭负载金属催化还原NOx[J].环境科学研究,2018,31(9):1588-1596.

    SHU Y,LONG H Y,ZHANG F,et al.Catalytic reduction of NOx by biomass-derived activated carbon supported metals[J].Research of Environmental Sciences,2018,31(9):1588-1596.
    [7] KATSOUNAROS I,KYRIACOU G.Influence of nitrate concentration on its electrochemical reduction on tin cathode:identification of reaction intermediates[J].Electrochimica Acta,2008,53(17):5477-5484. doi: 10.1016/j.electacta.2008.03.018
    [8] ZHANG X,WANG Y T,LIU C B,et al.Recent advances in non-noble metal electrocatalysts for nitrate reduction[J].Chemical Engineering Journal,2021,403:126269. doi: 10.1016/j.cej.2020.126269
    [9] MARTÍNEZ J,ORTIZ A,ORTIZ I.State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates[J].Applied Catalysis B:Environmental,2017,207:42-59. doi: 10.1016/j.apcatb.2017.02.016
    [10] LUK G K,AU-YEUNG W C.Experimental investigation on the chemical reduction of nitrate from groundwater[J].Advances in Environmental Research,2002,6(4):441-453. doi: 10.1016/S1093-0191(01)00072-7
    [11] JIA Z Z,ZHAO X,YU C Y,et al.Design and properties of Sn-Mn-Ce supported activated carbon composite as particle electrode for three-dimensionally electrochemical degradation of phenol[J].Environmental Technology & Innovation,2021,23:101554.
    [12] TENG X L,LI J F,WANG J K,et al.Effective degradation of atrazine in wastewater by three-dimensional electrochemical system using fly ash-red mud particle electrode:mechanism and pathway[J].Separation and Purification Technology,2021,267:118661. doi: 10.1016/j.seppur.2021.118661
    [13] TILL B A,WEATHERS L J,ALVAREZ P J J.Fe(0)-supported autotrophic denitrification[J].Environmental Science & Technology,1998,32(5):634-639.
    [14] 张均,汤木娥,周易,等.钯基催化剂电催化氢解处理氯代有机物的研究进展[J].环境科学研究,2022,35(1):119-130. doi: 10.13198/j.issn.1001-6929.2021.09.14

    ZHANG J,TANG M E,ZHOU Y,et al.Progress in electrocatalytic hydrogenolysis of chlorinated organic compounds on palladium-based catalysts[J].Research of Environmental Sciences,2022,35(1):119-130. doi: 10.13198/j.issn.1001-6929.2021.09.14
    [15] HAN B,LANG R,QIAO B T,et al.Highlights of the major progress in single-atom catalysis in 2015 and 2016[J].Chinese Journal of Catalysis,2017,38(9):1498-1507. doi: 10.1016/S1872-2067(17)62872-9
    [16] SHIN H,JUNG S,BAE S,et al.Nitrite reduction mechanism on a Pd surface[J].Environmental Science & Technology,2014,48(21):12768-12774.
    [17] SHEN Z H,LIU D R,PENG G G,et al.Electrocatalytic reduction of nitrate in water using Cu/Pd modified Ni foam cathode:high nitrate removal efficiency and N2-selectivity[J].Separation and Purification Technology,2020,241:116743. doi: 10.1016/j.seppur.2020.116743
    [18] EPRON F,GAUTHARD F,PINÉDA C,et al.Catalytic reduction of nitrate and nitrite on Pt-Cu/Al2O3 catalysts in aqueous solution:role of the interaction between copper and platinum in the reaction[J].Journal of Catalysis,2001,198(2):309-318. doi: 10.1006/jcat.2000.3138
    [19] CHEN J G,CROOKS R M,SEEFELDT L C,et al.Beyond fossil fuel-driven nitrogen transformations[J].Science,2018,360(6391):eaar6611. doi: 10.1126/science.aar6611
    [20] WANG X D,ZHU M Q,ZENG G S,et al.A three-dimensional Cu nanobelt cathode for highly efficient electrocatalytic nitrate reduction[J].Nanoscale,2020,12(17):9385-9391. doi: 10.1039/C9NR10743F
    [21] JUNG S,BAE S,LEE W.Development of Pd-Cu/hematite catalyst for selective nitrate reduction[J].Environmental Science & Technology,2014,48(16):9651-9658.
    [22] 李怡冰,李涵,黄文轩,等.生物炭的制备及其在强化电子传递和催化性能等方面的研究进展[J].环境科学研究,2021,34(5):1157-1167. doi: 10.13198/j.issn.1001-6929.2020.10.01

