留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江中游省会城市碳足迹深度时空演变及其影响因素

胡梦姗 叶长盛 董倩 刘彦

胡梦姗, 叶长盛, 董倩, 刘彦. 长江中游省会城市碳足迹深度时空演变及其影响因素[J]. 环境科学研究, 2022, 35(10): 2282-2292. doi: 10.13198/j.issn.1001-6929.2022.06.16
引用本文: 胡梦姗, 叶长盛, 董倩, 刘彦. 长江中游省会城市碳足迹深度时空演变及其影响因素[J]. 环境科学研究, 2022, 35(10): 2282-2292. doi: 10.13198/j.issn.1001-6929.2022.06.16
HU Mengshan, YE Changsheng, DONG Qian, LIU Yan. Spatiotemporal Evolution and Influencing Factors of Carbon Footprint Depth of Capital Cities in the Middle Yangtze River[J]. Research of Environmental Sciences, 2022, 35(10): 2282-2292. doi: 10.13198/j.issn.1001-6929.2022.06.16
Citation: HU Mengshan, YE Changsheng, DONG Qian, LIU Yan. Spatiotemporal Evolution and Influencing Factors of Carbon Footprint Depth of Capital Cities in the Middle Yangtze River[J]. Research of Environmental Sciences, 2022, 35(10): 2282-2292. doi: 10.13198/j.issn.1001-6929.2022.06.16

长江中游省会城市碳足迹深度时空演变及其影响因素

doi: 10.13198/j.issn.1001-6929.2022.06.16
基金项目: 国家自然科学基金项目(No.42061041);东华理工大学研究生创新专项资金项目(No.DHYC-202125)
详细信息
    作者简介:

    胡梦姗(1997-),女,江西宜春人,humengshan1102@163.com

    通讯作者:

    叶长盛(1977-),男,江西抚州人,教授,博士,主要从事城乡发展、土地资源利用与保护研究,ycs519@163.com

  • 中图分类号: X24

Spatiotemporal Evolution and Influencing Factors of Carbon Footprint Depth of Capital Cities in the Middle Yangtze River

Funds: National Natural Science Foundation of China (No.42061041); East China University of Technology Graduate Innovation Special Fund Project, China (No.DHYC-202125)
  • 摘要: 碳足迹深度指数表示区域存量资本的耗费程度,分析其时空演变及影响因素对区域差异化碳排放管控具有促进意义. 借鉴三维碳足迹改进模型计算长江中游省会城市碳足迹深度,引入夜间灯光数据拟合碳足迹深度指数,分析长江中游省会城市碳足迹深度的时空演变及分布特征,运用空间分位数模型对碳足迹深度影响因素开展研究. 结果表明:①2010—2019年,武汉市、南昌市、长沙市碳足迹深度指数均呈上升趋势. 2010年,长江中游省会城市归一化碳足迹深度指数呈现武汉市>南昌市>长沙市的特征,2015年、2019年均变为武汉市>长沙市>南昌市,各市归一化碳足迹深度高值范围均以城市的中心城区向四周扩张. ②2010—2019年,武汉市、南昌市、长沙市归一化碳足迹深度指数均在1%的显著性水平上高值聚集,由空间趋势面可知,长江中游省会城市归一化碳足迹深度指数在东西方向表现为“中间高、两边低”,而南北方向则由“北高南低”发展为“中间低、两边高”的分布格局,且北部明显高于南部. ③人口密度、工业总产值、能源总量、人均碳排放等影响因素对碳足迹深度的作用均为正向,各影响因素在碳足迹深度不同分位点的相关系数差异显著. 针对武汉市、南昌市、长沙市分别提出差异化建议:武汉市应积极发展产业转型,合理优化土地利用结构;南昌市应形成多循环工业体系,减少对生态用地的侵蚀;长沙市应加大力度发展绿色产业,打造低碳技术.

     

  • 图  1  三维碳足迹改进模型演变过程

    注:在曹慧博等[13]三维生态足迹研究的基础上修改.

