Pollution Characteristics of Per- and Polyfluoroalkyl Substances (PFASs) in Adjacent Surface Water of Electroplating Industries in Shanghai
-
摘要: 电镀是全氟和多氟烷基物质(PFASs)污染的主要来源之一. 目前关于电镀企业周边地表水中的PFASs污染特征报道较为缺乏. 为了解上海市电镀企业周边地表水中PFASs的污染特征与生态风险水平,选取全氟烷基羧酸(PFCAs)、全氟烷基磺酸(PFSAs)、磺酸调聚物以及1-氯-全氟烷基醚磺酸钾(F-53B)等26种典型PFASs为对象,调查其在上海市电镀企业周边地表水中的污染特征,探讨其污染来源并开展初步的生态风险评估. 结果表明:上海市电镀企业周边地表水中∑PFASs浓度范围为93.3~1 334 ng/L,其中大部分地表水中∑PFASs浓度小于300 ng/L,污染最严重的地表水分布于金山区,∑PFASs浓度是背景值的14.8倍. 地表水中全氟辛酸(PFOA)为普遍的主要污染物,其次为短链PFCAs和PFSAs. 1H,1H,2H,2H-全氟辛烷磺酸钠(6∶2 FTS)和F-53B也普遍存在于地表水中,但只在少数地表水中具有较高浓度,尤其是F-53B,其中金山区采样点浓度高达968 ng/L,主要与镀铬业务有关. 这表明短链PFCAs和PFSAs、PFOA、6∶2 FTS及F-53B等均可能已应用于电镀领域. 据污染源特征分析,地表水中PFASs除了受电镀行业的污染外,同时还可能来源于表面处理工业、前体化合物生物降解等. 初步的生态风险评估结果表明,上海市大部分电镀企业周边地表水中生态风险较低,但个别镀铬企业周边地表水中F-53B污染可能产生高生态风险. 研究显示,上海市电镀企业周边地表水中存在一定程度的PFASs污染,污染水平与特征差异较大;其中PFOA是电镀企业周边地表水中普遍存在的主要污染物,但生态风险较低;而F-53B在个别采样点中具有高残留、高生态风险,需加强污染防控.
-
关键词:
- 全氟和多氟烷基物质 /
- 地表水 /
- 电镀 /
- 全氟辛酸(PFOA) /
- 1-氯-全氟烷基醚磺酸钾(F-53B) /
- 替代
Abstract: Electroplating industry is one of the main sources for per-and polyfluoroalkyl substances (PFASs). At present, there are few reports on PFASs pollution characteristics in surface water around electroplating enterprises. In order to understand the pollutant characteristics and potential ecological risk levels in the surface water around electroplating enterprises in Shanghai, 26 typical PFASs including perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs), sulfonic acid telomeres and potassium 1-chloro-perfluoroalkyl sulfonate (F-53B), were analyzed. The pollution characteristics, source analysis and ecological risk of PFASs were further investigated. The results show that the concentration of ∑PFASs ranged from 93.3-1334 ng/L in the surface water, and ∑PFASs were less than 300 ng/L in most surface water. The most contaminated area was located in Jinshan, where the concentration of ∑PFASs was 14.8 times the background value. The concentration of ∑PFASs was comparable to those of surface water around electroplating enterprises in Guangdong; chemical industry park and airports in Shanghai; and Huangpu River except for a few sampling points; higher than those of the Yellow River and Pearl River with non-potential pollution sources. Perfluorooctanoic acid (PFOA) was the main pollutant in almost all surface water, followed by short-chain PFCAs and PFSAs. It indicates that short-chain PFCAs, PFSAs and PFOA were used in electroplating. While 1H,1H,2H,2H- sodium perfluorooctane sulfonate (6∶2 FTS) and F-53B were ubiquitous in surface water, but there were only a few with high concentration, especially F-53B concentration was 968 ng/L in the sample site of Jinshan due to chrome plating business. Although perfluorooctanesulfonate (PFOS) was prevalent in surface water, the concentration was lower than perfluorobutanesulfonate (PFBS) and perfluorohexanesulfonate (PFHxS), with the average concentration of 5.89 ng/L; which showed PFOS should be partly substituted by the two alternatives. All sampling points were divided into five categories