Effects of Different Molecular Weight Dissolved Organic Matter on Occurrence Form of Polyfluoroalkyl Substances in River
-
摘要: 目前有关水体全氟化合物(PFASs)赋存特征的研究主要集中于总溶解态,对溶解性有机质(DOM)结合态PFASs的研究较为匮乏,尤其忽视了不同分子量DOM对PFASs赋存形态的影响. 为阐明河流上覆水体不同分子量DOM对PFASs赋存形态的影响,本文以长江干支流为例,分析了河流上覆水体11种典型PFASs (C4~C12)的浓度及组成,研究了不同分子量DOM结合态PFASs的赋存特征. 结果表明:①长江上覆水体中PFASs的平均浓度为52.6 ng/L,其中全氟戊酸(PFPeA)和全氟己酸(PFHxA)是最主要的单体污染物;由于受点源污染的影响,武汉段PFASs总溶解浓度及其单体浓度均显著高于其他采样点. ②长江上覆水体中DOM的浓度范围为0.08~3.84 mg/L (以C计),将水体DOM按分子量分离为<1 kDa、1~3 kDa、3~5 kDa、5~10 kDa和>10 kDa五种组分,各采样点中<1 kDa的溶解性有机碳(DOC)浓度(1.56~3.84 mg/L)显著高于其他分子量的DOC浓度. ③对于所检出的PFASs,<1 kDa DOM结合态PFASs (含自由溶解态)的浓度亦显著高于其他分子量DOM结合态PFASs的浓度,且其占水体总溶解态PFASs的比例均在85%以上,说明水体DOM结合态PFASs具有较高的生物有效性. 研究显示,水体不同分子量DOM结合态PFASs的赋存特征存在差异,因此对水体PFASs进行生态风险评价时需综合考虑不同分子量DOM结合态的含量及其生物有效性.
-
关键词:
- 长江 /
- 全氟化合物(PFASs) /
- 溶解性有机质(DOM) /
- 分子量 /
- 赋存形态
Abstract: At present, studies on the distribution of polyfluoroalkyl substances (PFASs) in the aquatic environment mainly focus on their total dissolved concentration, while the studies about PFASs associated with dissolved organic matter (DOM) is scarce, especially there is a lack of research on the effects of DOM with different molecular weights on the occurrence form of PFASs. To clarify the effects of DOM with different molecular weights on the occurrence form of PFASs in overlying water of rivers, the concentrations and composition of eleven PFASs (C4-C12) in overlying water of the Yangtze River were analyzed and the occurrence characteristics of PFASs associated with different molecular weight DOM were explored. The results showed that: (1) The average total dissolved concentration of PFASs in the overlying water of the Yangtze River was 52.6 ng/L, and perfluoropentanoic acid (PFPeA) and perfluorohexanoic acid (PFHxA) were the main monomer pollutants. Due to the influence of point source pollution, the total dissolved concentration and monomer concentration of PFASs in Wuhan were significantly higher than those in other sampling sites. (2) The concentration of DOM in the overlying water of the Yangtze River ranged from 0.08 mg/L to 3.84 mg/L. DOM was separated into <1 kDa, 1-3 kDa, 3-5 kDa, 5-10 kDa and >10 kDa by molecular weight. The concentration (1.56-3.84 mg/L) of dissolved organic carbon (DOC) of <1 kDa was significantly higher than that of other molecular weights. (3) For the detected PFASs, the concentration of PFASs associated with <1 kDa DOM (including freely dissolved PFASs) was significantly higher than that associated with other molecular weights DOM, accounting for more than 85% of the total dissolved PFASs in overlying water, indicating that the PFASs associated with DOM in overlying water had high bioavailability. This study shows that there are differences in the occurrence characteristics of PFASs associated with different molecular weight DOM in overlying water. Therefore, the concentration and bioavailability of PFASs associated with different molecular weight DOM should be considered comprehensively when conducting ecological risk assessment for PFASs in overlying water. -
表 1 我国主要河流上覆水体PFASs总溶解态的浓度比较
Table 1. Comparison of total dissolved PFASs in overlying water from different rivers in China
采样区域 PFASs总溶解态浓度/(ng/L) 数据来源 范围 平均值 辽河 1.4~131 43.6 文献[27] 黄河干流 44.7~263.0 — 文献[23] 黄河支流 79.9~1 526.0 — 文献[23] 大运河 7.4~153.5 40.5 文献[28] 拉萨河 0.1~1.7 0.3 文献[29] 岷江 1.5~30.2 11.2 文献[30] 黄浦江 39.8~596.2 226.3 文献[31] 长江重庆段 52.3~69.1 — 文献[25] 长江重庆段 1.5~61.9 23.9 文献[32] 长江宜昌段 4.8~6.1 — 文献[33] 长江江苏至上海段 31.0~902.0 — 文献[33] 长江九江段 46.2~157.6 88.5 文献[34] 长江南昌段 146.2~586.2 322.1 文献[34] 长江干支流 31.8~117.0 52.6 该研究 -