    Figure  1.  Evolution of the three-dimensional carbon footprint improvement model

    图  2  武汉市、南昌市、长沙市归一化碳足迹深度指数的空间分布

    Figure  2.  Spatial distribution of normalized carbon footprint depth index in Wuhan, Nanchang and Changsha

    图  3  武汉市、南昌市、长沙市归一化碳足迹深度指数的热点分析

    Figure  3.  Hot spot analysis of normalized carbon footprint depth index in Wuhan, Nanchang and Changsha

    图  4  武汉市、南昌市、长沙市归一化碳足迹深度指数的趋势面分析

    注:X轴表示区域经度跨度大小(西—东),西东方向离散点趋势线见绿线;Y轴表示区域纬度跨度大小(南—北),南北方向离散点趋势线见蓝线;Z轴表示区域归一化碳足迹深度指数的高低,见黑线.

    Figure  4.  Trend surface analysis of normalized carbon footprint depth index in Wuhan, Nanchang and Changsha

    表  1  碳估算和夜间灯光拟合函数的模型归纳

    Table  1.   Models of fitting function between carbon estimation and nighttime lights

    模型类别函数表达式
    线性函数 C=aD+b
    指数函数 C=aebD
    多项式函数 C=aD2+bD+c
    对数函数 C=aln D+b
    幂函数 C=aDb
    注:C为碳相关估算值,D为夜间灯光值,abc为各函数系数.
    下载: 导出CSV

    表  2  国内学者应用案例归纳

    Table  2.   Summary of domestic scholars' application cases

    研究区模型类别拟合度说明数据来源
    湖南省 线性函数 0.854 5 研究区整体拟合后,分县域对线性拟合进行校正 文献[18]
    广东省 多项式函数 0.780 0 不同分辨率拟合对比 文献[21]
    长株潭城市群 对数函数、线性函数 0.841 1~0.974 7 分市域各自拟合,根据精度选取不同模型进行计算 文献[22]
    黄河流域 线性函数 >0.891 4 分不同时间段依次拟合 文献[23]
    黄河流域 线性函数 0.848 2 对各省份无进一步校正,部分省份误差较大 文献[24]
    长江上游 幂函数 0.957 1 研究区整体拟合后,分省份进一步校正 文献[25]
    下载: 导出CSV

    表  3  武汉市、南昌市、长沙市各区县归一化碳足迹深度指数

    Table  3.   Normalized carbon footprint depth index of each district and county in Wuhan, Nanchang and Changsha

    武汉市南昌市长沙市
    辖区2010年2015年2019年辖区2010年2015年2019年辖区2010年2015年2019年
    江岸区0.978 21.000 01.000 0青云谱区0.950 51.000 01.000 0芙蓉区0.975 31.000 01.000 0
    江汉区1.000 01.000 01.000 0西湖区0.989 61.000 01.000 0天心区0.750 80.883 00.967 3
    硚口区1.000 01.000 01.000 0东湖区0.996 51.000 01.000 0岳麓区0.412 90.513 20.660 1
    汉阳区0.984 41.000 01.000 0进贤县0.042 80.053 50.073 2开福区0.656 00.871 90.949 0
    武昌区0.998 91.000 01.000 0新建区0.135 30.172 90.240 3雨花区0.474 40.562 10.660 9
    青山区0.986 91.000 01.000 0青山湖区0.737 50.903 50.964 1望城区0.256 40.463 80.619 5
    洪山区0.705 30.960 30.994 1湾里区0.190 80.198 40.275 6长沙县0.158 30.246 90.326 2
    东西湖区0.409 90.692 50.799 4南昌县0.154 80.222 30.357 2浏阳市0.050 00.043 10.077 8
    汉南区0.136 60.226 90.448 5安义县0.067 90.061 10.113 8宁乡市0.053 20.080 90.125 1
    蔡甸区0.295 70.443 30.519 1南昌市0.474 00.512 40.558 2长沙市0.420 80.518 30.598 4
    江夏区0.206 70.285 90.350 7
    黄陂区0.170 20.224 80.310 8
    新洲区0.147 00.166 40.261 7
    武汉市0.616 90.692 30.744 9
    下载: 导出CSV