with different pollution characteristics. Principal component analysis (PCA) of PFASs indicates that PFBS, PFHxS, PFBA, PFHxA, PFPeA, PFOA and F-53B were the main pollutants with a contribution rate of 35.7%. Spearman correlation analysis showed that PFBS and PFHxS were positively correlated with most PFCAs, indicating that highly relevant PFASs might come from similar sources. F-53B showed positive correlation with PFHpS, PFOS, 6∶2 FTS, which could be released from similar sources, such as chrome plating. According to the characteristics analysis of pollution source, PFASs came not only from electroplating industry, but also from surface treatment industries and biodegradation of precursor compounds. Preliminary ecological risk assessment shows that there is low ecological risk to most surface water, but it exhibits high ecological risk to the surface adjacent a few chrome-plating enterprises with high concentration of F-53B. The research showed that there was pollution in the surface water around electroplating enterprises in Shanghai with different level and characteristics. PFOA was a main pollutant in most surface water, but with low ecological risk. However, there was high F-53B residue and ecological risk in a few sampling sites. It is necessary to strengthen pollution prevention and control. -
表 1 不同城市电镀企业周边地表水以及其他地表水中PFASs的浓度比较
Table 1. Concentration comparison of PFASs in surface water adjacent electroplating industries and others
ng/L 研究地点 PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUdA PFBS PFHxS PFOS F-53B 11Cl-PF3OUdS ∑PFASs 数据来源 上海市1) 17.7~29.3 37.6~75.1 17.6~37.3 0.09~12.1 85.7~525 nd nd — 27.6~53.4 nd nd — — 221~705 文献[7] 深圳市1) 16.9~48.9 7.03~23.8 5.70~16.7 4.04~8.93 22.8~99.4 0.69~2.46 0.27~0.54 nd~0.04 105~202 3.79~23.7 54.8~621 1.63~12.6 nd~0.03 224~983 文献[13] 广东省1) 1.96~84.2 0.97~30.8 0.66~21.1 0.74~13.2 0.41~43.8 0.38~5.5 0.56~2.46 — 0.3~150.52 0.12~24.2 0.11~32.52 nd~0.97 — 5.33~248.73 文献[14] 长江 0.93~9.61 0.21~3.6 0.33~38.2 0.29~4.43 3.48~36.5 0.15~2.75 0.03~1.59 nd~0.07 0.22~4.68 0.92~85.8 0.36~12.1 0.12~12.94 — 7.04~212 文献[17] 黄河 1.2~7.38 0.04~1.13 0.1~1.57 0.02~0.74 0.15~4.92 0.05~0.76 nd~0.31 nd~0.06 0.71~1.86 0.15~0.37 0.95~5.37 0.01~0.29 — 3.38~24.8 淮河 3.91~22.8 0.58~1.25 0.89~1.97 0.72~1.30 4.24~9.06 0.77~1.35 1.13~0.42 0.03~0.15 0.52~1.59 0.09~1.52 0.48~3.72 0.36~21.38 — 13.7~66.5 珠江 0.88~9.40 0.15~3.68 0.34~2.99 0.07~2.11 0.40~52.8 0.22~1.28 0.06~0.87 0.04~0.30 0.21~21.51 0.09~4.17 1.38~23.57 0.13~11.06 — 3.97~134 辽河 2.53~7.52 0.71~1.46 0.91~1.73 0.69~1.30 5.28~12.3 0.48~0.90 0.06~0.36 LOQ~0.15 0.43~2.16 0.23~0.84 2.26~5.66 0.24~2.29 — 13.8~36.7 巢湖 5.17~11.7 2.29~6.82 3.41~10.8 1.36~2.35 7.00~10.5 1.19~1.65 0.28~2.02 0.06~0.61 1.50~81.5 0.23~14.34 1.96~29.7 0.69~52.2 — 25.1~224 太湖 0.88~12.9 0.27~2.74 0.36~198 0.37~3.05 3.15~44.5 0.41~5.73 0.19~5.75 0.10~0.94 0.17~4.85 0.11~292 0.22~15.2 0.21~27.6 — 6.44~613 汉江 2.56~6.31 1.14~2.54 0.98~2.38 0.55~1.45 1.84~4.53 0.47~0.85 0.17~0.81 0.07~0.16 1.34~3.17 1.39~4.68 1.08~3.86 0.02~0.06 — 11.6~30.8 泰晤士河 4.62~9.79 