Spatiotemporal Evolution and Influencing Factors of Carbon Footprint Depth of Capital Cities in the Middle Yangtze River
-
摘要: 碳足迹深度指数表示区域存量资本的耗费程度,分析其时空演变及影响因素对区域差异化碳排放管控具有促进意义. 借鉴三维碳足迹改进模型计算长江中游省会城市碳足迹深度,引入夜间灯光数据拟合碳足迹深度指数,分析长江中游省会城市碳足迹深度的时空演变及分布特征,运用空间分位数模型对碳足迹深度影响因素开展研究. 结果表明:①2010—2019年,武汉市、南昌市、长沙市碳足迹深度指数均呈上升趋势. 2010年,长江中游省会城市归一化碳足迹深度指数呈现武汉市>南昌市>长沙市的特征,2015年、2019年均变为武汉市>长沙市>南昌市,各市归一化碳足迹深度高值范围均以城市的中心城区向四周扩张. ②2010—2019年,武汉市、南昌市、长沙市归一化碳足迹深度指数均在1%的显著性水平上高值聚集,由空间趋势面可知,长江中游省会城市归一化碳足迹深度指数在东西方向表现为“中间高、两边低”,而南北方向则由“北高南低”发展为“中间低、两边高”的分布格局,且北部明显高于南部. ③人口密度、工业总产值、能源总量、人均碳排放等影响因素对碳足迹深度的作用均为正向,各影响因素在碳足迹深度不同分位点的相关系数差异显著. 针对武汉市、南昌市、长沙市分别提出差异化建议:武汉市应积极发展产业转型,合理优化土地利用结构;南昌市应形成多循环工业体系,减少对生态用地的侵蚀;长沙市应加大力度发展绿色产业,打造低碳技术.Abstract: The carbon footprint depth index indicates the consumption degree of regional stock capital. Its spatiotemporal evolution and influencing factors are significance for promoting regional differentiated carbon emission control. The carbon footprint depth of the capital cities in the middle reaches of the Yangtze River was calculated using the improved three-dimensional carbon footprint model. This paper used nighttime light data to fit the carbon footprint depth index. The spatiotemporal evolution and distribution characteristics of the carbon footprint depth of the capital cities in the middle reaches of the Yangtze River were analyzed. The influencing factors of carbon footprint depth were studied using spatial quantile model. The results showed that from 2010 to 2019, the carbon footprint depth indices of Wuhan, Nanchang, and Changsha all showed an upward trend. In 2010, the normalized carbon footprint depth index of the capital cities in the middle reaches of the Yangtze River decreased from Wuhan to Nanchang and to Changsha. In 2015 and 2019, it′s decreased from Wuhan, to Changsha, and to Nanchang. The high values of normalized carbon footprint depth all expanded from the central urban area to the surrounding areas. Furthermore, from 2010 to 2019, the normalized carbon footprint depth indices of Wuhan, Nanchang, and Changsha were all at high values below the 1% significance level. The results showed that the normalized carbon footprint depth index in the study area is ‘high in the middle and low in both sides’ in the east-west direction. In the north-south direction, the distribution pattern developed from ‘high in the north and low in the south’ to ‘low in the middle and high in both sides’ and the north was significantly higher than the south. Influencing factors such as population density, total industrial output value, total energy, and per capita carbon emissions all had positive effects on carbon footprint depth. The correlation coefficients of each influencing factor were significantly different in different quantiles of carbon footprint depth. Therefore, differentiated suggestions were put forward: Wuhan should promote industrial transformation and optimize the land use structure; Nanchang should form a multi-circulating industrial system and reduce the occupation of ecological land; Changsha should develop green industries and create low-carbon technologies.
-
图 1 三维碳足迹改进模型演变过程
注:在曹慧博等[13]三维生态足迹研究的基础上修改.