    表  4  武汉市、南昌市、长沙市归一化碳足迹深度指数的全局自相关性

    Table  4.   Autocorrelation results of normalized carbon footprint depth index in Wuhan, Nanchang and Changsha

    年份武汉市南昌市长沙市
    Moran's IZMoran's IZMoran's IZ
    20100.974 5***98.583 90.962 2***75.907 60.973 6***112.243 4
    20150.979 2***99.051 30.960 9***75.790 90.973 7***112.228 3
    20190.984 9***99.629 90.966 9***76.253 50.975 0***112.371 7
    注:***表示通过了1%的显著性水平检验.
    下载: 导出CSV

    表  5  空间分位数模型回归结果

    Table  5.   Results of spatial quantile model regression

    变量线性回归分位点
    0.10.20.30.40.50.60.70.80.9
    ln (PD)3.992 7***
    (0.402 1)
    3.895 8**
    (1.531 7)
    4.009 3***
    (1.244 9)
    4.490 8***
    (1.026 1)
    4.503 7***
    (0.886 8)
    4.928 3***
    (0.877 8)
    4.059 0***
    (0.829 6)
    4.129 6***
    (0.795 9)
    3.775 7***
    (0.756 8)
    3.778 7***
    (0.764 1)
    ln (GIOV)0.260 5***
    (0.060 9)
    0.325 9*
    (0.169 5)
    0.291 5*
    (0.142 1)
    0.315 2**
    (0.119 7)
    0.304 6**
    (0.112 7)
    0.351 1***
    (0.123 9)
    0.307 5**
    (0.122 8)
    0.323 4**
    (0.123 1)
    0.420 9***
    (0.129 0)
    0.409 5***
    (0.141 9)
    TE1.829 7***
    (0.272 4)
    1.763 5***
    (0.609 2)
    1.671 9***
    (0.562 0)
    1.548 5***
    (0.513 5)
    1.531 5***
    (0.502 9)
    1.422 5**
    (0.548 4)
    1.655 0***
    (0.546 8)
    1.631 4***
    (0.565 7)
    1.283 1*
    (0.630 6)
    1.380 8*
    (0.677 5)
    PCCE2.945 9***
    (0.461 2)
    3.391 7***
    (1.135 7)
    3.180 6***
    (1.004 5)
    3.047 4***
    (0.924 5)
    3.007 6***
    (0.886 0)
    3.072 8***
    (0.944 7)
    3.461 9***
    (0.987 8)
    3.613 9***
    (1.084 9)
    4.862 0***
    (1.198 3)
    4.731 2***
    (1.350 3)
    常数−31.444 1***
    (3.426 5)
    −32.324 7**
    (11.945 5)
    −32.287 1***
    (9.760 1)
    −35.669 2***
    (8.009 2)
    −35.534 3***
    (7.107 8)
    −39.067 6***
    (7.393 5)
    −32.921 1***
    (7.043 4)
    −33.715 4***
    (6.731 5)
    −33.704 7***
    (6.469 5)
    −33.451 7***
    (6.677 0)
    R20.987 60.875 10.891 60.906 50.903 00.902 00.908 30.907 40.893 60.888 3
    注:***、**、*分别表示通过了1%、5%、10%的显著性水平检验;括号内数值表示通过400次bootstrap抽样得到的标准误差.
    下载: 导出CSV
  • [1] YU J Q,YANG T,DING T,et al.‘New normal’ characteristics show in China's energy footprints and carbon footprints[J].Science of the Total Environment,2021,785:147210.
    [2] 鲍燕妮.基于三维足迹家族的资源环境承载力研究:以长三角生态绿色一体化发展示范区为例[D].上海:上海师范大学,2021.
    [3] NICCOLUCCI V,BASTIANONI S,TIEZZI E B P,et al.How deep is the footprint? a 3D representation[J].Ecological Modelling,2009,220(20):2819-2823.
    [4] NICCOLUCCI V,GALLI A,REED A,et al.Towards a 3D national ecological footprint geography[J].Ecological Modelling,2011,222(16):2939-2944.
    [5] 郑德凤,刘晓星,王燕燕,等.中国省际碳足迹广度、深度评价及时空格局[J].生态学报,2020,40(2):447-458.