10.1~19.9 7.32~15.0 2.58~5.19 5.56~11.7 0.77~1.71 0.52~1.22 0.03~0.10 3.26~6.75 4.96~11.3 8.12~18.8 0.01~0.08 — 47.9~102 莱茵河 0.84~6.17 0.42~4.04 0.83~4.56 0.20~1.99 0.86~3.66 0.09~0.67 0.07~1.02 LOQ~0.18 0.46~146 0.12~3.90 0.23~8.56 0.02~0.38 — 4.14~182 德拉瓦河 1.47~6.51 1.72~11.0 1.89~15.5 0.93~5.70 2.12~14.9 0.76~4.81 0.15~1.84 0.10~3.06 0.52~4.20 0.65~2.63 0.97~6.92 LOQ~0.08 — 11.3~77.2 梅拉伦湖 1.69~3.01 1.00~3.17 0.89~2.92 0.55~1.32 1.07~3.34 0.24~0.76 0.09~−0.67 LOQ~0.38 0.75~1.92 0.56~2.79 0.99~8.23 LOQ~0.05 — 7.83~28.6 渤海 0.15~1.5 0.31~3.0 0.40~4.0 0.19~2.2 2.3~106 0.09~0.23 0.02~0.02 — 0.12~0.28 0.05~0.33 0.33~0.12 — — 3.8~118 文献[18] 小清河 1 400~4 100 860~2 820 1 570~4 300 1 320~3 500 18 250~69 500 58.2~374 14.1~180 1.47~21.2 2.24~9.32 2.44~27.7 17.3~93.3 — — 24 400~84 400 文献[20] 黄浦江 nd~13.7 nd~6.3 nd~161.2 nd~26.1 1.0~402.7 nd~20.8 nd~13.7 nd~3.3 nd~51.6 nd~28.5 nd~286.0 — — 39.8~596.2 文献[16] 上海市 0.54~1.1 1.8~3.2 4.0~7.9 0.5~1.7 20~44 0.70~1.8 0.27~0.99 0.070~1.14 5.1~8.4 0.62~1.1 0.78~5.2 — — 38.72~71.93 文献[19] 上海市 2.32~9.08 7.4~59.16 8.72~38.04 1.68~6.12 21.89~104.66 0.67~3.64 LOD~1.32 — 14.28~276.28 0.88~27.51 2.89~13.07 — — 113.38~362.37 文献[15] 上海市 3.06~83.2 1.24~121 10.5~39.5 1.39~24.5 29.0~160 0.34~26.0 0.22~1.99 0.19~9.75 3.9~22.9 2.85~31.5 0.75~20.1 2.06~968 nd~14.1 86~1 299 该研究 注:1)表示电镀企业周边地表水. —表示未给出相应数据;LOQ表示定量限;nd表示未检出. 表 2 上海市重点电镀企业周边地表水中PFASs浓度的Spearman相关性分析
Table 2. Spearman correlation analysis among the concentration of PFASs in adjacent surface water of main electroplating industries in Shanghai
化合物 PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUdA PFDoA PFTrDA PFPrS PFBS PFHxS PFHpS PFOS 6:2 FTS 8:2 FTS F-53B PFBA 1 PFPeA 0.571* 1 PFHxA −0.019 0.501* 1 PFHpA 0.313 0.654** 0.094 1 PFOA 0.708** 0.683** 0.217 0.490* 1 PFNA 0.268 0.599** 0.356 0.725** 0.281 1 PFDA 0.361 0.793** 0.612** 0.617** 0.467 0.841** 1 PFUdA −0.033 0.642** 0.264 0.550* 0.194 0.423 0.524* 1 PFDoA −0.082 −0.476* −0.008 −0.599** −0.251 −0.413 −0.283 −0.367 1 PFTrDA −0.205 −0.233 −0.388 0.173 −0.068 −0.176 −0.319 −0.080 −0.096 1 PFPrS −0.056 −0.355 0.033 −0.301 −0.188 0.037 0.087 −0.455 0.692** −0.121 1 PFBS 0.374 0.596** 0.212 0.629** 0.390 0.379 0.393 0.284 −0.651** 0.164 −0.591** 1 PFHxS 0.151 0.541* 0.319 0.703** 0.257 0.782** 0.689** 0.326 −0.572* −0.079 −0.180 0.674** 1 PFHpS 0.011 0.189 0.350 −0.344 0.086 −0.219 −0.027 0.150 0.106 −0.489* −0.245 0.086 −0.059 1 PFOS −0.298 −0.227 0.296 −0.500* −0.250 −0.217 −0.191 −0.238 0.204 −0.308 −0.035 0.040 0.042 0.742** 1 6:2 FTS 0.489* 0.332 0.041 0.123 0.392 0.034 0.097 −0.029 −0.427 −0.228 −0.351 0.542* 0.166 0.307 0.129 1 8:2 FTS 0.521* 0.392 0.270 0.171 0.321 0.399 0.472* 0.285 0.238 −0.218 0.178 0.117 0.129 0.169 −0.092 0.178 1 F-53B 0.136 0.109 0.079 −0.053 0.152 0.014 0.178 0.080 0.217 0.074 0.207 0.167 0.073 0.408 0.305 0.288 0.370 1 注:**表示P<0.01;*表示P<0.05. -
