留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VOx-MoOx/TiO2催化剂低温催化降解一氯苯及二英的研究

孔德宝 马云峰 王容 陈彤 林晓青 李晓东 籍龙杰

孔德宝, 马云峰, 王容, 陈彤, 林晓青, 李晓东, 籍龙杰. VOx-MoOx/TiO2催化剂低温催化降解一氯苯及二英的研究[J]. 环境科学研究, 2022, 35(9): 2110-2119. doi: 10.13198/j.issn.1001-6929.2022.05.07
引用本文: 孔德宝, 马云峰, 王容, 陈彤, 林晓青, 李晓东, 籍龙杰. VOx-MoOx/TiO2催化剂低温催化降解一氯苯及二英的研究[J]. 环境科学研究, 2022, 35(9): 2110-2119. doi: 10.13198/j.issn.1001-6929.2022.05.07
KONG Debao, MA Yunfeng, WANG Rong, CHEN Tong, LIN Xiaoqing, LI Xiaodong, JI Longjie. Low Temperature Catalytic Degradation of Chlorobenzene and PCDD/Fs over VOx-MoOx/TiO2 Catalyst[J]. Research of Environmental Sciences, 2022, 35(9): 2110-2119. doi: 10.13198/j.issn.1001-6929.2022.05.07
Citation: KONG Debao, MA Yunfeng, WANG Rong, CHEN Tong, LIN Xiaoqing, LI Xiaodong, JI Longjie. Low Temperature Catalytic Degradation of Chlorobenzene and PCDD/Fs over VOx-MoOx/TiO2 Catalyst[J]. Research of Environmental Sciences, 2022, 35(9): 2110-2119. doi: 10.13198/j.issn.1001-6929.2022.05.07

VOx-MoOx/TiO2催化剂低温催化降解一氯苯及二英的研究

doi: 10.13198/j.issn.1001-6929.2022.05.07
基金项目: 国家重点研发计划项目(No.2018YFC1802103)
详细信息
    作者简介:

    孔德宝(1996-),男,安徽阜阳人,21960233@zju.edu.cn

    通讯作者:

    陈彤(1972-),女,江苏泰州人,教授,博士,博导,主要从事固体废弃物焚烧过程中持久性有机污染物POPs(特别是痕量有机污染物二英)研究,chentong@zju.edu.cn

  • 中图分类号: X511

Low Temperature Catalytic Degradation of Chlorobenzene and PCDD/Fs over VOx-MoOx/TiO2 Catalyst

Funds: National Key Research and Development Program of China (No.2018YFC1802103)
  • 摘要: 垃圾焚烧过程中会产生大量氯苯等氯代挥发性有机污染物(CVOCs)和二噁英等持久性有机污染物(POPs). CVOCs的排放会导致光化学烟雾和温室效应的产生,而二噁英能在土壤中长期附存,具有人体致癌和致畸变等严重危害. 催化降解技术具有显著优势,能将二噁英等有机污染物彻底破坏分解,最终将其转化为CO2、H2O和HCl等产物. 基于钒基催化剂VOx/TiO2的过渡金属氧化物催化剂已被广泛应用于烟气CVOCs和二噁英处理领域. 钒基氧化物VOx中的V=O基团对二噁英起到亲核吸附的作用,在钒基氧化物上添加第二活性组分钼氧化物MoOx可以提高催化剂的催化活性. 本文采用湿法浸渍的方法制备出用于催化降解含氯污染物的粉体钒钼钛VOx-MoOx/TiO2催化剂,并分析其合成方法、催化表征和性能测试结果,讨论反应温度对一氯苯及二噁英催化率影响的机理,旨在为开发二噁英催化技术提供参考. 结果表明:VOx-MoOx/TiO2催化剂表面催化活性位点较多,活性组分分散良好,起始还原温度较低,活性氧含量较多,比表面积较大,颗粒团聚较轻,具有优良的催化特性. 通过系列实验筛选出合适的催化剂组分比例为5%VOx-5%MoOx/TiO2(记作“V5-Mo5-Ti”,即VOx和MoOx的质量分数各占5%,TiO2的质量分数占90%),在150 ℃低温下其对一氯苯和二噁英的催化效果优异. V5-Mo5-Ti催化剂对一氯苯的低温转化率随原始稳定浓度和空速比的升高而降低. 在一氯苯初始浓度为150×10−6、空速比为10 000 h−1时,V5-Mo5-Ti催化剂在150 ℃下对一氯苯的转化率为54.0%,在300 ℃时接近100%. 在150 ℃的低温环境中,该催化剂对二噁英催化脱除率在86%以上,催化降解率在74%以上. 研究显示,VOx-MoOx/TiO2催化剂对二噁英的催化脱除率和降解率随温度的升高而提高,主要归因于升温加快了V2O5中V5+和V4+元素以及MoO3中Mo6+和Mo4+元素的催化氧化循环速率.

