留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

河流不同分子量溶解性有机质对全氟化合物赋存形态的影响

张杰 赵璞君 夏星辉

张杰, 赵璞君, 夏星辉. 河流不同分子量溶解性有机质对全氟化合物赋存形态的影响[J]. 环境科学研究, 2022, 35(9): 2058-2066. doi: 10.13198/j.issn.1001-6929.2022.06.07
引用本文: 张杰, 赵璞君, 夏星辉. 河流不同分子量溶解性有机质对全氟化合物赋存形态的影响[J]. 环境科学研究, 2022, 35(9): 2058-2066. doi: 10.13198/j.issn.1001-6929.2022.06.07
ZHANG Jie, ZHAO Pujun, XIA Xinghui. Effects of Different Molecular Weight Dissolved Organic Matter on Occurrence Form of Polyfluoroalkyl Substances in River[J]. Research of Environmental Sciences, 2022, 35(9): 2058-2066. doi: 10.13198/j.issn.1001-6929.2022.06.07
Citation: ZHANG Jie, ZHAO Pujun, XIA Xinghui. Effects of Different Molecular Weight Dissolved Organic Matter on Occurrence Form of Polyfluoroalkyl Substances in River[J]. Research of Environmental Sciences, 2022, 35(9): 2058-2066. doi: 10.13198/j.issn.1001-6929.2022.06.07

河流不同分子量溶解性有机质对全氟化合物赋存形态的影响

doi: 10.13198/j.issn.1001-6929.2022.06.07
基金项目: 国家自然科学基金重点项目(No.52039001, 92047303)
详细信息
    作者简介:

    张杰(1992-),男,山东泰安人,zhang_jie@mail.bnu.edu.cn

    通讯作者:

    夏星辉(1971-),女,湖南汨罗人,教授,博士,博导,主要从事流域水环境研究,xiaxh@bnu.edu.cn

  • 中图分类号: X522

Effects of Different Molecular Weight Dissolved Organic Matter on Occurrence Form of Polyfluoroalkyl Substances in River

Funds: Key Program of the National Natural Science Foundation of China (No.52039001, 92047303)
  • 摘要: 目前有关水体全氟化合物(PFASs)赋存特征的研究主要集中于总溶解态,对溶解性有机质(DOM)结合态PFASs的研究较为匮乏,尤其忽视了不同分子量DOM对PFASs赋存形态的影响. 为阐明河流上覆水体不同分子量DOM对PFASs赋存形态的影响,本文以长江干支流为例,分析了河流上覆水体11种典型PFASs (C4~C12)的浓度及组成,研究了不同分子量DOM结合态PFASs的赋存特征. 结果表明:①长江上覆水体中PFASs的平均浓度为52.6 ng/L,其中全氟戊酸(PFPeA)和全氟己酸(PFHxA)是最主要的单体污染物;由于受点源污染的影响,武汉段PFASs总溶解浓度及其单体浓度均显著高于其他采样点. ②长江上覆水体中DOM的浓度范围为0.08~3.84 mg/L (以C计),将水体DOM按分子量分离为<1 kDa、1~3 kDa、3~5 kDa、5~10 kDa和>10 kDa五种组分,各采样点中<1 kDa的溶解性有机碳(DOC)浓度(1.56~3.84 mg/L)显著高于其他分子量的DOC浓度. ③对于所检出的PFASs,<1 kDa DOM结合态PFASs (含自由溶解态)的浓度亦显著高于其他分子量DOM结合态PFASs的浓度,且其占水体总溶解态PFASs的比例均在85%以上,说明水体DOM结合态PFASs具有较高的生物有效性. 研究显示,水体不同分子量DOM结合态PFASs的赋存特征存在差异,因此对水体PFASs进行生态风险评价时需综合考虑不同分子量DOM结合态的含量及其生物有效性.