[1] 乔肖翠,赵兴茹,郭睿,等.典型岩溶区水环境中全氟化合物分布特征及风险评价[J].环境科学研究,2019,32(12):2148-2156. doi: 10.13198/j.issn.1001-6929.2019.03.05QIAO X C,ZHAO X R,GUO R,et al.Distribution characteristics and risk assessment of per-and polyfluoroalkyl substances in water environment in typical Karst region[J].Research of Environmental Sciences,2019,32(12):2148-2156. doi: 10.13198/j.issn.1001-6929.2019.03.05 [2] 陈诗艳,仇雁翎,朱志良,等.土壤中全氟和多氟烷基化合物的污染现状及环境行为[J].环境科学研究,2021,34(2):468-478. doi: 10.13198/j.issn.1001-6929.2020.10.15CHEN S Y,QIU Y L,ZHU Z L,et al.Current pollution status and environmental behaviors of PFASs in soil[J].Research of Environmental Sciences,2021,34(2):468-478. doi: 10.13198/j.issn.1001-6929.2020.10.15 [3] 环境保护部, 外交部, 发展和改革委员会, 等. 关于《关于持久性有机污染物的斯德哥尔摩公约》新增列九种持久性有机污染物的《关于附件A、附件B和附件C修正案》和新增列硫丹的《关于附件A修正案》生效的公告[EB/OL]. 北京: 生态环境部, (2014-03-26)[2022-03-19].https://www.mee.gov.cn/gkml/hbb/bgg/201404/t20140401_270007.htm [4] LEE J W,LEE H K,LIM J E,et al.Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in the coastal environment of Korea: occurrence, spatial distribution, and bioaccumulation potential[J].Chemosphere,2020,251:126633. doi: 10.1016/j.chemosphere.2020.126633 [5] 顾春节,钟哲辉,徐晨烨,等.印染末端废水中全氟化合物的污染特征、影响因素及风险评价[J].环境科学学报,2021,41(5):1920-1929. doi: 10.13671/j.hjkxxb.2021.0073GU C J,ZHONG Z H,XU C Y,et al.Occurrence, influencing factors, and risks assessment of perfluorinated compounds (PFCs) in wastewater from textile and dyeing industry[J].Acta Scientiae Circumstantiae,2021,41(5):1920-1929. doi: 10.13671/j.hjkxxb.2021.0073 [6] 李敏,蔡凤珊,秦瑞欣,等.重庆市典型行业废水中16种全氟化合物污染特征[J].生态毒理学报,2021,16(5):44-58.LI M,CAI F S,QIN R X,et al.Pollution status of sixteen per- and polyfluoroalkyl substances in wastewater of typical industries in Chongqing City[J].Asian Journal of Ecotoxicology,2021,16(5):44-58. [7] CHAI J F,LEI P H,XIA X Y,et al.Pollution patterns and characteristics of perfluorinated compounds in surface water adjacent potential industrial emission categories of Shanghai, China[J].Ecotoxicology and Environmental Safety,2017,145:659-664. doi: 10.1016/j.ecoenv.2017.08.011 [8] FAVREAU P,PONCIONI-ROTHLISBERGER C,PLACE B J,et al.Multianalyte profiling of per- and polyfluoroalkyl substances (PFASs) in liquid commercial products[J].Chemosphere,2017,171:491-501. doi: 10.1016/j.chemosphere.2016.11.127 [9] WANG S W,HUANG J,YANG Y,et al.First report of a Chinese PFOS alternative overlooked for 30 years: its toxicity, persistence, and presence in the environment[J].Environmental Science & Technology,2013,47(18):10163-10170. [10] XIE S W,WANG T Y,LIU S J,et al.Industrial source identification and emission estimation of perfluorooctane sulfonate in China[J].Environment International,2013,52:1-8. doi: 10.1016/j.envint.2012.11.004 [11] TANG J W,ZHANG Y Z,SUN J J,et al.Occurrence and characteristics of perfluoroalkyl substances (PFASs) in electroplating industrial wastewater[J].Water Science and Technology:a Journal of the International Association on Water Pollution Research,2019,79(4):731-740. doi: 10.2166/wst.2019.092 [12] ZHENG P P,LIU M,YIN H W,et al.Analysis of 58 poly-/ perfluoroalkyl substances and their occurrence in surface water in a high-technology industrial park[J].Environmental Pollution,2020,267:115381. doi: 10.1016/j.envpol.2020.115381 [13] 齐观景.