    ZHENG D F,LIU X X,WANG Y Y,et al.Assessment of carbon footprint size,depth and its spatial-temporal pattern at the provincial level in China[J].Acta Ecologica Sinica,2020,40(2):447-458.
    [6] FERNÁNDEZ-LOBATO L,GARCÍA-RUIZ R,JURADO F,et al.Life cycle assessment,C footprint and carbon balance of virgin olive oils production from traditional and intensive olive groves in southern Spain[J].Journal of Environmental Management,2021,293:112951.
    [7] CAI W J,NG B,WANG G J,et al.Increased ENSO sea surface temperature variability under four IPCC emission scenarios[J].Nature Climate Change,2022,12(3):228-231.
    [8] 王兆峰,李竹,吴卫.长江经济带不同等级城市碳排放的时空演变及其影响因素[J].环境科学研究,2022.doi: 10.13198/j.issn.1001-6929.2022.02.29.

    WANG Z F,LI Z,WU W.Spatial and temporal evolution of carbon emissions in cities of different grades in the Yangtze River Economic Belt and its influencing factors[J].Research of Environmental Sciences,2022.doi: 10.13198/j.issn.1001-6929.2022.02.29.
    [9] ZHAO L T,ZHAO T,YUAN R.Scenario simulations for the peak of provincial household CO2 emissions in China based on the STIRPAT model[J].Science of the Total Environment,2022,809:151098.
    [10] SUN W,HE Y J,CHANG H.Regional characteristics of CO2 emissions from China's power generation:affinity propagation and refined Laspeyres decomposition[J].International Journal of Global Warming,2017,11(1):38.
    [11] JAVED S A,ZHU B Z,LIU S F.Forecast of biofuel production and consumption in top CO2 emitting countries using a novel grey model[J].Journal of Cleaner Production,2020,276:123997.
    [12] SHARIF T,UDDIN M,ALEXIOU C.Testing the moderating role of trade openness on the environmental Kuznets curve hypothesis:a novel approach[J].Annals of Operations Research,2022.doi: 10.1007/s10479-021-04501-6.
    [13] 曹慧博,张颖,杨静,等.基于三维生态足迹扩展模型的中国海岸带生态足迹及其影响因素研究[J].水土保持通报,2021,41(1):252-259. doi: 10.13961/j.cnki.stbctb.2021.01.035

    CAO H B,ZHANG Y,YANG J,et al.A study of ecological footprint and its influencing factors in China's coastal zone based on three-dimensional ecological footprint expansion model[J].Bulletin of Soil and Water Conservation,2021,41(1):252-259. doi: 10.13961/j.cnki.stbctb.2021.01.035
    [14] 熊鹰,艾赣雄,周晨,等.基于改进三维生态足迹模型的洞庭湖区生态可持续时空演化研究[J].生态学报,2022,42(3):1165-1179.

    XIONG Y,AI G X,ZHOU C,et al.Temporal and spatial evolution of ecological sustainability in Dongting Lake area based on the improved three-dimensional ecological footprint model[J].Acta Ecologica Sinica,2022,42(3):1165-1179.
    [15] GAO C X,TAO S M,HE Y Y,et al.Effect of population migration on spatial carbon emission transfers in China[J].Energy Policy,2021,156:112450.
    [16] LIU X,LI S L.A comparison analysis of the decoupling carbon emissions from economic growth in three industries of Heilongjiang Province in China[J].Environmental Science and Pollution Research,2021,28(46):65200-65215.
    [17] 严刚,郑逸璇,王雪松,等.基于重点行业/领域的我国碳排放达峰路径研究[J].环境科学研究,2022,35(2):309-319.

