留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化对焚烧飞灰“减污降碳”协同处置潜力研究

折开浪 姚光远 赵玉鑫 徐亚 刘玉强

折开浪, 姚光远, 赵玉鑫, 徐亚, 刘玉强. 碳化对焚烧飞灰“减污降碳”协同处置潜力研究[J]. 环境科学研究, 2022, 35(10): 2330-2337. doi: 10.13198/j.issn.1001-6929.2022.06.08
引用本文: 折开浪, 姚光远, 赵玉鑫, 徐亚, 刘玉强. 碳化对焚烧飞灰“减污降碳”协同处置潜力研究[J]. 环境科学研究, 2022, 35(10): 2330-2337. doi: 10.13198/j.issn.1001-6929.2022.06.08
SHE Kailang, YAO Guangyuan, ZHAO Yuxin, XU Ya, LIU Yuqiang. Potential of Carbonization for Co-Disposal of Pollution and Carbon Reduction of Incineration Fly Ash[J]. Research of Environmental Sciences, 2022, 35(10): 2330-2337. doi: 10.13198/j.issn.1001-6929.2022.06.08
Citation: SHE Kailang, YAO Guangyuan, ZHAO Yuxin, XU Ya, LIU Yuqiang. Potential of Carbonization for Co-Disposal of Pollution and Carbon Reduction of Incineration Fly Ash[J]. Research of Environmental Sciences, 2022, 35(10): 2330-2337. doi: 10.13198/j.issn.1001-6929.2022.06.08

碳化对焚烧飞灰“减污降碳”协同处置潜力研究

doi: 10.13198/j.issn.1001-6929.2022.06.08
基金项目: 国家重点研发计划项目(No.2020YFC1806304)
详细信息
    作者简介:

    折开浪(1997-),男,陕西榆林人,skl1026@163.com

    通讯作者:

    ①姚光远(1990-),男,河南长葛人,助理研究员,博士,主要从事固体废物的资源化利用、填埋处置及环境风险控制研究,yaogy@craes.org.cn

    ②刘玉强(1975-),男,安徽蚌埠人,研究员,硕士,主要从事固体废物填埋及场地风险评估研究,liuyq@craes.org.cn

  • 中图分类号: X705

Potential of Carbonization for Co-Disposal of Pollution and Carbon Reduction of Incineration Fly Ash

Funds: National Key Research and Development Project (No.2020YFC1806304)
  • 摘要: 为探究我国不同地区生活垃圾焚烧飞灰“减污降碳”协同处置潜力,选取我国8个典型地区的飞灰为研究对象,采用加速碳化试验模拟飞灰长期填埋场景,通过重金属浸出试验探究碳化前后其重金属浸出浓度的变化情况,通过热重分析研究其对CO2的实际吸收能力,同时基于Steinour方程研究2009—2021年我国飞灰对CO2的理论吸收能力. 结果表明:通过浸出试验得知加速碳化后飞灰中重金属Zn、Cd的浸出浓度分别下降了10%~18%和9%~30%,其中上海市和河南省飞灰样品中Zn的浸出浓度已低于生活垃圾填埋场入场要求. 《生活垃圾焚烧污染控制标准》(GB 18485—2014)的发布实施导致飞灰中碱性成分占比上升,使得飞灰对CO2的吸收潜能增至标准发布之前的约1.38倍. 以贵州省、上海市、山东省、北京市、广东省、辽宁省、河南省、天津市8个不同地区的飞灰样品为例,通过Steinour方程推算得到2020年我国飞灰对CO2的理论吸收量达339.93×104 t,约占2020年我国碳排放总量的0.034%. 对上海市、北京市及河南省3个飞灰样品进行加速碳化试验,通过热重曲线得到飞灰在碳化前后CaCO3分解段的失重率,进一步推算出2020年我国飞灰对CO2的实际吸收量达16.34×104 t,占其理论吸收量的4.8%,飞灰对CO2的实际吸收量小于其理论吸收量的主要原因是,在加速碳化过程中产生的碳酸钙及其他聚合物包裹飞灰,使外部CO2难以进入飞灰内部. 研究显示,加速碳化对飞灰“减污”效果明显,但“降碳”效果仍需对碳化场景以及预处理过程的工艺参数进行优化,以期最大限度地提高飞灰对CO2的实际吸收能力.