     

  • 图  1  氯苯结构示意

    Figure  1.  Schematic diagram of chlorobenzene structure

    图  2  英结构示意

    注:x取值为0~4,y取值为0~4,x+y≥1.

    Figure  2.  Schematic diagram of PCDD/Fs structure

    图  3  VOCs催化平台

    Figure  3.  VOCs catalytic platform

    图  4  英催化降解平台

    Figure  4.  PCDD/Fs catalytic degradation platform

    图  5  4种催化剂XRD图谱

    Figure  5.  XRD patterns of four catalysts

    图  6  各催化剂的XPS分峰结果

    Figure  6.  XPS peak splitting results of each catalyst

    图  7  4种催化剂的SEM图像

    Figure  7.  SEM images of four catalysts

    图  8  5种催化剂的H2-TPR曲线

    注:圆圈位置表示起始还原峰温.

    Figure  8.  H2-TPR curves of five catalysts

    图  9  不同温度下Mo的质量分数对V5-Mo-Ti催化一氯苯转化率的影响

    Figure  9.  Effect of mass fraction of Mo on the conversion of chlorobenzene catalyzed by V5-Mo-Ti at different temperatures

    图  10  不同温度下稳定浓度对V5-Mo5-Ti催化一氯苯转化率的影响

    Figure  10.  Effect of stable concentration on the conversion of chlorobenzene catalyzed by V5-Mo5-Ti at different temperatures

    图  11  不同温度下空速比对V5-Mo5-Ti催化一氯苯转化率的影响

    Figure  11.  Effect of space velocity ratio on chlorobenzene conversion catalyzed by V5-Mo5-Ti at different temperatures

    图  12  不同温度下V5-Mo5-Ti对二英的催化脱除率及降解率

    Figure  12.  PCDD/Fs removal rate and degradation rate by V5-Mo5-Ti at different temperatures

    表  1  17种有毒二英的物化参数和国际毒性当量因子(I-TEF)

    Table  1.   physicochemical parameters and international toxicity equivalent factor (I-TEF) of 17 toxic PCDD/Fs

    异构体名称熔点/℃沸点/℃溶解度/(mol/L)蒸汽压/PaI-TEF
    2,3,7,8-TCDD305446$ {{3.4 \times 10}}^{{-8}} $$ {{5.8 \times 10}}^{{-5}} $1
    1,2,3,7,8-PeCDD240465$ {{7.8 \times 10}}^{{-9}} $$ {{1.2 \times 10}}^{{-5}} $0.5
    1,2,3,4,7,8-HxCDD273488$ {{2.6 \times 10}}^{{-9}} $$ {{3.9 \times 10}}^{{-6}} $0.1
    1,2,3,6,7,8-HxCDD285488$ {{2.2 \times 10}}^{{-9}} $$ {{3.3 \times 10}}^{{-6}} $0.1
    1,2,3,7,8,9-HxCDD243488$ {{1.6 \times 10}}^{{-8}} $$ {{1.4 \times 10}}^{{-6}} $0.1
    1,2,3,4,6,7,8-HpCDD264507$ {{6.8 \times 10}}^{{-10}} $$ {{5.9 \times 10}}^{{-6}} $0.01
    OCDD325510$ {{2.5 \times 10}}^{{-10}} $$ {{1.3 \times 10}}^{{-7}} $0.001
    2,3,7,8-TCDF227438$ {{1.3 \times 10}}^{{-7}} $$ {{3.7 \times 10}}^{{-4}} $0.1
    1,2,3,7,8-PeCDF225465$ {{3.2 \times 10}}^{{-8}} $$ {{6.2 \times 10}}^{{-5}} $0.05
    2,3,4,7,8-PeCDF196465$ {{2.1 \times 10}}^{{-8}} $$ {{5.5 \times 10}}^{{-5}} $0.5
    1,2,3,4,7,8-HxCDF256488$ {{7.1 \times 10}}^{{-9}} $$ {{1.4 \times 10}}^{{-5}} $0.1
    1,2,3,6,7,8-HxCDF232488$ {{6.0 \times 10}}^{{-9}} $$ {{1.2 \times 10}}^{{-5}} $0.1
    2,3,4,6,7,8-HxCDF246488$ {{4.2 \times 10}}^{{-9}} $$ {{7.6 \times 10}}^{{-6}} $0.1
    1,2,3,7,8,9-HxCDF239488$ {{2.3 \times 10}}^{{-9}} $$ {{2.2 \times 10}}^{{-6}} $0.1
    1,2,3,4,6,7,8-HpCDF236507$ {{1.7 \times 10}}^{{-9}} $$ {{2.5 \times 10}}^{{-6}} $0.01
    1,2,3,4,7,8,9-HpCDF221507$ {{6.3 \times 10}}^{{-10}} $$ {{6.6 \times 10}}^{{-7}} $0.01
    OCDF258507$ {{2.3 \times 10}}^{{-10}} $$ {{1.8 \times 10}}^{{-7}} $0.001
    下载: 导出CSV

