Potential of Carbonization for Co-Disposal of Pollution and Carbon Reduction of Incineration Fly Ash
-
摘要: 为探究我国不同地区生活垃圾焚烧飞灰“减污降碳”协同处置潜力,选取我国8个典型地区的飞灰为研究对象,采用加速碳化试验模拟飞灰长期填埋场景,通过重金属浸出试验探究碳化前后其重金属浸出浓度的变化情况,通过热重分析研究其对CO2的实际吸收能力,同时基于Steinour方程研究2009—2021年我国飞灰对CO2的理论吸收能力. 结果表明:通过浸出试验得知加速碳化后飞灰中重金属Zn、Cd的浸出浓度分别下降了10%~18%和9%~30%,其中上海市和河南省飞灰样品中Zn的浸出浓度已低于生活垃圾填埋场入场要求. 《生活垃圾焚烧污染控制标准》(GB 18485—2014)的发布实施导致飞灰中碱性成分占比上升,使得飞灰对CO2的吸收潜能增至标准发布之前的约1.38倍. 以贵州省、上海市、山东省、北京市、广东省、辽宁省、河南省、天津市8个不同地区的飞灰样品为例,通过Steinour方程推算得到2020年我国飞灰对CO2的理论吸收量达339.93×104 t,约占2020年我国碳排放总量的0.034%. 对上海市、北京市及河南省3个飞灰样品进行加速碳化试验,通过热重曲线得到飞灰在碳化前后CaCO3分解段的失重率,进一步推算出2020年我国飞灰对CO2的实际吸收量达16.34×104 t,占其理论吸收量的4.8%,飞灰对CO2的实际吸收量小于其理论吸收量的主要原因是,在加速碳化过程中产生的碳酸钙及其他聚合物包裹飞灰,使外部CO2难以进入飞灰内部. 研究显示,加速碳化对飞灰“减污”效果明显,但“降碳”效果仍需对碳化场景以及预处理过程的工艺参数进行优化,以期最大限度地提高飞灰对CO2的实际吸收能力.Abstract: In order to investigate the co-disposal potential of ‘pollution and carbon reduction’ of incineration fly ash in different regions of China, fly ash from eight typical regions of China was chosen as the research object. The accelerated carbonation test was used to simulate the long-term landfill of fly ash. The actual CO2 absorption capacity was studied by thermogravimetric analysis, and the theoretical CO2 adsorption capacity of fly ash in China from 2009 to 2021 was also investigated using the Steinour equation. The results showed that the leaching concentration of Zn and Cd in fly ash decreased by 10%-18% and 9%-30%, respectively, after accelerated carbonization, and the leaching concentration of Zn in fly ash samples from Shanghai and Henan Province was already lower than the admission requirement of domestic waste landfill. The implementation of China′s Domestic Waste Incineration Pollution Control Standard (GB 18485-2014) resulted in an increase in the content of alkaline components in fly ash, increasing the CO2 absorption potential of fly ash to about 1.38 times that before the standard′s release. Taking fly ash samples from eight different regions in Guizhou, Shanghai, Shandong, Beijing, Guangdong, Liaoning, Henan, and Tianjin as examples, the theoretical absorption of CO2 by fly ash in China in 2020 was calculated by the Steinour equation to be 339.93×104 t, accounting for approximately 0.034% of China′s total carbon emissions in 2020. Three fly ash samples from Shanghai, Beijing and Henan were subjected to accelerated carbonization experiments, and the weight loss due to the CaCO3 decomposition of fly ash before and after carbonization was obtained through thermogravimetric curves. It was, further deduced that the actual amount of CO2 absorption by fly ash in China in 2020 was 16.34×104 t, accounting for 4.8% of the theoretical absorption. The main reason why the actual absorption of CO2 by fly ash is less than the theoretical absorption is that the calcium carbonate and other polymers produced in the accelerated carbonization process encapsulate the fly ash, making it difficult for external CO2 to enter the fly ash. The study shows that the accelerated carbonization has obvious ‘pollution reduction’ effect for fly ash, but the ‘carbon reduction’ still need to optimize the carbonization scenario and the pretreatment process parameters to maximize the actual absorption capacity of fly ash for CO2.