[1] 陈诗艳,仇雁翎,朱志良,等.土壤中全氟和多氟烷基化合物的污染现状及环境行为[J].环境科学研究,2021,34(2):468-478.CHEN S Y,QIU Y L,ZHU Z L,et al.Current pollution status and environmental behaviors of PFASs in soil[J].Research of Environmental Sciences,2021,34(2):468-478. [2] 宋彦敏,周连宁,郝文龙,等.全氟化合物的污染现状及国内外研究进展[J].环境工程,2017,35(10):82-86.SONG Y M,ZHOU L N,HAO W L,et al.Pollution status and related research progress of perfluorinated compounds[J].Environmental Engineering,2017,35(10):82-86. [3] 乔肖翠,赵兴茹,郭睿,等.典型岩溶区水环境中全氟化合物分布特征及风险评价[J].环境科学研究,2019,32(12):2148-2156.QIAO X C,ZHAO X R,GUO R,et al.Distribution characteristics and risk assessment of per-and polyfluoroalkyl substances in water environment in typical Karst region[J].Research of Environmental Sciences,2019,32(12):2148-2156. [4] WEN W,XIA X H,ZHOU D,et al.Bioconcentration and tissue distribution of shorter and longer chain perfluoroalkyl acids (PFAAs) in zebrafish (Danio rerio):effects of perfluorinated carbon chain length and zebrafish protein content[J].Environmental Pollution,2019,249:277-285. doi: 10.1016/j.envpol.2019.03.003 [5] WEN W,XIA X H,CHEN X,et al.Bioconcentration of perfluoroalkyl substances by Chironomus plumosus larvae in water with different types of dissolved organic matters[J].Environmental Pollution,2016,213:299-307. doi: 10.1016/j.envpol.2016.02.018 [6] AHRENS L,BARBER J L,XIE Z Y,et al.Longitudinal and latitudinal distribution of perfluoroalkyl compounds in the surface water of the Atlantic Ocean[J].Environmental Science & Technology,2009,43(9):3122-3127. [7] MARTIN J W,WHITTLE D M,MUIR D C G,et al.Perfluoroalkyl contaminants in a food web from Lake Ontario[J].Environmental Science & Technology,2004,38(20):5379-5385. [8] GE H,YAMAZAKI E,YAMASHITA N,et al.Particle size specific distribution of perfluoro alkyl substances in atmospheric particulate matter in Asian Cities[J].Environmental Science Processes & Impacts,2017,19(4):549-560. [9] JOVICIC V,KHAN M,ZBOGAR-RASIC A,et al.Degradation of low concentrated perfluorinated compounds (PFCs) from water samples using non-thermal atmospheric plasma (NTAP)[J].Energies,2018,11(5):1290. doi: 10.3390/en11051290 [10] FAGBAYIGBO B O,OPEOLU B O,FATOKI O S,et al.Validation and determination of nine PFCS in surface water and sediment samples using UPLC-QTOF-MS[J].Environmental Monitoring and Assessment,2018,190(6):346. doi: 10.1007/s10661-018-6715-2 [11] CHEN S,JIAO X C,GAI N,et al.Perfluorinated compounds in soil,surface water,and groundwater from rural areas in eastern China[J].Environmental Pollution,2016,211:124-131. doi: 10.1016/j.envpol.2015.12.024 [12] LAM N H,CHO C R,LEE J S,et al.Perfluorinated alkyl substances in water,sediment,plankton and fish from Korean Rivers and lakes:a nationwide survey[J].Science of the Total Environment,2014,491/492:154-162. doi: 10.1016/j.scitotenv.2014.01.045 [13] ZHOU Z,SHI Y L,VESTERGREN R,et al.Highly elevated serum concentrations of perfluoroalkyl substances in fishery employees from Tangxun Lake,China[J].Environmental Science & Technology,2014,48(7):3864-3874. [14] 张美,楼巧婷,邵倩文,等.全氟化合物污染现状及风险评估的研究进展[J].生态毒理学报,2019,14(3):30-53.ZHANG M,LOU Q T,SHAO Q W,et al.Research progress of perfluorinated compounds pollution status and risk assessment[J].Asian Journal of Ecotoxicology,2019,14(3):30-53. [15] 刘建超,郑超亚,任静华,等.平原河湖系统中典型全氟化合物的胶体吸附特征及生态风险评估[J].