     

  • 图  1  我国不同地区飞灰的XRD分析结果

    Figure  1.  XRD analysis results of fly ash from different regions in China

    图  2  我国不同地区飞灰的化学元素组成

    Figure  2.  Chemical elemental composition of fly ash in different regions of China

    图  3  不同飞灰碳化前后热重分析

    Figure  3.  Thermogravimetric analysis of different fly ash before and after carbonization

    图  4  不同飞灰碳化前后SEM的分析结果

    Figure  4.  SEM analysis results before and after carbonization of different fly ash

    表  1  不同飞灰碳化前后中重金属浸出浓度的变化

    Table  1.   Variation of heavy metal leaching concentration in different fly ash before and after carbonization

    项目浸出浓度(mg/L)
    ZnCdPbNiCrHgCuBaAs
    样品编号F2110.49 1.301.880.952.020.840.620.03
    CF2 98.88 1.172.040.900.721.220.930.08
    F4241.0115.263.970.270.073.9 2.040.03
    CF4197.4312.993.670.320.193.363.330.05
    F7115.8012.513.170.410.593.752.340.02
    CF7 99.02 8.533.740.440.182.042.860.04
    GB 16889—2008《生活垃圾填埋场污染控制标准》100 0.150.250.54.50.0510250.3
    注:—表示未检出.
    下载: 导出CSV

    表  2  2009—2021年我国不同地区飞灰的化学组成及CO2吸收能力汇总

    Table  2.   Chemical composition of incineration fly ash in different regions from 2009 to 2021

    年份CO2吸收能力/%成分含量/%飞灰来源数据来源
    CaOSO3Na2OK2OClSiO2
    200933.4716.406.7316.107.2516.0020.70上海市文献[19]
    201031.9632.7710.743.818.5820.5910.77华东地区文献[20]
    201126.4029.806.803.203.5010.8013.90江苏省文献[21]
    201237.0534.475.458.114.4616.724.12湖北省文献[22]
    201331.2534.497.474.933.1313.6810.55广东省文献[23]
    201433.8839.107.243.433.6811.9015.90江苏省文献[24]
    201529.3129.408.782.918.48 8.8023.22湖北省文献[25]
    201642.0038.855.268.076.0216.8010.22江苏省文献[26]
    201743.1349.606.152.545.1712.484.22北京市文献[27]
    201841.9934.559.0010.069.5110.127.65重庆市文献[28]
    201949.7243.205.9012.605.7224.603.00中国南部文献[29]
    202062.9056.604.0014.035.781.47湖北省文献[30]
    202144.1946.032.114.374.7922.5211.75天津市文献[31]
    下载: 导出CSV
  • [1] 王涵,马军,陈民,等.减污降碳协同多元共治体系需求及构建探析[J].环境科学研究,2022,35(4):936-944. doi: 10.13198/j.issn.1001-6929.2022.01.10

    WANG H,MA J,CHEN M,et al.Analysis of needs and construction of coordinated multi-governance system for pollution reduction and carbon reduction[J].Research of Environmental Sciences,2022,35(4):936-944. doi: 10.13198/j.issn.1001-6929.2022.01.10
    [2] 张剑,刘景洋,董莉,等.中国能源消费CO2排放的影响因素及情景分析[J/OL].环境工程技术学报,2021.http://kns.cnki.net/kcms/detail/11.5972.X.20211229.2112.002.html.

    ZHANG J,LIU J Y,DONG L,et al.Influencing factors and scenario analysis of China′s energy consumption CO2 emissions[J/OL].Journal of Environmental Engineering Technology,2022.http://kns.cnki.net/kcms/detail/11.5972.X.20211229.2112.002.html.
    [3] YIN J L,DING Q,FAN X H.Direct and indirect contributions of energy consumption structure to carbon emission intensity[J].International Journal of Energy Sector Management,2021,15(3):665-677. doi: 10.1108/IJESM-08-2020-0009
    [4] LIU K,QIAO Y R,ZHOU Q.Analysis of China's industrial green development efficiency and driving factors:research based on MGWR[J].International Journal of Environmental Research and Public Health,2021,18(8):3960. doi: 10.3390/ijerph18083960
    [5] LI X,DAMARTZIS T,STADLER Z,et al.Decarbonization in complex energy systems:a study on the feasibility of carbon neutrality for Switzerland in 2050[J].Frontiers in Energy Research,2020,8:549615. doi: 10.3389/fenrg.2020.549615
    [6] 罗雷,郭旸旸,李寅明,等.碳中和下水泥行业低碳发展技术路径及预测研究[J].环境科学研究,2022,35(6):1527-1537. doi: 10.13198/j.issn.1001-6929.2021.12.20