     

  • 图  1  不同采样点上覆水体PFASs总溶解态的浓度

    注:YB为宜宾段;LZ为泸州段;CQ为重庆段;HC为合川段(嘉陵江);YC为宜昌段;CS为长沙段(湘江);ZX为钟祥段(汉江);WH为武汉段;NC为南昌段(赣江);DT为大通段.

    Figure  1.  Concentrations of total dissolved PFASs in overlying water at different sampling sites

    图  2  不同采样点上覆水体中不同分子量的DOC浓度

    Figure  2.  Concentration of DOC with different molecular weights in overlying water at different sampling sites

    图  3  不同采样点上覆水体中不同分子量DOM结合态PFASs的浓度

    Figure  3.  Concentrations of PFASs associated with different molecular weight DOM in the overlying water at different sampling sites

    图  4  水体总溶解态中不同分子量DOM结合态PFASs的吸附贡献率

    注:<1 kDa DOM结合态PFASs中含自由溶解态.

    Figure  4.  Adsorption contribution rate of PFASs associated with different molecular weight DOM in total dissolved water

    表  1  我国主要河流上覆水体PFASs总溶解态的浓度比较

    Table  1.   Comparison of total dissolved PFASs in overlying water from different rivers in China

    采样区域PFASs总溶解态浓度/(ng/L)数据来源
    范围平均值
    辽河1.4~13143.6文献[27]
    黄河干流44.7~263.0文献[23]
    黄河支流79.9~1 526.0文献[23]
    大运河7.4~153.540.5文献[28]
    拉萨河0.1~1.70.3文献[29]
    岷江1.5~30.211.2文献[30]
    黄浦江39.8~596.2226.3文献[31]
    长江重庆段52.3~69.1文献[25]
    长江重庆段1.5~61.923.9文献[32]
    长江宜昌段4.8~6.1文献[33]
    长江江苏至上海段31.0~902.0文献[33]
    长江九江段46.2~157.688.5文献[34]
    长江南昌段146.2~586.2322.1文献[34]
    长江干支流31.8~117.052.6该研究
    下载: 导出CSV
  • [1] 陈诗艳,仇雁翎,朱志良,等.土壤中全氟和多氟烷基化合物的污染现状及环境行为[J].环境科学研究,2021,34(2):468-478.

    CHEN S Y,QIU Y L,ZHU Z L,et al.Current pollution status and environmental behaviors of PFASs in soil[J].Research of Environmental Sciences,2021,34(2):468-478.
    [2] 宋彦敏,周连宁,郝文龙,等.全氟化合物的污染现状及国内外研究进展[J].环境工程,2017,35(10):82-86.

    SONG Y M,ZHOU L N,HAO W L,et al.Pollution status and related research progress of perfluorinated compounds[J].Environmental Engineering,2017,35(10):82-86.
    [3] 乔肖翠,赵兴茹,郭睿,等.典型岩溶区水环境中全氟化合物分布特征及风险评价[J].环境科学研究,2019,32(12):2148-2156.