-
表 1 不同飞灰碳化前后中重金属浸出浓度的变化
Table 1. Variation of heavy metal leaching concentration in different fly ash before and after carbonization
项目 浸出浓度(mg/L) Zn Cd Pb Ni Cr Hg Cu Ba As 样品编号 F2 110.49 1.30 1.88 0.95 2.02 — 0.84 0.62 0.03 CF2 98.88 1.17 2.04 0.90 0.72 — 1.22 0.93 0.08 F4 241.01 15.26 3.97 0.27 0.07 — 3.9 2.04 0.03 CF4 197.43 12.99 3.67 0.32 0.19 — 3.36 3.33 0.05 F7 115.80 12.51 3.17 0.41 0.59 — 3.75 2.34 0.02 CF7 99.02 8.53 3.74 0.44 0.18 — 2.04 2.86 0.04 GB 16889—2008《生活垃圾填埋场污染控制标准》 100 0.15 0.25 0.5 4.5 0.05 10 25 0.3 注:—表示未检出. 表 2 2009—2021年我国不同地区飞灰的化学组成及CO2吸收能力汇总
Table 2. Chemical composition of incineration fly ash in different regions from 2009 to 2021
年份 CO2吸收能力/% 成分含量/% 飞灰来源 数据来源 CaO SO3 Na2O K2O Cl SiO2 2009 33.47 16.40 6.73 16.10 7.25 16.00 20.70 上海市 文献[19] 2010 31.96 32.77 10.74 3.81 8.58 20.59 10.77 华东地区 文献[20] 2011 26.40 29.80 6.80 3.20 3.50 10.80 13.90 江苏省 文献[21] 2012 37.05 34.47 5.45 8.11 4.46 16.72 4.12 湖北省 文献[22] 2013 31.25 34.49 7.47 4.93 3.13 13.68 10.55 广东省 文献[23] 2014 33.88 39.10 7.24 3.43 3.68 11.90 15.90 江苏省 文献[24] 2015 29.31 29.40 8.78 2.91 8.48 8.80 23.22 湖北省 文献[25] 2016 42.00 38.85 5.26 8.07 6.02 16.80 10.22 江苏省 文献[26] 2017 43.13 49.60 6.15 2.54 5.17 12.48 4.22 北京市 文献[27] 2018 41.99 34.55 9.00 10.06 9.51 10.12 7.65 重庆市 文献[28] 2019 49.72 43.20 5.90 12.60 5.72 24.60 3.00 中国南部 文献[29] 2020 62.90 56.60 4.00 14.03 5.78 — 1.47 湖北省 文献[30] 2021 44.19 46.03 2.11 4.37 4.79 22.52 11.75 天津市 文献[31] -
[1] 王涵,马军,陈民,等.减污降碳协同多元共治体系需求及构建探析[J].环境科学研究,2022,35(4):936-944. doi: 10.13198/j.issn.1001-6929.2022.01.10WANG H,MA J,CHEN M,et al.Analysis of needs and construction of coordinated multi-governance system for pollution reduction and carbon reduction[J].Research of Environmental Sciences,2022,35(4):936-944. doi: 10.13198/j.issn.1001-6929.2022.01.10 [2] 张剑,刘景洋,董莉,等.中国能源消费CO2排放的影响因素及情景分析[J/OL].环境工程技术学报,2021.http://kns.cnki.net/kcms/detail/11.5972.X.20211229.2112.002.html.ZHANG J,LIU J Y,DONG L,et al.Influencing factors and scenario analysis of China′s energy consumption CO2 emissions[J/OL].Journal of Environmental Engineering Technology,2022.http://kns.cnki.net/kcms/detail/11.5972.X.20211229.2112.002.html. [3] YIN J L,DING Q,FAN X H.Direct and indirect contributions of energy consumption structure to carbon emission intensity[J].International Journal of Energy Sector Management,2021,15(3):665-677. doi: 10.1108/IJESM-08-2020-0009 [4] LIU K,QIAO Y R,ZHOU Q.Analysis of China's industrial green development efficiency and driving factors:research based on MGWR[J].International Journal of Environmental Research and Public Health,2021,18(8):3960. doi: 10.3390/ijerph18083960 [5] LI X,DAMARTZIS T,STADLER Z,et al.Decarbonization in complex energy systems:a study on the feasibility of carbon neutrality for Switzerland in 2050[J].Frontiers in Energy Research,2020,8:549615. doi: 10.3389/fenrg.2020.549615 [6] 罗雷,郭旸旸,李寅明,等.碳中和下水泥行业低碳发展技术路径及预测研究[J].