电镀企业排放及周边水环境中典型全氟及多氟烷基化合物的环境风险评估[J].哈尔滨:哈尔滨工业大学,2020:1-85. [14] 李闯修. F-53B和OBS等多/全氟化合物在典型区域的污染特征研究[D]. 青岛: 青岛理工大学, 2016: 1-85. [15] SUN R,WU M H,TANG L,et al.Perfluorinated compounds in surface waters of Shanghai, China: source analysis and risk assessment[J].Ecotoxicology and Environmental Safety,2018,149:88-95. doi: 10.1016/j.ecoenv.2017.11.012 [16] SUN Z Y,ZHANG C J,YAN H,et al.Spatiotemporal distribution and potential sources of perfluoroalkyl acids in Huangpu River, Shanghai, China[J].Chemosphere,2017,174:127-135. doi: 10.1016/j.chemosphere.2017.01.122 [17] PAN Y T,ZHANG H X,CUI Q Q,et al.Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water[J].Environmental Science & Technology,2018,52(14):7621-7629. [18] ZHAO Z,TANG J H,MI L J,et al.Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River Estuary[J].Science of the Total Environment,2017,599/600:114-123. doi: 10.1016/j.scitotenv.2017.04.147 [19] LU Z B,SONG L N,ZHAO Z,et al.Occurrence and trends in concentrations of perfluoroalkyl substances (PFASs) in surface waters of Eastern China[J].Chemosphere,2015,119:820-827. doi: 10.1016/j.chemosphere.2014.08.045 [20] COLOMER-VIDAL P,JIANG L F,MEI W P,et al.Plant uptake of perfluoroalkyl substances in freshwater environments (Dongzhulong and Xiaoqing Rivers, China)[J].Journal of Hazardous Materials,2022,421:126768. doi: 10.1016/j.jhazmat.2021.126768 [21] 彭洁,王娅南,林绍霞,等.贵州草海湿地溶解性有机物的光谱特征及其与PFASs的相关性分析[J].环境科学研究,2020,33(4):885-892. doi: 10.13198/j.issn.1001-6929.2019.07.18PENG J,WANG Y N,LIN S X,et al.Spectral characteristics of dissolved organic matter and its correlation with PFASs in Caohai wetland, Guizhou[J].Research of Environmental Sciences,2020,33(4):885-892. doi: 10.13198/j.issn.1001-6929.2019.07.18 [22] HEYDEBRECK F,TANG J H,XIE Z Y,et al.Alternative and legacy perfluoroalkyl substances: differences between European and Chinese River/estuary systems[J].Environmental Science & Technology,2015,49(14):8386-8395. [23] WANG Y,CHANG W G,WANG L,et al.A review of sources, multimedia distribution and health risks of novel fluorinated alternatives[J].Ecotoxicology and Environmental Safety,2019,182:109402. doi: 10.1016/j.ecoenv.2019.109402 [24] US EPA. PFOS Chromium electroplater study[R]. Washington DC: US EPA, 2009. [25] WILHELM M,BERGMANN S,DIETER H H.Occurrence of perfluorinated compounds (PFCs) in drinking water of North Rhine-Westphalia, Germany and new approach to assess drinking water contamination by shorter-chained C4-C7 PFCs[J].International Journal of Hygiene and Environmental Health,2010,213(3):224-232. doi: 10.1016/j.ijheh.2010.05.004 [26] CHEN H,ZHANG L,LI M Q,et al.Per- and polyfluoroalkyl substances (PFASs) in precipitation from the mainland of China: contributions of unknown precursors and short-chain (C2-C3) perfluoroalkyl carboxylic acids[J].Water Research,2019,153:169-177. doi: 10.1016/j.watres.2019.01.019 [27] QU Y X,HUANG J,WILLAND W,et al.Occurrence, removal and emission of per- and polyfluorinated alkyl substances (PFASs) from chrome plating industry: a case study in southeast China[J].Emerging Contaminants,2020,6:376-384. doi: 10.1016/j.emcon.2020.10.001 [28] WEI C L,WANG Q,SONG X,et al.Distribution, source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas[J].Ecotoxicology and Environmental Safety,2018,152:141-150. doi: 10.1016/j.ecoenv.2018.01.039 [29] 何卓识,李超灿,张靖天,等.