    LI Y B,LI H,HUANG W X,et al.Research progress on the biochar production and its applications in enhancing electron transport and catalysis performance[J].Research of Environmental Sciences,2021,34(5):1157-1167. doi: 10.13198/j.issn.1001-6929.2020.10.01
    [23] GAO J Y,REN C X,HUO X C,et al.Supported palladium catalysts:a facile preparation method and implications to reductive catalysis technology for water treatment[J].ACS Environmental Science and Technology Engineering,2021,1(3):562-570.
    [24] ZHANG Z Q,XU Y P,SHI W X,et al.Electrochemical-catalytic reduction of nitrate over Pd-Cu/γAl2O3 catalyst in cathode chamber:enhanced removal efficiency and N2 selectivity[J].Chemical Engineering Journal,2016,290:201-208. doi: 10.1016/j.cej.2016.01.063
    [25] ZHANG Z Q,LUO Y,GUO Y,et al.Pd and Pt nanoparticles supported on the mesoporous silica molecular sieve SBA-15 with enhanced activity and stability in catalytic bromate reduction[J].Chemical Engineering Journal,2018,344:114-123. doi: 10.1016/j.cej.2018.03.056
    [26] WANG C,HUANG Y K,ZHAO Q,et al.Treatment of secondary effluent using a three-dimensional electrode system:cod removal,biotoxicity assessment,and disinfection effects[J].Chemical Engineering Journal,2014,243:1-6. doi: 10.1016/j.cej.2013.12.044
    [27] BARHOUMI N,LABIADH L,OTURAN M A,et al.Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process[J].Chemosphere,2015,141:250-257. doi: 10.1016/j.chemosphere.2015.08.003
    [28] XIA Y J,DAI Q Z.Electrochemical degradation of antibiotic levofloxacin by PbO2 electrode:kinetics,energy demands and reaction pathways[J].Chemosphere,2018,205:215-222. doi: 10.1016/j.chemosphere.2018.04.103
    [29] VORLOP K D,TACKE T.Erste schritte auf Dem weg zur edelmetallkatalysierten nitrat- und nitrit-entfernung aus trinkwasser[J].Chemie Ingenieur Technik,1989,61(10):836-837. doi: 10.1002/cite.330611023
    [30] CHEN X T,ZHANG T,KAN M,et al.Binderless and oxygen vacancies rich FeNi/graphitized mesoporous carbon/Ni foam for electrocatalytic reduction of nitrate[J].Environmental Science & Technology,2020,54(20):13344-13353.
    [31] ZHU T H,CHEN Q S,LIAO P,et al.Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production[J].Small,2020,16(49):2004526. doi: 10.1002/smll.202004526
    [32] MARCHESINI F A,AGHEMO V,MORENO I,et al.Pd and Pd,in nanoparticles supported on polymer fibres as catalysts for the nitrate and nitrite reduction in aqueous media[J].Journal of Environmental Chemical Engineering,2020,8(2):103651. doi: 10.1016/j.jece.2019.103651
    [33] ZHOU C H,BAI J,ZHANG Y,et al.Novel 3D Pd-Cu(OH)2/CF cathode for rapid reduction of nitrate-N and simultaneous total nitrogen removal from wastewater[J].Journal of Hazardous Materials,2021,401:123232. doi: 10.1016/j.jhazmat.2020.123232
    [34] GAO Z W, ZHANG Y G, LI D Y, et al.Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction[J].Journal of Hazardous Materials,2015,286:425-431. doi: 10.1016/j.jhazmat.2015.01.005
    [35] ZHAO Y,BAEZA J A,RAO N K,et al.Unsupported PVA- and PVP-stabilized Pd nanoparticles as catalyst for nitrite hydrogenation in aqueous phase[J].Journal of Catalysis,2014,318:162-169. doi: 10.1016/j.jcat.2014.07.011
    [36] ILINICH O M,CUPERUS F P,VAN-GEMERT R W,et al.Catalytic membrane in denitrification of water:a means to facilitate intraporous diffusion of reactants[J].Separation and Purification Technology,2000,21(1/2):55-60.
    [37] HAYNES W M.CRC handbook of chemistry and physics[M].Boca Raton,Florida,America:CRC Press,2014.
    [38] ZHANG Z Q,CHENG J,LUO Y,et al.Pt nanoparticles supported on amino-functionalized SBA-15 for enhanced aqueous bromate catalytic reduction[J].Catalysis Communications,2018,105:11-15. doi: 10.1016/j.catcom.2017.11.004
  • 加载中
图(9)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  24
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-22
  • 修回日期:  2022-03-28

目录

    /

    返回文章
    返回