    表  2  5种催化剂V、Mo、O结合能位置及价态占比

    Table  2.   Binding energy positions and valence proportion of V, Mo and O of five catalysts

    催化剂结合能/eV价态占比
    O 1sV 2pMo 3dOα/(Oα+Oβ)V4+/(V4++V5+)Mo4+/(Mo4++Mo6+)
    OαOβV4+V5+Mo 3d5/2Mo 3d3/2
    Mo4+Mo6+Mo4+Mo6+
    V5-Ti532.2530.5516.7517.60.310.27
    Mo5-Ti232.6233.1235.6236.20.09
    V5-Mo5-Ti531.7530.5516.5517.7232.2233.1235.3236.30.160.420.11
    V5-Ce5-Ti531.7530.1517.1517.70.130.37
    V5-W5-Ti531.6530.3516.7517.20.230.24
    下载: 导出CSV

    表  3  8种催化剂N2物理吸附表征结果

    Table  3.   N2 physical adsorption characterization results of eight catalysts

    催化剂BET比表面积/(m2/g)孔体积/(cm3/g)孔径/nm
    Nano-TiO254.630.1813.18
    V5-Ti50.330.3124.80
    Mo5-Ti55.810.3928.31
    V5-Mo5-Ti50.800.2823.30
    V5-Mo2.5-Ti51.010.3225.53
    V5-Mo7.5-Ti47.510.3227.26
    V5-Ce5-Ti47.250.3630.06
    V5-W5-Ti48.920.3728.82
    下载: 导出CSV
  • [1] 王亚韡,蔡亚岐,江桂斌.斯德哥尔摩公约新增持久性有机污染物的一些研究进展[J].中国科学:化学,2010,40(2):99-123. doi: 10.1360/zb2010-40-2-99

    WANG Y W,CAI Y Q,JIANG G B.Research processes of persistent organic pollutants (POPs) newly listed and candidate POPs in Stockholm Convention[J].Scientia Sinica Chimica,2010,40(2):99-123. doi: 10.1360/zb2010-40-2-99
    [2] OJALA S,PITKÄAHO S,LAITINEN T,et al.Catalysis in VOC abatement[J].Topics in Catalysis,2011,54(16/17/18):1224-1256.
    [3] BHAVSAR S P,REINER E J,HAYTON A,et al.Converting Toxic Equivalents (TEQ) of dioxins and dioxin-like compounds in fish from one Toxic Equivalency Factor (TEF) scheme to another[J].Environment International,2008,34(7):915-921. doi: 10.1016/j.envint.2008.02.001
    [4] GAO H C,NI Y W,ZHANG H J,et al.Stack gas emissions of PCDD/Fs from hospital waste incinerators in China[J].Chemosphere,2009,77(5):634-639. doi: 10.1016/j.chemosphere.2009.08.017
    [5] TRITZ A,ZIEGLER-DEVIN I,PERRIN C,et al.Experimental study of the oxidation and pyrolysis of dibenzofuran at very low concentration[J].Journal of Environmental Chemical Engineering,2014,2(1):143-153. doi: 10.1016/j.jece.2013.11.030
    [6] WHYLIE P,DYKE P,ALBAIGES J,et al.Regionally based assessment of persistent toxic substances:global report 2003[R].Geneva,Switzerland:UNEP Chemicals,2003.
    [7] RATHNA R,VARJANI S,NAKKEERAN E.Recent developments and prospects of dioxins and furans remediation[J].Journal of Environmental Management,2018,223:797-806.
    [8] CONNER W C Jr,FALCONER J L.Spillover in heterogeneous catalysis[J].Chemical Reviews,1995,95(3):759-788. doi: 10.1021/cr00035a014
    [9] QU Z P,BU Y B,QIN Y,et al.The improved reactivity of manganese catalysts by Ag in catalytic oxidation of toluene[J].Applied Catalysis B:Environmental,2013,132/133:353-362. doi: 10.1016/j.apcatb.2012.12.008
    [10] 詹金姣,张琪,孙诗白,等.低Pd负载量结构化邻二甲苯燃烧催化剂的设计[J].环境科学研究,2020,33(12):2794-2801. doi: 10.13198/j.issn.1001-6929.2020.06.04