    QIAO X C,ZHAO X R,GUO R,et al.Distribution characteristics and risk assessment of per-and polyfluoroalkyl substances in water environment in typical Karst region[J].Research of Environmental Sciences,2019,32(12):2148-2156.
    [4] WEN W,XIA X H,ZHOU D,et al.Bioconcentration and tissue distribution of shorter and longer chain perfluoroalkyl acids (PFAAs) in zebrafish (Danio rerio):effects of perfluorinated carbon chain length and zebrafish protein content[J].Environmental Pollution,2019,249:277-285. doi: 10.1016/j.envpol.2019.03.003
    [5] WEN W,XIA X H,CHEN X,et al.Bioconcentration of perfluoroalkyl substances by Chironomus plumosus larvae in water with different types of dissolved organic matters[J].Environmental Pollution,2016,213:299-307. doi: 10.1016/j.envpol.2016.02.018
    [6] AHRENS L,BARBER J L,XIE Z Y,et al.Longitudinal and latitudinal distribution of perfluoroalkyl compounds in the surface water of the Atlantic Ocean[J].Environmental Science & Technology,2009,43(9):3122-3127.
    [7] MARTIN J W,WHITTLE D M,MUIR D C G,et al.Perfluoroalkyl contaminants in a food web from Lake Ontario[J].Environmental Science & Technology,2004,38(20):5379-5385.
    [8] GE H,YAMAZAKI E,YAMASHITA N,et al.Particle size specific distribution of perfluoro alkyl substances in atmospheric particulate matter in Asian Cities[J].Environmental Science Processes & Impacts,2017,19(4):549-560.
    [9] JOVICIC V,KHAN M,ZBOGAR-RASIC A,et al.Degradation of low concentrated perfluorinated compounds (PFCs) from water samples using non-thermal atmospheric plasma (NTAP)[J].Energies,2018,11(5):1290. doi: 10.3390/en11051290
    [10] FAGBAYIGBO B O,OPEOLU B O,FATOKI O S,et al.Validation and determination of nine PFCS in surface water and sediment samples using UPLC-QTOF-MS[J].Environmental Monitoring and Assessment,2018,190(6):346. doi: 10.1007/s10661-018-6715-2
    [11] CHEN S,JIAO X C,GAI N,et al.Perfluorinated compounds in soil,surface water,and groundwater from rural areas in eastern China[J].Environmental Pollution,2016,211:124-131. doi: 10.1016/j.envpol.2015.12.024
    [12] LAM N H,CHO C R,LEE J S,et al.Perfluorinated alkyl substances in water,sediment,plankton and fish from Korean Rivers and lakes:a nationwide survey[J].Science of the Total Environment,2014,491/492:154-162. doi: 10.1016/j.scitotenv.2014.01.045
    [13] ZHOU Z,SHI Y L,VESTERGREN R,et al.Highly elevated serum concentrations of perfluoroalkyl substances in fishery employees from Tangxun Lake,China[J].Environmental Science & Technology,2014,48(7):3864-3874.
    [14] 张美,楼巧婷,邵倩文,等.全氟化合物污染现状及风险评估的研究进展[J].生态毒理学报,2019,14(3):30-53.

    ZHANG M,LOU Q T,SHAO Q W,et al.Research progress of perfluorinated compounds pollution status and risk assessment[J].Asian Journal of Ecotoxicology,2019,14(3):30-53.
    [15] 刘建超,郑超亚,任静华,等.平原河湖系统中典型全氟化合物的胶体吸附特征及生态风险评估[J].湖泊科学,2021,33(6):1714-1726. doi: 10.18307/2021.0609

    LIU J C,ZHENG C Y,REN J H,et al.Adsorption characteristics of perfluorinated compounds from colloids in the river-lake system of the plain and their ecological risk[J].Journal of Lake Sciences,2021,33(6):1714-1726. doi: 10.18307/2021.0609
    [16] 吴自豪,张彦峰,陈心悦,等.根据SSD推导PFOS沉积物质量基准及其在生态风险评估中的应用[J].环境科学研究,2019,32(9):1448-1455.

    WU Z H,ZHANG Y F,CHEN X Y,et al.Derivation of sediment quality criteria of PFOS based on SSD and its application in ecological risk assessment[J].Research of Environmental Sciences,2019,32(9):1448-1455.
    [17] 闫晓寒,韩璐,文威,等.辽河保护区水体溶解性有机质空间分布与来源解析[J].环境科学学报,2021,41(4):1419-1427.

    YAN X H,HAN L,WEN W,et al.Spectral characteristics and spatial distribution of DOM in surface water of Liaohe Reservation Zone[J].Acta Scientiae Circumstantiae,2021,41(4):1419-1427.
    [18] 林慧.溶解性有机质结合态芘对大型溞的生物有效性及作用机理[D].北京:北京师范大学,2019.
    [19] 彭洁,王娅南,林绍霞,等.贵州草海湿地溶解性有机物的光谱特征及其与PFASs的相关性分析[J].环境科学研究,2020,33(4):885-892.