湖泊科学,2021,33(6):1714-1726. doi: 10.18307/2021.0609LIU J C,ZHENG C Y,REN J H,et al.Adsorption characteristics of perfluorinated compounds from colloids in the river-lake system of the plain and their ecological risk[J].Journal of Lake Sciences,2021,33(6):1714-1726. doi: 10.18307/2021.0609 [16] 吴自豪,张彦峰,陈心悦,等.根据SSD推导PFOS沉积物质量基准及其在生态风险评估中的应用[J].环境科学研究,2019,32(9):1448-1455.WU Z H,ZHANG Y F,CHEN X Y,et al.Derivation of sediment quality criteria of PFOS based on SSD and its application in ecological risk assessment[J].Research of Environmental Sciences,2019,32(9):1448-1455. [17] 闫晓寒,韩璐,文威,等.辽河保护区水体溶解性有机质空间分布与来源解析[J].环境科学学报,2021,41(4):1419-1427.YAN X H,HAN L,WEN W,et al.Spectral characteristics and spatial distribution of DOM in surface water of Liaohe Reservation Zone[J].Acta Scientiae Circumstantiae,2021,41(4):1419-1427. [18] 林慧.溶解性有机质结合态芘对大型溞的生物有效性及作用机理[D].北京:北京师范大学,2019. [19] 彭洁,王娅南,林绍霞,等.贵州草海湿地溶解性有机物的光谱特征及其与PFASs的相关性分析[J].环境科学研究,2020,33(4):885-892.PENG J,WANG Y N,LIN S X,et al.Spectral characteristics of dissolved organic matter and its correlation with PFASs in Caohai Wetland,Guizhou[J].Research of Environmental Sciences,2020,33(4):885-892. [20] GOULIARMOU V,SMITH K E C,de JONGE L W,et al.Measuring binding and speciation of hydrophobic organic chemicals at controlled freely dissolved concentrations and without phase separation[J].Analytical Chemistry,2012,84(3):1601-1608. doi: 10.1021/ac2028497 [21] XIA X H,DAI Z N,RABEARISOA A H,et al.Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water[J].Chemosphere,2015,119:978-986. doi: 10.1016/j.chemosphere.2014.09.034 [22] 张悦清,张爱国,曹莉,等.长江流域全氟化合物污染态势与生态效应[J].环境监控与预警,2020,12(5):58-67.ZHANG Y Q,ZHANG A G,CAO L,et al.Contamination status and ecological effects of perfluoroalkyl substances in the Yangtze Basin[J].Environmental Monitoring and Forewarning,2020,12(5):58-67. [23] ZHAO P J,XIA X H,DONG J W,et al.Short- and long-chain perfluoroalkyl substances in the water,suspended particulate matter,and surface sediment of a turbid river[J].Science of the Total Environment,2016,568:57-65. doi: 10.1016/j.scitotenv.2016.05.221 [24] 周珍,胡宇宁,史亚利,等.武汉地区水环境中全氟化合物污染水平及其分布特征[J].生态毒理学报,2017,12(3):425-433.ZHOU Z,HU Y N,SHI Y L,et al.Occurrence and distribution of per-and polufluoroalkyl substances in waste water and surface water samples in Wuhan[J].Asian Journal of Ecotoxicology,2017,12(3):425-433. [25] SO M K,MIYAKE Y,YEUNG W Y,et al.Perfluorinated compounds in the Pearl River and Yangtze River of China[J].Chemosphere,2007,68(11):2085-2095. doi: 10.1016/j.chemosphere.2007.02.008 [26] 潘奕陶.新兴全氟及多氟烷基化合物的环境分布和生殖健康效应[D].北京:中国科学院大学,2018. [27] YANG L P,ZHU L Y,LIU Z T.Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake,China[J].Chemosphere,2011,83(6):806-814. doi: 10.1016/j.chemosphere.2011.02.075 [28] 朴海涛,陈舒,焦杏春,等.大运河丰水期水体中全氟化合物的分布[J].中国环境科学,2016,36(10):3040-3047. doi: 10.3969/j.issn.1000-6923.2016.10.029PIAO H T,CHEN S,JIAO X C,et al.Geographical distribution of perfluorinated compounds in waters along the Grand Canal during wet season[J].China Environmental Science,2016,36(10):3040-3047. doi: 10.3969/j.issn.1000-6923.2016.10.029 [29] 孙殿超,龚平,王小萍,等.拉萨河全氟化合物的时空分布特征研究[J].中国环境科学,2018,38(11):4298-4306. doi: 10.3969/j.issn.1000-6923.2018.11.040SUN D C,GONG P,WANG X P,et al.Special distribution and seasonal variation of perfluoroalkyls substances in Lhasa River Basin,China[J].China Environmental Science,2018,38(11):4298-4306. doi: 10.3969/j.issn.1000-6923.2018.11.040 [30] 方淑红,李成,卞玉霞,等.岷江流域全氟化合物的污染特征及排放通量[J].