Figure 1. Evolution of the three-dimensional carbon footprint improvement model
表 1 碳估算和夜间灯光拟合函数的模型归纳
Table 1. Models of fitting function between carbon estimation and nighttime lights
模型类别 函数表达式 线性函数 C=aD+b 指数函数 C=aebD 多项式函数 C=aD2+bD+c 对数函数 C=aln D+b 幂函数 C=aDb 注:C为碳相关估算值,D为夜间灯光值,a、b、c为各函数系数. 表 2 国内学者应用案例归纳
Table 2. Summary of domestic scholars' application cases
表 3 武汉市、南昌市、长沙市各区县归一化碳足迹深度指数
Table 3. Normalized carbon footprint depth index of each district and county in Wuhan, Nanchang and Changsha
武汉市 南昌市 长沙市 辖区 2010年 2015年 2019年 辖区 2010年 2015年 2019年 辖区 2010年 2015年 2019年 江岸区 0.978 2 1.000 0 1.000 0 青云谱区 0.950 5 1.000 0 1.000 0 芙蓉区 0.975 3 1.000 0 1.000 0 江汉区 1.000 0 1.000 0 1.000 0 西湖区 0.989 6 1.000 0 1.000 0 天心区 0.750 8 0.883 0 0.967 3 硚口区 1.000 0 1.000 0 1.000 0 东湖区 0.996 5 1.000 0 1.000 0 岳麓区 0.412 9 0.513 2 0.660 1 汉阳区 0.984 4 1.000 0 1.000 0 进贤县 0.042 8 0.053 5 0.073 2 开福区 0.656 0 0.871 9 0.949 0 武昌区 0.998 9 1.000 0 1.000 0 新建区 0.135 3 0.172 9 0.240 3 雨花区 0.474 4 0.562 1 0.660 9 青山区 0.986 9 1.000 0 1.000 0 青山湖区 0.737 5 0.903 5 0.964 1 望城区 0.256 4 0.463 8 0.619 5 洪山区 0.705 3 0.960 3 0.994 1 湾里区 0.190 8 0.198 4 0.275 6 长沙县 0.158 3 0.246 9 0.326 2 东西湖区 0.409 9 0.692 5 0.799 4 南昌县 0.154 8 0.222 3 0.357 2 浏阳市 0.050 0 0.043 1 0.077 8 汉南区 0.136 6 0.226 9 0.448 5 安义县 0.067 9 0.061 1 0.113 8 宁乡市 0.053 2 0.080 9 0.125 1 蔡甸区 0.295 7 0.443 3 0.519 1 南昌市 0.474 0 0.512 4 0.558 2 长沙市 0.420 8 0.518 3 0.598 4 江夏区 0.206 7 0.285 9 0.350 7 黄陂区 0.170 2 0.224 8 0.310 8 新洲区 0.147 0 0.166 4 0.261 7 武汉市 0.616 9 0.692 3 0.744 9 表 4 武汉市、南昌市、长沙市归一化碳足迹深度指数的全局自相关性
Table 4. Autocorrelation results of normalized carbon footprint depth index in Wuhan, Nanchang and Changsha
年份 武汉市 南昌市 长沙市 Moran's I Z值 Moran's I Z值 Moran's I Z值 2010 0.974 5*** 98.583 9 0.962 2*** 75.907 6 0.973 6*** 112.243 4 2015 0.979 2*** 99.051 3 0.960 9*** 75.790 9 0.973 7*** 112.228 3 2019 0.984 9*** 99.629 9 0.966 9*** 76.253 5 0.975 0*** 112.371 7 注:***表示通过了1%的显著性水平检验. 表 5 空间分位数模型回归结果
Table 5. Results of spatial quantile model regression
变量 线性回归 分位点 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ln (PD) 3.992 7***
(0.402 1)3.895 8**
(1.531 7)4.009 3***
(1.244 9)4.490 8***
(1.026 1)4.503 7***
(0.886 8)4.928 3***
(0.877 8)4.059 0***
(0.829 6)4.129 6***
(0.795 9)3.775 7***
(0.756 8)3.778 7***
(0.764 1)ln (GIOV) 0.260 5***
(0.060 9)0.325 9*
(0.169 5)0.291 5*
(0.142 1)0.315 2**
(0.119 7)0.304 6**
(0.112 7)0.351 1***
(0.123 9)0.307 5**
(0.122 8)0.323 4**
(0.123 1)0.420 9***
(0.129 0)0.409 5***
(0.141 9)TE 1.829 7***
(0.272 4)1.763 5***
(0.609 2)1.671 9***
(0.562 0)1.548 5***
(0.513 5)1.531 5***
(0.502 9)1.422 5**
(0.548 4)1.655 0***
(0.546 8)1.631 4***
(0.565 7)1.283 1*
(0.630 6)1.380 8*
(0.677 5)PCCE 2.945 9***
(0.461 2)3.391 7***
(1.135 7)3.180 6***
(1.004 5)3.047 4***
(0.924 5)3.007 6***
(0.886 0)3.072 8***
(0.944 7)3.461 9***
(0.987 8)3.613 9***
(1.084 9)4.862 0***
(1.198 3)4.731 2***
(1.350 3)常数 −31.444 1***
(3.426 5)−32.324 7**
(11.945 5)−32.287 1***
(9.760 1)−35.669 2***
(8.009 2)−35.534 3***
(7.107 8)−39.067 6***
(7.393 5)−32.921 1***
(7.043 4)−33.715 4***