环境科学研究,2022,35(6):1527-1537. doi: 10.13198/j.issn.1001-6929.2021.12.20LUO L,GUO Y Y,LI Y M,et al.Research on low-carbon development technology path and forecast of cement industry under carbon neutral situation[J].Research of Environmental Sciences,2022,35(6):1527-1537. doi: 10.13198/j.issn.1001-6929.2021.12.20 [7] BOBICKI E R,LIU Q X,XU Z H,et al.Carbon capture and storage using alkaline industrial wastes[J].Progress in Energy and Combustion Science,2012,38(2):302-320. doi: 10.1016/j.pecs.2011.11.002 [8] 李志雄,李玲玲,陈韧,等.炼钢精炼渣气固碳酸化反应吸附CO2[J].化工环保,2020,40(4):376-381.LI Z X,LI L L,CHEN R,et al.Adsorption of CO2 by gas solid carbonation on steel refining slag[J].Environmental Protection of Chemical Industry,2020,40(4):376-381. [9] 武鸽,刘艳芳,崔龙鹏,等.典型工业固体废物碳酸化反应性能的比较[J].石油学报(石油加工),2020,36(1):169-178.WU G,LIU Y F,CUI L P,et al.Comparison of the carbonation reaction properties of typical industrial solid wastes[J].Acta Petrolei Sinica (Petroleum Processing Section),2020,36(1):169-178. [10] HE L L,YU D X,LV W Z,et al.A novel method for CO2 sequestration via indirect carbonation of coal fly ash[J].Industrial & Engineering Chemistry Research,2013,52(43):15138-15145. [11] FERNÁNDEZ BERTOS M,LI X,SIMONS S J R,et al.Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2[J].Green Chem,2004,6(8):428-436. doi: 10.1039/B401872A [12] BACIOCCHI R,COSTA G,di BARTOLOMEO E,et al.The effects of accelerated carbonation on CO2 uptake and metal release from incineration APC residues[J].Waste Management,2009,29(12):2994-3003. doi: 10.1016/j.wasman.2009.07.012 [13] JIANG J G,DU X J,CHEN M Z,et al.Continuous CO2 capture and MSWI fly ash stabilization,utilizing novel dynamic equipment[J].Environmental Pollution,2009,157(11):2933-2938. doi: 10.1016/j.envpol.2009.06.007 [14] 李静莉.城市固体废物焚烧飞灰的碳酸化及其废水的离子去除[D].厦门:厦门大学,2019. [15] BETHANIS S,CHEESEMAN C R,SOLLARS C J.Properties and microstructure of sintered incinerator bottom ash[J].Ceramics International,2002,28(8):881-886. doi: 10.1016/S0272-8842(02)00068-8 [16] 章骅,于思源,邵立明,等.烟气净化工艺和焚烧炉类型对生活垃圾焚烧飞灰性质的影响[J].环境科学,2018,39(1):467-476.ZHANG H,YU S Y,SHAO L M,et al.Influence of air pollution control (APC) systems and furnace type on the characteristics of APC residues from municipal solid waste incinerators[J].Environmental Science,2018,39(1):467-476. [17] PENG T H,LIN C L,WEY M Y.Determination of the Pb,Cr,and Cd distribution patterns with various chlorine additives in the bottom ashes of a low-temperature two-stage fluidized bed incinerator by chemical sequential extraction[J].Journal of Hazardous Materials,2015,295:86-96. doi: 10.1016/j.jhazmat.2015.03.066 [18] JIAO F C,ZHANG L,DONG Z B,et al.Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior[J].Fuel Processing Technology,2016,152:108-115. doi: 10.1016/j.fuproc.2016.06.013 [19] 姜永海,席北斗,李鸣晓,等.垃圾焚烧飞灰浸出特性[J].环境科学研究,2009,22(12):1478-1481.JIANG Y H,XI B D,LI M X,et al.Leaching characteristics of fly ash from municipal solid waste incineration[J].Research of Environmental Sciences,2009,22(12):1478-1481. [20] 于昕,薛军.垃圾焚烧飞灰水洗-酸浸稳定化技术研究[J].