    PENG J,WANG Y N,LIN S X,et al.Spectral characteristics of dissolved organic matter and its correlation with PFASs in Caohai Wetland,Guizhou[J].Research of Environmental Sciences,2020,33(4):885-892.
    [20] GOULIARMOU V,SMITH K E C,de JONGE L W,et al.Measuring binding and speciation of hydrophobic organic chemicals at controlled freely dissolved concentrations and without phase separation[J].Analytical Chemistry,2012,84(3):1601-1608. doi: 10.1021/ac2028497
    [21] XIA X H,DAI Z N,RABEARISOA A H,et al.Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water[J].Chemosphere,2015,119:978-986. doi: 10.1016/j.chemosphere.2014.09.034
    [22] 张悦清,张爱国,曹莉,等.长江流域全氟化合物污染态势与生态效应[J].环境监控与预警,2020,12(5):58-67.

    ZHANG Y Q,ZHANG A G,CAO L,et al.Contamination status and ecological effects of perfluoroalkyl substances in the Yangtze Basin[J].Environmental Monitoring and Forewarning,2020,12(5):58-67.
    [23] ZHAO P J,XIA X H,DONG J W,et al.Short- and long-chain perfluoroalkyl substances in the water,suspended particulate matter,and surface sediment of a turbid river[J].Science of the Total Environment,2016,568:57-65. doi: 10.1016/j.scitotenv.2016.05.221
    [24] 周珍,胡宇宁,史亚利,等.武汉地区水环境中全氟化合物污染水平及其分布特征[J].生态毒理学报,2017,12(3):425-433.

    ZHOU Z,HU Y N,SHI Y L,et al.Occurrence and distribution of per-and polufluoroalkyl substances in waste water and surface water samples in Wuhan[J].Asian Journal of Ecotoxicology,2017,12(3):425-433.
    [25] SO M K,MIYAKE Y,YEUNG W Y,et al.Perfluorinated compounds in the Pearl River and Yangtze River of China[J].Chemosphere,2007,68(11):2085-2095. doi: 10.1016/j.chemosphere.2007.02.008
    [26] 潘奕陶.新兴全氟及多氟烷基化合物的环境分布和生殖健康效应[D].北京:中国科学院大学,2018.
    [27] YANG L P,ZHU L Y,LIU Z T.Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake,China[J].Chemosphere,2011,83(6):806-814. doi: 10.1016/j.chemosphere.2011.02.075
    [28] 朴海涛,陈舒,焦杏春,等.大运河丰水期水体中全氟化合物的分布[J].中国环境科学,2016,36(10):3040-3047. doi: 10.3969/j.issn.1000-6923.2016.10.029

    PIAO H T,CHEN S,JIAO X C,et al.Geographical distribution of perfluorinated compounds in waters along the Grand Canal during wet season[J].China Environmental Science,2016,36(10):3040-3047. doi: 10.3969/j.issn.1000-6923.2016.10.029
    [29] 孙殿超,龚平,王小萍,等.拉萨河全氟化合物的时空分布特征研究[J].中国环境科学,2018,38(11):4298-4306. doi: 10.3969/j.issn.1000-6923.2018.11.040

    SUN D C,GONG P,WANG X P,et al.Special distribution and seasonal variation of perfluoroalkyls substances in Lhasa River Basin,China[J].China Environmental Science,2018,38(11):4298-4306. doi: 10.3969/j.issn.1000-6923.2018.11.040
    [30] 方淑红,李成,卞玉霞,等.岷江流域全氟化合物的污染特征及排放通量[J].中国环境科学,2019,39(7):2983-2989. doi: 10.3969/j.issn.1000-6923.2019.07.035

    FANG S H,LI C,BIAN Y X,et al.Pollution characteristics and flux of perfluoroalkyl substances in Minjiang River[J].China Environmental Science,2019,39(7):2983-2989. doi: 10.3969/j.issn.1000-6923.2019.07.035
    [31] SUN Z Y,ZHANG C J,YAN H,et al.Spatiotemporal distribution and potential sources of perfluoroalkyl acids in Huangpu River,Shanghai,China[J].Chemosphere,2017,174:127-135. doi: 10.1016/j.chemosphere.2017.01.122
    [32] 杜国勇,蒋小萍,卓丽,等.长江流域重庆段水体中全氟化合物的污染特征及风险评价[J].生态环境学报,2019,28(11):2266-2272.