    ZHAN J J,ZHANG Q,SUN S B,et al.Design of structured catalysts with low Pd loading for o-xylene combustion[J].Research of Environmental Sciences,2020,33(12):2794-2801. doi: 10.13198/j.issn.1001-6929.2020.06.04
    [11] 张均,汤木娥,周易,等.钯基催化剂电催化氢解处理氯代有机物的研究进展[J].环境科学研究,2022,35(1):119-130.

    ZHANG J,TANG M E,ZHOU Y,et al.Progress in electrocatalytic hydrogenolysis of chlorinated organic compounds on palladium-based catalysts[J].Research of Environmental Sciences,2022,35(1):119-130.
    [12] YANG Z J,XIA C H,ZHANG Q,et al.Catalytic detoxification of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in fly ash[J].Waste Management,2007,27(4):588-592. doi: 10.1016/j.wasman.2006.02.019
    [13] de JONG V,CIEPLIK M K,REINTS W A,et al.A mechanistic study on the catalytic combustion of benzene and chlorobenzene[J].Journal of Catalysis,2002,211(2):355-365. doi: 10.1016/S0021-9517(02)93762-0
    [14] 杜翠翠.球磨法制备钒基催化剂催化降解氯苯及二噁英的基础研究[D].杭州:浙江大学,2018.
    [15] WEBER R,SAKURAI T,HAGENMAIER H.Low temperature decomposition of PCDD/PCDF,chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts[J].Applied Catalysis B:Environmental,1999,20(4):249-256. doi: 10.1016/S0926-3373(98)00115-5
    [16] FINOCCHIO E,BUSCA G,NOTARO M.A review of catalytic processes for the destruction of PCDD and PCDF from waste gases[J].Applied Catalysis B:Environmental,2006,62(1/2):12-20.
    [17] GILARDONI F,BELL A T,CHAKRABORTY A,et al.Density functional theory calculations of the oxidative dehydrogenation of propane on the (010) surface of V2O5[J].The Journal of Physical Chemistry B,2000,104(51):12250-12255. doi: 10.1021/jp001746m
    [18] LOMNICKI S,LICHTENBERGER J,XU Z T,et al.Catalytic oxidation of 2,4,6-trichlorophenol over vanadia/titania-based catalysts[J].Applied Catalysis B:Environmental,2003,46(1):105-119. doi: 10.1016/S0926-3373(03)00215-7
    [19] GOEMANS M,CLARYSSE P,JOANNÈS J,et al.Catalytic NOx reduction with simultaneous dioxin and furan oxidation[J].Chemosphere,2004,54(9):1357-1365. doi: 10.1016/S0045-6535(03)00255-8
    [20] BERTINCHAMPS F,GRÉGOIRE C,GAIGNEAUX E M.Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics. part I:identification of the optimal main active phases and supports[J].Applied Catalysis B:Environmental,2006,66(1/2):1-9.
    [21] HUANG L Y,SU G J,LIU Y X,et al.Effect of NiFe2O4 on PCDF byproducts formation during thermal degradation of decachlorobiphenyl[J].RSC Advances,2014,4(48):25453. doi: 10.1039/c4ra02580f
    [22] 李敏,付丽亚,谭煜,等.Mn-Ce/γ-Al2O3催化臭氧氧化深度处理石化废水中试研究[J].环境科学研究,2021,34(10):2380-2388.