(6.731 5)−33.704 7***
(6.469 5)−33.451 7***
(6.677 0)R2 0.987 6 0.875 1 0.891 6 0.906 5 0.903 0 0.902 0 0.908 3 0.907 4 0.893 6 0.888 3 注:***、**、*分别表示通过了1%、5%、10%的显著性水平检验;括号内数值表示通过400次bootstrap抽样得到的标准误差. -
[1] YU J Q,YANG T,DING T,et al.‘New normal’ characteristics show in China's energy footprints and carbon footprints[J].Science of the Total Environment,2021,785:147210. [2] 鲍燕妮.基于三维足迹家族的资源环境承载力研究:以长三角生态绿色一体化发展示范区为例[D].上海:上海师范大学,2021. [3] NICCOLUCCI V,BASTIANONI S,TIEZZI E B P,et al.How deep is the footprint? a 3D representation[J].Ecological Modelling,2009,220(20):2819-2823. [4] NICCOLUCCI V,GALLI A,REED A,et al.Towards a 3D national ecological footprint geography[J].Ecological Modelling,2011,222(16):2939-2944. [5] 郑德凤,刘晓星,王燕燕,等.中国省际碳足迹广度、深度评价及时空格局[J].生态学报,2020,40(2):447-458.ZHENG D F,LIU X X,WANG Y Y,et al.Assessment of carbon footprint size,depth and its spatial-temporal pattern at the provincial level in China[J].Acta Ecologica Sinica,2020,40(2):447-458. [6] FERNÁNDEZ-LOBATO L,GARCÍA-RUIZ R,JURADO F,et al.Life cycle assessment,C footprint and carbon balance of virgin olive oils production from traditional and intensive olive groves in southern Spain[J].Journal of Environmental Management,2021,293:112951. [7] CAI W J,NG B,WANG G J,et al.Increased ENSO sea surface temperature variability under four IPCC emission scenarios[J].Nature Climate Change,2022,12(3):228-231. [8] 王兆峰,李竹,吴卫.长江经济带不同等级城市碳排放的时空演变及其影响因素[J].环境科学研究,2022.doi: 10.13198/j.issn.1001-6929.2022.02.29.WANG Z F,LI Z,WU W.Spatial and temporal evolution of carbon emissions in cities of different grades in the Yangtze River Economic Belt and its influencing factors[J].Research of Environmental Sciences,2022.doi: 10.13198/j.issn.1001-6929.2022.02.29. [9] ZHAO L T,ZHAO T,YUAN R.Scenario simulations for the peak of provincial household CO2 emissions in China based on the STIRPAT model[J].Science of the Total Environment,2022,809:151098. [10] SUN W,HE Y J,CHANG H.Regional characteristics of CO2 emissions from China's power generation:affinity propagation and refined Laspeyres decomposition[J].International Journal of Global Warming,2017,11(1):38. [11] JAVED S A,ZHU B Z,LIU S F.Forecast of biofuel production and consumption in top CO2 emitting countries using a novel grey model[J].Journal of Cleaner Production,2020,276:123997. [12] SHARIF T,UDDIN M,ALEXIOU C.Testing the moderating role of trade openness on the environmental Kuznets curve hypothesis:a novel approach[J].Annals of Operations Research,2022.doi: 10.1007/s10479-021-04501-6. [13] 曹慧博,张颖,杨静,等.基于三维生态足迹扩展模型的中国海岸带生态足迹及其影响因素研究[J].水土保持通报,2021,41(1):252-259. doi: 10.13961/j.cnki.stbctb.2021.01.035CAO H B,ZHANG Y,YANG J,et al.A study of ecological footprint and its influencing factors in China's coastal zone based on three-dimensional ecological footprint expansion model[J].Bulletin of Soil and Water Conservation,2021,41(1):252-259. doi: 10.13961/j.cnki.stbctb.2021.01.035 [14] 熊鹰,艾赣雄,周晨,等.基于改进三维生态足迹模型的洞庭湖区生态可持续时空演化研究[J].