    YAN G,ZHENG Y X,WANG X S,et al.Pathway for carbon dioxide peaking in China based on sectoral analysis[J].Research of Environmental Sciences,2022,35(2):309-319.
    [18] 赵先超,彭竞霄,胡艺觉,等.基于夜间灯光数据的湖南省县域碳排放时空格局及影响因素研究[J].生态科学,2022,41(1):91-99.

    ZHAO X C,PENG J X,HU Y J,et al.Spatial-temporal pattern and influence factors of county carbon emissions in Hunan Province based on nightlight data[J].Ecological Science,2022,41(1):91-99.
    [19] 宋晓晖,吕晨,王丽娟,等.建设项目温室气体环境影响评价方法研究[J].环境科学研究,2022,35(2):405-413. doi: 10.13198/j.issn.1001-6929.2021.11.20

    SONG X H,LÜ C,WANG L J,et al.Method of greenhouse gas environmental impact assessment for construction projects[J].Research of Environmental Sciences,2022,35(2):405-413. doi: 10.13198/j.issn.1001-6929.2021.11.20
    [20] 谢鸿宇,陈贤生,林凯荣,等.基于碳循环的化石能源及电力生态足迹[J].生态学报,2008,28(4):1729-1735. doi: 10.3321/j.issn:1000-0933.2008.04.044

    XIE H Y,CHEN X S,LIN K R,et al.The ecological footprint analysis of fossil energy and electricity[J].Acta Ecologica Sinica,2008,28(4):1729-1735. doi: 10.3321/j.issn:1000-0933.2008.04.044
    [21] 王艳军,王孟杰,李少春,等.由NPP-VIIRS影像估算广东省碳排放的尺度效应分析[J].测绘通报,2021(11):25-30. doi: 10.13474/j.cnki.11-2246.2021.333

    WANG Y J,WANG M J,LI S C,et al.Scale effect analysis of carbon emission simulation based on NPP-VIIRS images in Guangdong Province[J].Bulletin of Surveying and Mapping,2021(11):25-30. doi: 10.13474/j.cnki.11-2246.2021.333
    [22] 牛亚文,赵先超,胡艺觉.基于NPP-VIIRS夜间灯光的长株潭地区县域土地利用碳排放空间分异研究[J].环境科学学报,2021,41(9):3847-3856. doi: 10.13671/j.hjkxxb.2021.0281

    NIU Y W,ZHAO X C,HU Y J.Spatial variation of carbon emissions from County land use in Chang-Zhu-Tan area based on NPP-VIIRS night light[J].Acta Scientiae Circumstantiae,2021,41(9):3847-3856. doi: 10.13671/j.hjkxxb.2021.0281
    [23] 杜海波,魏伟,张学渊,等.黄河流域能源消费碳排放时空格局演变及影响因素:基于DMSP/OLS与NPP/VIIRS夜间灯光数据[J].地理研究,2021,40(7):2051-2065. doi: 10.11821/dlyj020200646

    DU H B,WEI W,ZHANG X Y,et al.Spatio-temporal evolution and influencing factors of energy-related carbon emissions in the Yellow River Basin:based on the DMSP/OLS and NPP/VIIRS nighttime light data[J].Geographical Research,2021,40(7):2051-2065. doi: 10.11821/dlyj020200646
    [24] 吕倩,刘海滨.基于夜间灯光数据的黄河流域能源消费碳排放时空演变多尺度分析[J].经济地理,2020,40(12):12-21. doi: 10.15957/j.cnki.jjdl.2020.12.002

    LYU Q,LIU H B.Multiscale spatio-temporal characteristics of carbon emission of energy consumption in Yellow River Basin based on the nighttime light datasets[J].Economic Geography,2020,40(12):12-21. doi: 10.15957/j.cnki.jjdl.2020.12.002
    [25] 孙贵艳,王胜,肖磊.基于夜间灯光数据的长江上游地区能源消费碳排放及影响因素研究[J].地域研究与开发,2020,39(4):159-162.