    LUO L,GUO Y Y,LI Y M,et al.Research on low-carbon development technology path and forecast of cement industry under carbon neutral situation[J].Research of Environmental Sciences,2022,35(6):1527-1537. doi: 10.13198/j.issn.1001-6929.2021.12.20
    [7] BOBICKI E R,LIU Q X,XU Z H,et al.Carbon capture and storage using alkaline industrial wastes[J].Progress in Energy and Combustion Science,2012,38(2):302-320. doi: 10.1016/j.pecs.2011.11.002
    [8] 李志雄,李玲玲,陈韧,等.炼钢精炼渣气固碳酸化反应吸附CO2[J].化工环保,2020,40(4):376-381.

    LI Z X,LI L L,CHEN R,et al.Adsorption of CO2 by gas solid carbonation on steel refining slag[J].Environmental Protection of Chemical Industry,2020,40(4):376-381.
    [9] 武鸽,刘艳芳,崔龙鹏,等.典型工业固体废物碳酸化反应性能的比较[J].石油学报(石油加工),2020,36(1):169-178.

    WU G,LIU Y F,CUI L P,et al.Comparison of the carbonation reaction properties of typical industrial solid wastes[J].Acta Petrolei Sinica (Petroleum Processing Section),2020,36(1):169-178.
    [10] HE L L,YU D X,LV W Z,et al.A novel method for CO2 sequestration via indirect carbonation of coal fly ash[J].Industrial & Engineering Chemistry Research,2013,52(43):15138-15145.
    [11] FERNÁNDEZ BERTOS M,LI X,SIMONS S J R,et al.Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2[J].Green Chem,2004,6(8):428-436. doi: 10.1039/B401872A
    [12] BACIOCCHI R,COSTA G,di BARTOLOMEO E,et al.The effects of accelerated carbonation on CO2 uptake and metal release from incineration APC residues[J].Waste Management,2009,29(12):2994-3003. doi: 10.1016/j.wasman.2009.07.012
    [13] JIANG J G,DU X J,CHEN M Z,et al.Continuous CO2 capture and MSWI fly ash stabilization,utilizing novel dynamic equipment[J].Environmental Pollution,2009,157(11):2933-2938. doi: 10.1016/j.envpol.2009.06.007
    [14] 李静莉.城市固体废物焚烧飞灰的碳酸化及其废水的离子去除[D].厦门:厦门大学,2019.
    [15] BETHANIS S,CHEESEMAN C R,SOLLARS C J.Properties and microstructure of sintered incinerator bottom ash[J].Ceramics International,2002,28(8):881-886. doi: 10.1016/S0272-8842(02)00068-8
    [16] 章骅,于思源,邵立明,等.烟气净化工艺和焚烧炉类型对生活垃圾焚烧飞灰性质的影响[J].环境科学,2018,39(1):467-476.

    ZHANG H,YU S Y,SHAO L M,et al.Influence of air pollution control (APC) systems and furnace type on the characteristics of APC residues from municipal solid waste incinerators[J].Environmental Science,2018,39(1):467-476.
    [17] PENG T H,LIN C L,WEY M Y.Determination of the Pb,Cr,and Cd distribution patterns with various chlorine additives in the bottom ashes of a low-temperature two-stage fluidized bed incinerator by chemical sequential extraction[J].Journal of Hazardous Materials,2015,295:86-96. doi: 10.1016/j.jhazmat.2015.03.066
    [18] JIAO F C,ZHANG L,DONG Z B,et al.Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior[J].Fuel Processing Technology,2016,152:108-115. doi: 10.1016/j.fuproc.2016.06.013
    [19] 姜永海,席北斗,李鸣晓,等.垃圾焚烧飞灰浸出特性[J].环境科学研究,2009,22(12):1478-1481.