中国矿业,2011,20(2):118-123. doi: 10.3969/j.issn.1004-4051.2011.02.032YU X,XUE J.Effects of a water-washing process on heavy metal speciation and leaching efficiency in MSWI fly ash during acid extraction[J].China Mining Magazine,2011,20(2):118-123. doi: 10.3969/j.issn.1004-4051.2011.02.032 [21] WU K,SHI H S,de SCHUTTER G,et al.Experimental study on alinite ecocement clinker preparation from municipal solid waste incineration fly ash[J].Materials and Structures,2012,45(8):1145-1153. doi: 10.1617/s11527-012-9822-5 [22] HU H Y,LUO G Q,LIU H,et al.Fate of chromium during thermal treatment of municipal solid waste incineration (MSWI) fly ash[J].Proceedings of the Combustion Institute,2013,34(2):2795-2801. doi: 10.1016/j.proci.2012.06.181 [23] 熊祖鸿,鲁敏,胡大为,等.广东省典型生活垃圾焚烧飞灰的物化及固化特性[J].环境化学,2014,33(7):1173-1179. doi: 10.7524/j.issn.0254-6108.2014.07.021XIONG Z H,LU M,HU D W,et al.Physicochemical and solidification characteristics of municipal solid wastes incineration (MSWI) fly ash from Guangdong Province[J].Environmental Chemistry,2014,33(7):1173-1179. doi: 10.7524/j.issn.0254-6108.2014.07.021 [24] GUO X L,SHI H S,HU W P,et al.Durability of calcium sulphoaluminate (CSA) composite cement-based materials made from municipal solid waste incineration (MSWI) fly ash[J].Applied Mechanics and Materials,2015,719/720:214-217. doi: 10.4028/www.scientific.net/AMM.719-720.214 [25] YU J,QIAO Y,JIN L M,et al.Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China[J].Waste Management,2015,46:287-297. doi: 10.1016/j.wasman.2015.08.005 [26] JIN M T,ZHENG Z D,SUN Y,et al.Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments[J].Journal of Non-Crystalline Solids,2016,450:116-122. doi: 10.1016/j.jnoncrysol.2016.07.036 [27] LIU X M,ZHAO X B,YIN H F,et al.Intermediate-calcium based cementitious materials prepared by MSWI fly ash and other solid wastes:hydration characteristics and heavy metals solidification behavior[J].Journal of Hazardous Materials,2018,349:262-271. doi: 10.1016/j.jhazmat.2017.12.072 [28] YANG J Z,YANG Y F,LI Y,et al.Leaching of metals from asphalt pavement incorporating municipal solid waste incineration fly ash[J].Environmental Science and Pollution Research,2018,25(27):27106-27111. doi: 10.1007/s11356-018-2472-6 [29] TONG L Z,HE J Y,WANG F,et al.Evaluation of the BCR sequential extraction scheme for trace metal fractionation of alkaline municipal solid waste incineration fly ash[J].Chemosphere,2020,249:126115. doi: 10.1016/j.chemosphere.2020.126115 [30] GU Q Y,WANG T W,WU W,et al.Influence of pretreatments on accelerated dry carbonation of MSWI fly ash under medium temperatures[J].Chemical Engineering Journal,2021,414:128756. doi: 10.1016/j.cej.2021.128756 [31] 孙进,谭欣,纪涛.生活垃圾焚烧飞灰典型组分对其熔融特性的影响[J].环境卫生工程,2021,29(4):59-63. doi: 10.19841/j.cnki.hjwsgc.2021.04.010SUN J,TAN X,JI T.Effects of typical components of MSWI fly ash on its melting characteristics[J].Environmental Sanitation Engineering,2021,29(4):59-63. doi: 10.19841/j.cnki.hjwsgc.2021.04.010 [32] 倪鹏.垃圾焚烧飞灰矿化解毒一体化的研究[D].武汉:华中科技大学,2018. [33] 王成艳.加速碳酸化对焚烧飞灰重金属浸出特性及高温迁移特性的影响[D].沈阳:沈阳航空工业学院,2010. -