生态学报,2022,42(3):1165-1179.XIONG Y,AI G X,ZHOU C,et al.Temporal and spatial evolution of ecological sustainability in Dongting Lake area based on the improved three-dimensional ecological footprint model[J].Acta Ecologica Sinica,2022,42(3):1165-1179. [15] GAO C X,TAO S M,HE Y Y,et al.Effect of population migration on spatial carbon emission transfers in China[J].Energy Policy,2021,156:112450. [16] LIU X,LI S L.A comparison analysis of the decoupling carbon emissions from economic growth in three industries of Heilongjiang Province in China[J].Environmental Science and Pollution Research,2021,28(46):65200-65215. [17] 严刚,郑逸璇,王雪松,等.基于重点行业/领域的我国碳排放达峰路径研究[J].环境科学研究,2022,35(2):309-319.YAN G,ZHENG Y X,WANG X S,et al.Pathway for carbon dioxide peaking in China based on sectoral analysis[J].Research of Environmental Sciences,2022,35(2):309-319. [18] 赵先超,彭竞霄,胡艺觉,等.基于夜间灯光数据的湖南省县域碳排放时空格局及影响因素研究[J].生态科学,2022,41(1):91-99.ZHAO X C,PENG J X,HU Y J,et al.Spatial-temporal pattern and influence factors of county carbon emissions in Hunan Province based on nightlight data[J].Ecological Science,2022,41(1):91-99. [19] 宋晓晖,吕晨,王丽娟,等.建设项目温室气体环境影响评价方法研究[J].环境科学研究,2022,35(2):405-413. doi: 10.13198/j.issn.1001-6929.2021.11.20SONG X H,LÜ C,WANG L J,et al.Method of greenhouse gas environmental impact assessment for construction projects[J].Research of Environmental Sciences,2022,35(2):405-413. doi: 10.13198/j.issn.1001-6929.2021.11.20 [20] 谢鸿宇,陈贤生,林凯荣,等.基于碳循环的化石能源及电力生态足迹[J].生态学报,2008,28(4):1729-1735. doi: 10.3321/j.issn:1000-0933.2008.04.044XIE H Y,CHEN X S,LIN K R,et al.The ecological footprint analysis of fossil energy and electricity[J].Acta Ecologica Sinica,2008,28(4):1729-1735. doi: 10.3321/j.issn:1000-0933.2008.04.044 [21] 王艳军,王孟杰,李少春,等.由NPP-VIIRS影像估算广东省碳排放的尺度效应分析[J].测绘通报,2021(11):25-30. doi: 10.13474/j.cnki.11-2246.2021.333WANG Y J,WANG M J,LI S C,et al.Scale effect analysis of carbon emission simulation based on NPP-VIIRS images in Guangdong Province[J].Bulletin of Surveying and Mapping,2021(11):25-30. doi: 10.13474/j.cnki.11-2246.2021.333 [22] 牛亚文,赵先超,胡艺觉.基于NPP-VIIRS夜间灯光的长株潭地区县域土地利用碳排放空间分异研究[J].环境科学学报,2021,41(9):3847-3856. doi: 10.13671/j.hjkxxb.2021.0281NIU Y W,ZHAO X C,HU Y J.Spatial variation of carbon emissions from County land use in Chang-Zhu-Tan area based on NPP-VIIRS night light[J].Acta Scientiae Circumstantiae,2021,41(9):3847-3856. doi: 10.13671/j.hjkxxb.2021.0281 [23] 杜海波,魏伟,张学渊,等.黄河流域能源消费碳排放时空格局演变及影响因素:基于DMSP/OLS与NPP/VIIRS夜间灯光数据[J].地理研究,2021,40(7):2051-2065. doi: 10.11821/dlyj020200646DU H B,WEI W,ZHANG X Y,et al.Spatio-temporal evolution and influencing factors of energy-related carbon emissions in the Yellow River Basin:based on the DMSP/OLS and NPP/VIIRS nighttime light data[J].Geographical Research,2021,40(7):2051-2065. doi: 10.11821/dlyj020200646 [24] 吕倩,刘海滨.基于夜间灯光数据的黄河流域能源消费碳排放时空演变多尺度分析[J].经济地理,2020,40(12):12-21. doi: 10.15957/j.cnki.jjdl.2020.12.002LYU Q,LIU H B.Multiscale spatio-temporal characteristics of carbon emission of energy consumption in Yellow River Basin based on the nighttime light datasets[J].Economic Geography,2020,40(12):12-21. doi: 10.15957/j.cnki.jjdl.2020.12.002 [25] 孙贵艳,王胜,肖磊.