受体模型在湖泊沉积物中PAHs、PFASs和OCPs源解析比较[J].环境工程技术学报,2018,8(3):231-240. doi: 10.3969/j.issn.1674-991X.2018.03.031HE Z S,LI C C,ZHANG J T,et al.Analysis and comparison of PAHs, PFASs and OCPs sources in lake sediments by receptor model[J].Journal of Environmental Engineering Technology,2018,8(3):231-240. doi: 10.3969/j.issn.1674-991X.2018.03.031 [30] ZHANG W,ZHANG Y T,TANIYASU S,et al.Distribution and fate of perfluoroalkyl substances in municipal wastewater treatment plants in economically developed areas of China[J].Environmental Pollution,2013,176:10-17. doi: 10.1016/j.envpol.2012.12.019 [31] WANG T,VESTERGREN R,HERZKE D,et al.Levels, isomer profiles, and estimated riverine mass discharges of perfluoroalkyl acids and fluorinated alternatives at the mouths of Chinese Rivers[J].Environmental Science & Technology,2016,50(21):11584-11592. [32] GUO C S,ZHANG Y,ZHAO X,et al.Distribution, source characterization and inventory of perfluoroalkyl substances in Taihu Lake, China[J].Chemosphere,2015,127:201-207. doi: 10.1016/j.chemosphere.2015.01.053 [33] Department of Environment, Great Lake and Energy. Initiatives to evaluate the presence of PFAS in municipal wastewater and associated residuals (sludge/biosolids) in Michigan[R]. Michigan: Department of Environment, Great Lake and Energy, 2020. [34] GIESY J P,NAILE J E,KHIM J S,et al.Aquatic toxicology of perfluorinated chemicals[J].Reviews of Environmental Contamination and Toxicology,2010,202:1-52. [35] PIGNOTTI E,DINELLI E.Distribution and partition of endocrine disrupting compounds in water and sediment: case study of the Romagna area (North Italy)[J].Journal of Geochemical Exploration,2018,195:66-77. doi: 10.1016/j.gexplo.2018.02.008 [36] Umweltbundesamt. Fortschreibung der vorläufigen Bewertung von per- and polyfluorierten Chemikalien (PFC) in Trinkwasser (update of the preliminary assessment of per- and polyfluorinated chemicals (PFC) in drinking water)[R]. Heidelberg: the Federal Ministry of Health, 2017. [37] 深圳市市场监督管理局. 生活饮用水水质标准: DB 4403/T 60—2020[S]. 深圳: 深圳市市场监督管理局, 2020. [38] HOKE R A,FERRELL B D,RYAN T,et al.Aquatic hazard, bioaccumulation and screening risk assessment for 6: 2 fluorotelomer sulfonate[J].Chemosphere,2015,128:258-265. doi: 10.1016/j.chemosphere.2015.01.033 [39] SHI G H,WANG J X,GUO H,et al.Parental exposure to 6: 2 chlorinated polyfluorinated ether sulfonate (F-53 B) induced transgenerational thyroid hormone disruption in zebrafish[J].Science of the Total Environment,2019,665:855-863. doi: 10.1016/j.scitotenv.2019.02.198 [40] European Commission. Technical guidance document on risk assessment. part Ⅱ: environmental risk assessment[S]. Ispra, Italy: Institute for Health and Consumer Protection, 2003. -