    DU G Y,JIANG X P,ZHUO L,et al.Distribution characteristics and risk assessment of perfluorinated compounds in surface water from Chongqing section of the Yangtze River[J].Ecology and Environmental Sciences,2019,28(11):2266-2272.
    [33] ZHENG B H,LIU X L,GUO R,et al.Distribution characteristics of poly- and perfluoroalkyl substances in the Yangtze River Delta[J].Journal of Environmental Sciences,2017,61:97-109. doi: 10.1016/j.jes.2017.09.015
    [34] TAN K Y,LU G H,YUAN X,et al.Perfluoroalkyl substances in water from the Yangtze River and its tributaries at the dividing point between the middle and lower reaches[J].Bulletin of Environmental Contamination and Toxicology,2018,101(5):598-603. doi: 10.1007/s00128-018-2444-z
    [35] LIN H,XIA X H,BI S Q,et al.Quantifying bioavailability of Pyrene associated with dissolved organic matter of various molecular weights to Daphnia magna[J].Environmental Science & Technology,2018,52(2):644-653.
    [36] 谢冰心,王姝,孙辉,等.溶解性有机质对持久性有机污染物环境行为的影响研究进展[J].环境污染与防治,2020,42(12):1563-1568.

    XIE B X,WANG S,SUN H,et al.Impacts of dissolved organic matter on the environmental behavior of persistent organic pollutants:a review[J].Environmental Pollution & Control,2020,42(12):1563-1568.
    [37] HERBERT B E,BERTSCH P M,NOVAK J M.Pyrene sorption by water-soluble organic carbon[J].Environmental Science & Technology,1993,27(2):398-403.
    [38] MOTT H V.Association of hydrophobic organic contaminants with soluble organic matter:evaluation of the database of KDOC values[J].Advances in Environmental Research,2002,6(4):577-593. doi: 10.1016/S1093-0191(01)00104-6
    [39] CHENG K Y,WONG J W C.Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil-water system[J].Chemosphere,2006,62(11):1907-1916. doi: 10.1016/j.chemosphere.2005.07.028
    [40] KLAUS U,MOHAMED S,VOLK M,et al.Interaction of aquatic substances with anilazine and its derivatives:the nature of the bound residues[J].Chemosphere,1998,37(2):341-361. doi: 10.1016/S0045-6535(98)00050-2
    [41] LEE D Y,FARMER W J.Dissolved organic matter interaction with napropamide and four other nonionic pesticides[J].Journal of Environmental Quality,1989,18(4):468-474.
    [42] 凌婉婷,徐建民,高彦征,等.溶解性有机质对土壤中有机污染物环境行为的影响[J].应用生态学报,2004,15(2):326-330. doi: 10.3321/j.issn:1001-9332.2004.02.033

    LING W T,XU J M,GAO Y Z,et al.Influence of dissolved organic matter (DOM) on environmental behaviors of organic pollutants in soils[J].Chinese Journal of Applied Ecology,2004,15(2):326-330. doi: 10.3321/j.issn:1001-9332.2004.02.033
    [43] LIN H,XIA X H,ZHANG Q R,et al.Can the hydrophobic organic contaminants in the filtrate passing through 0.45 μm filter membranes reflect the water quality?[J].The Science of the Total Environment,2021,752:141916. doi: 10.1016/j.scitotenv.2020.141916
    [44] LIN H,XIA X H,JIANG X M,et al.Bioavailability of Pyrene associated with different types of protein compounds:direct evidence for its uptake by Daphnia magna[J].Environmental Science & Technology,2018,52(17):9851-9860.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  37
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 修回日期:  2022-05-19

目录

    /

    返回文章
    返回