基于夜间灯光数据的长江上游地区能源消费碳排放及影响因素研究[J].地域研究与开发,2020,39(4):159-162.SUN G Y,WANG S,XIAO L.Research on carbon emission from energy consumption and influencing factors in the upper reaches of the Yangtze River based on nightlight data[J].Areal Research and Development,2020,39(4):159-162. [26] XU B,QI B,JI K,et al.Emerging hot spot analysis and the spatial-temporal trends of NDVI in the Jing River Basin of China[J].Environmental Earth Sciences,2022,81(2):1-15. [27] GU Y L,YOU X Y.A spatial quantile regression model for driving mechanism of urban heat island by considering the spatial dependence and heterogeneity:an example of Beijing,China[J].Sustainable Cities and Society,2022,79:103692. doi: 10.1016/j.scs.2022.103692 [28] 宋梅,常力月,郝旭光.长江中游城市群碳压力时空演化格局及驱动因素分析[J].环境经济研究,2021,6(2):23-40.SONG M,CHANG L Y,HAO X G.Analysis on the spatio-temporal evolution and driving factors of carbon pressure of the urban agglomeration in the middle reaches of the Yangtze River[J].Journal of Environmental Economics,2021,6(2):23-40. [29] 董捷,魏旭华,陈恩.土地利用碳排放地域差异下减排责任分摊研究:以武汉城市圈为例[J].长江流域资源与环境,2019,28(4):872-882.DONG J,WEI X H,CHEN E.Research on the liability sharing of carbon emission reduction under the regional difference of land use carbon emission:a case study in Wuhan urban agglomeration[J].Resources and Environment in the Yangtze Basin,2019,28(4):872-882. [30] 王丽娟,张剑,王雪松,等.中国电力行业二氧化碳排放达峰路径研究[J].环境科学研究,2022,35(2):329-338. doi: 10.13198/j.issn.1001-6929.2021.11.24WANG L J,ZHANG J,WANG X S,et al.Pathway of carbon emission peak in China's electric power industry[J].Research of Environmental Sciences,2022,35(2):329-338. doi: 10.13198/j.issn.1001-6929.2021.11.24 [31] 黄志辉,纪亮,尹洁,等.中国道路交通二氧化碳排放达峰路径研究[J].环境科学研究,2022,35(2):385-393.HUANG Z H,JI L,YIN J,et al.Peak pathway of China's Road traffic carbon emissions[J].Research of Environmental Sciences,2022,35(2):385-393. [32] 马忠,耿文婷.基于假设抽取法的中国区域间碳排放关联分析[J].环境科学研究,2020,33(2):312-323.MA Z,GENG W T.Correlation analysis of regional carbon emission in China based on the hypothetical extraction method[J].Research of Environmental Sciences,2020,33(2):312-323. [33] 王凯,张淑文,甘畅,等.我国旅游业碳排放的空间关联性及其影响因素[J].环境科学研究,2019,32(6):938-947.WANG K,ZHANG S W,GAN C,et al.Spatial correlation of carbon emissions in tourism industry and its influencing factors in China[J].Research of Environmental Sciences,2019,32(6):938-947. [34] HUANG G,PAN W,HU C,et al.Energy utilization efficiency of China considering carbon emissions:based on provincial panel data[J].Sustainability,2021,13(2):877. doi: 10.3390/su13020877 [35] 张静,薛英岚,赵静,等.重点行业/领域碳达峰成本测算及社会经济影响评估[J].环境科学研究,2022,35(2):414-423.ZHANG J,XUE Y L,ZHAO J,et al.Evaluation of cost and economic impact of China's carbon peak pathway on key industries[J].Research of Environmental Sciences,2022,35(2):414-423. [36] 李艳红.山东省碳减排系统仿真及政策优化研究[J].环境工程技术学报,2020,10(1):150-159. doi: 10.12153/j.issn.1674-991X.20190063LI Y H.System simulation and policy optimization of carbon emission reduction in Shandong Province[J].Journal of Environmental Engineering Technology,2020,10(1):150-159. doi: 10.12153/j.issn.1674-991X.20190063 -