    JIANG Y H,XI B D,LI M X,et al.Leaching characteristics of fly ash from municipal solid waste incineration[J].Research of Environmental Sciences,2009,22(12):1478-1481.
    [20] 于昕,薛军.垃圾焚烧飞灰水洗-酸浸稳定化技术研究[J].中国矿业,2011,20(2):118-123. doi: 10.3969/j.issn.1004-4051.2011.02.032

    YU X,XUE J.Effects of a water-washing process on heavy metal speciation and leaching efficiency in MSWI fly ash during acid extraction[J].China Mining Magazine,2011,20(2):118-123. doi: 10.3969/j.issn.1004-4051.2011.02.032
    [21] WU K,SHI H S,de SCHUTTER G,et al.Experimental study on alinite ecocement clinker preparation from municipal solid waste incineration fly ash[J].Materials and Structures,2012,45(8):1145-1153. doi: 10.1617/s11527-012-9822-5
    [22] HU H Y,LUO G Q,LIU H,et al.Fate of chromium during thermal treatment of municipal solid waste incineration (MSWI) fly ash[J].Proceedings of the Combustion Institute,2013,34(2):2795-2801. doi: 10.1016/j.proci.2012.06.181
    [23] 熊祖鸿,鲁敏,胡大为,等.广东省典型生活垃圾焚烧飞灰的物化及固化特性[J].环境化学,2014,33(7):1173-1179. doi: 10.7524/j.issn.0254-6108.2014.07.021

    XIONG Z H,LU M,HU D W,et al.Physicochemical and solidification characteristics of municipal solid wastes incineration (MSWI) fly ash from Guangdong Province[J].Environmental Chemistry,2014,33(7):1173-1179. doi: 10.7524/j.issn.0254-6108.2014.07.021
    [24] GUO X L,SHI H S,HU W P,et al.Durability of calcium sulphoaluminate (CSA) composite cement-based materials made from municipal solid waste incineration (MSWI) fly ash[J].Applied Mechanics and Materials,2015,719/720:214-217. doi: 10.4028/www.scientific.net/AMM.719-720.214
    [25] YU J,QIAO Y,JIN L M,et al.Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China[J].Waste Management,2015,46:287-297. doi: 10.1016/j.wasman.2015.08.005
    [26] JIN M T,ZHENG Z D,SUN Y,et al.Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments[J].Journal of Non-Crystalline Solids,2016,450:116-122. doi: 10.1016/j.jnoncrysol.2016.07.036
    [27] LIU X M,ZHAO X B,YIN H F,et al.Intermediate-calcium based cementitious materials prepared by MSWI fly ash and other solid wastes:hydration characteristics and heavy metals solidification behavior[J].Journal of Hazardous Materials,2018,349:262-271. doi: 10.1016/j.jhazmat.2017.12.072
    [28] YANG J Z,YANG Y F,LI Y,et al.Leaching of metals from asphalt pavement incorporating municipal solid waste incineration fly ash[J].Environmental Science and Pollution Research,2018,25(27):27106-27111. doi: 10.1007/s11356-018-2472-6
    [29] TONG L Z,HE J Y,WANG F,et al.Evaluation of the BCR sequential extraction scheme for trace metal fractionation of alkaline municipal solid waste incineration fly ash[J].Chemosphere,2020,249:126115. doi: 10.1016/j.chemosphere.2020.126115
    [30] GU Q Y,WANG T W,WU W,et al.Influence of pretreatments on accelerated dry carbonation of MSWI fly ash under medium temperatures[J].Chemical Engineering Journal,2021,414:128756. doi: 10.1016/j.cej.2021.128756
    [31] 孙进,谭欣,纪涛.生活垃圾焚烧飞灰典型组分对其熔融特性的影响[J].环境卫生工程,2021,29(4):59-63. doi: 10.19841/j.cnki.hjwsgc.2021.04.010

    SUN J,TAN X,JI T.Effects of typical components of MSWI fly ash on its melting characteristics[J].Environmental Sanitation Engineering,2021,29(4):59-63. doi: 10.19841/j.cnki.hjwsgc.2021.04.010
    [32] 倪鹏.垃圾焚烧飞灰矿化解毒一体化的研究[D].武汉:华中科技大学,2018.
    [33] 王成艳.加速碳酸化对焚烧飞灰重金属浸出特性及高温迁移特性的影响[D].沈阳:沈阳航空工业学院,2010.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  41
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-05-05

目录

    /

    返回文章
    返回