    LI M,FU L Y,TAN Y,et al.Pilot study of advanced treatment of petrochemical wastewater by Mn-Ce/γ-Al2O3 catalytic ozonation[J].Research of Environmental Sciences,2021,34(10):2380-2388.
    [23] BONTE J L,FRITSKY K J,PLINKE M A,et al.Catalytic destruction of PCDD/F in a fabric filter:experience at a municipal waste incinerator in Belgium[J].Waste Management,2002,22(4):421-426. doi: 10.1016/S0956-053X(02)00025-9
    [24] 胡志健,安璐,李永光.焦化厂SCR脱硝催化剂积碳失活研究[J].环境工程技术学报,2020,10(2):192-196. doi: 10.12153/j.issn.1674-991X.20190112

    HU Z J,AN L,LI Y G.Study on coking deactivation of SCR denitration catalyst in a coke-oven plant[J].Journal of Environmental Engineering Technology,2020,10(2):192-196. doi: 10.12153/j.issn.1674-991X.20190112
    [25] CHO C H,IHM S K.Development of new vanadium-based oxide catalysts for decomposition of chlorinated aromatic pollutants[J].Environmental Science & Technology,2002,36(7):1600-1606.
    [26] ZHAN M X,YU M F,ZHANG G X,et al.Low temperature degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans over a VOx-CeOx/TiO2 catalyst with addition of ozone[J].Waste Management,2018,76:555-565. doi: 10.1016/j.wasman.2018.02.049
    [27] 俞明锋.VOx-CeOx/TiO2催化剂低温降解二噁英的基础研究[D].杭州:浙江大学,2017.
    [28] WANG J,WANG X,LIU X L,et al.Kinetics and mechanism study on catalytic oxidation of chlorobenzene over V2O5/TiO2 catalysts[J].Journal of Molecular Catalysis A:Chemical,2015,402:1-9. doi: 10.1016/j.molcata.2015.03.003
    [29] KRISHNAMOORTHY S,RIVAS J A,AMIRIDIS M D.Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides[J].Journal of Catalysis,2000,193(2):264-272. doi: 10.1006/jcat.2000.2895
    [30] 蔺卓玮.钒钼体系列中低温SCR脱硝催化剂的研究[D].北京:华北电力大学(北京),2017.
    [31] SING K S W.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J].Pure and Applied Chemistry,1985,57(4):603-619. doi: 10.1351/pac198557040603
    [32] ZHOU X J,LI X D,MA X H,et al.Adsorption of polychlorinated dibenzo-p-dioxins and dibenzofurans vapors on activated carbon[J].Environmental Engineering Science,2014,31(12):664-670. doi: 10.1089/ees.2014.0084
    [33] ZHOU X J,LI X D,NI M J,et al.Removal efficiencies for 136 tetra- through octa-chlorinated dibenzo-p-dioxins and dibenzofuran congeners with activated carbons[J].Environmental Science and Pollution Research,2015,22(22):17691-17696. doi: 10.1007/s11356-015-4940-6
    [34] ZHAO X Y,ZENG X L,QIN Y,et al.An experimental and theoretical study of the adsorption removal of toluene and chlorobenzene on coconut shell derived carbon[J].Chemosphere,2018,206:285-292. doi: 10.1016/j.chemosphere.2018.04.126
    [35] 周旭健.多孔碳材料对二英吸附特性的机理研究[D].杭州:浙江大学,2016.
    [36] 周旭健,李晓东,徐帅玺,等.多孔碳材料对二英吸附性能的研究评述及展望[J].环境污染与防治,2016,38(1):76-81. doi: 10.15985/j.cnki.1001-3865.2016.01.014

    ZHOU X J,LI X D,XU S X,et al.Dioxins adsorption on porous carbon materials:a review[J].Environmental Pollution & Control,2016,38(1):76-81. doi: 10.15985/j.cnki.1001-3865.2016.01.014
    [37] 籍龙杰.典型含氯化合物对催化降解氯苯和二英的影响机理研究[D].杭州:浙江大学,2017.
    [38] WU Y X,LIANG H L,CHEN X,et al.Effect of preparation methods on denitration performance of V-Mo/TiO2 catalyst[J].Journal of Fuel Chemistry and Technology,2020,48(2):189-196. doi: 10.1016/S1872-5813(20)30010-4
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  23
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-05-18

目录

    /

    返回文章
    返回