中国环境科学,2019,39(7):2983-2989. doi: 10.3969/j.issn.1000-6923.2019.07.035FANG S H,LI C,BIAN Y X,et al.Pollution characteristics and flux of perfluoroalkyl substances in Minjiang River[J].China Environmental Science,2019,39(7):2983-2989. doi: 10.3969/j.issn.1000-6923.2019.07.035 [31] SUN Z Y,ZHANG C J,YAN H,et al.Spatiotemporal distribution and potential sources of perfluoroalkyl acids in Huangpu River,Shanghai,China[J].Chemosphere,2017,174:127-135. doi: 10.1016/j.chemosphere.2017.01.122 [32] 杜国勇,蒋小萍,卓丽,等.长江流域重庆段水体中全氟化合物的污染特征及风险评价[J].生态环境学报,2019,28(11):2266-2272.DU G Y,JIANG X P,ZHUO L,et al.Distribution characteristics and risk assessment of perfluorinated compounds in surface water from Chongqing section of the Yangtze River[J].Ecology and Environmental Sciences,2019,28(11):2266-2272. [33] ZHENG B H,LIU X L,GUO R,et al.Distribution characteristics of poly- and perfluoroalkyl substances in the Yangtze River Delta[J].Journal of Environmental Sciences,2017,61:97-109. doi: 10.1016/j.jes.2017.09.015 [34] TAN K Y,LU G H,YUAN X,et al.Perfluoroalkyl substances in water from the Yangtze River and its tributaries at the dividing point between the middle and lower reaches[J].Bulletin of Environmental Contamination and Toxicology,2018,101(5):598-603. doi: 10.1007/s00128-018-2444-z [35] LIN H,XIA X H,BI S Q,et al.Quantifying bioavailability of Pyrene associated with dissolved organic matter of various molecular weights to Daphnia magna[J].Environmental Science & Technology,2018,52(2):644-653. [36] 谢冰心,王姝,孙辉,等.溶解性有机质对持久性有机污染物环境行为的影响研究进展[J].环境污染与防治,2020,42(12):1563-1568.XIE B X,WANG S,SUN H,et al.Impacts of dissolved organic matter on the environmental behavior of persistent organic pollutants:a review[J].Environmental Pollution & Control,2020,42(12):1563-1568. [37] HERBERT B E,BERTSCH P M,NOVAK J M.Pyrene sorption by water-soluble organic carbon[J].Environmental Science & Technology,1993,27(2):398-403. [38] MOTT H V.Association of hydrophobic organic contaminants with soluble organic matter:evaluation of the database of KDOC values[J].Advances in Environmental Research,2002,6(4):577-593. doi: 10.1016/S1093-0191(01)00104-6 [39] CHENG K Y,WONG J W C.Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil-water system[J].Chemosphere,2006,62(11):1907-1916. doi: 10.1016/j.chemosphere.2005.07.028 [40] KLAUS U,MOHAMED S,VOLK M,et al.Interaction of aquatic substances with anilazine and its derivatives:the nature of the bound residues[J].Chemosphere,1998,37(2):341-361. doi: 10.1016/S0045-6535(98)00050-2 [41] LEE D Y,FARMER W J.Dissolved organic matter interaction with napropamide and four other nonionic pesticides[J].Journal of Environmental Quality,1989,18(4):468-474. [42] 凌婉婷,徐建民,高彦征,等.溶解性有机质对土壤中有机污染物环境行为的影响[J].应用生态学报,2004,15(2):326-330. doi: 10.3321/j.issn:1001-9332.2004.02.033LING W T,XU J M,GAO Y Z,et al.Influence of dissolved organic matter (DOM) on environmental behaviors of organic pollutants in soils[J].Chinese Journal of Applied Ecology,2004,15(2):326-330. doi: 10.3321/j.issn:1001-9332.2004.02.033 [43] LIN H,XIA X H,ZHANG Q R,et al.Can the hydrophobic organic contaminants in the filtrate passing through 0.45 μm filter membranes reflect the water quality?[J].The Science of the Total Environment,2021,752:141916. doi: 10.1016/j.scitotenv.2020.141916 [44] LIN H,XIA X H,JIANG X M,et al.Bioavailability of Pyrene associated with different types of protein compounds:direct evidence for its uptake by Daphnia magna[J].Environmental Science & Technology,2018,52(17):9851-9860. -