    SUN G Y,WANG S,XIAO L.Research on carbon emission from energy consumption and influencing factors in the upper reaches of the Yangtze River based on nightlight data[J].Areal Research and Development,2020,39(4):159-162.
    [26] XU B,QI B,JI K,et al.Emerging hot spot analysis and the spatial-temporal trends of NDVI in the Jing River Basin of China[J].Environmental Earth Sciences,2022,81(2):1-15.
    [27] GU Y L,YOU X Y.A spatial quantile regression model for driving mechanism of urban heat island by considering the spatial dependence and heterogeneity:an example of Beijing,China[J].Sustainable Cities and Society,2022,79:103692. doi: 10.1016/j.scs.2022.103692
    [28] 宋梅,常力月,郝旭光.长江中游城市群碳压力时空演化格局及驱动因素分析[J].环境经济研究,2021,6(2):23-40.

    SONG M,CHANG L Y,HAO X G.Analysis on the spatio-temporal evolution and driving factors of carbon pressure of the urban agglomeration in the middle reaches of the Yangtze River[J].Journal of Environmental Economics,2021,6(2):23-40.
    [29] 董捷,魏旭华,陈恩.土地利用碳排放地域差异下减排责任分摊研究:以武汉城市圈为例[J].长江流域资源与环境,2019,28(4):872-882.

    DONG J,WEI X H,CHEN E.Research on the liability sharing of carbon emission reduction under the regional difference of land use carbon emission:a case study in Wuhan urban agglomeration[J].Resources and Environment in the Yangtze Basin,2019,28(4):872-882.
    [30] 王丽娟,张剑,王雪松,等.中国电力行业二氧化碳排放达峰路径研究[J].环境科学研究,2022,35(2):329-338. doi: 10.13198/j.issn.1001-6929.2021.11.24

    WANG L J,ZHANG J,WANG X S,et al.Pathway of carbon emission peak in China's electric power industry[J].Research of Environmental Sciences,2022,35(2):329-338. doi: 10.13198/j.issn.1001-6929.2021.11.24
    [31] 黄志辉,纪亮,尹洁,等.中国道路交通二氧化碳排放达峰路径研究[J].环境科学研究,2022,35(2):385-393.

    HUANG Z H,JI L,YIN J,et al.Peak pathway of China's Road traffic carbon emissions[J].Research of Environmental Sciences,2022,35(2):385-393.
    [32] 马忠,耿文婷.基于假设抽取法的中国区域间碳排放关联分析[J].环境科学研究,2020,33(2):312-323.

    MA Z,GENG W T.Correlation analysis of regional carbon emission in China based on the hypothetical extraction method[J].Research of Environmental Sciences,2020,33(2):312-323.
    [33] 王凯,张淑文,甘畅,等.我国旅游业碳排放的空间关联性及其影响因素[J].环境科学研究,2019,32(6):938-947.

    WANG K,ZHANG S W,GAN C,et al.Spatial correlation of carbon emissions in tourism industry and its influencing factors in China[J].Research of Environmental Sciences,2019,32(6):938-947.
    [34] HUANG G,PAN W,HU C,et al.Energy utilization efficiency of China considering carbon emissions:based on provincial panel data[J].Sustainability,2021,13(2):877. doi: 10.3390/su13020877
    [35] 张静,薛英岚,赵静,等.重点行业/领域碳达峰成本测算及社会经济影响评估[J].环境科学研究,2022,35(2):414-423.

    ZHANG J,XUE Y L,ZHAO J,et al.Evaluation of cost and economic impact of China's carbon peak pathway on key industries[J].Research of Environmental Sciences,2022,35(2):414-423.
    [36] 李艳红.山东省碳减排系统仿真及政策优化研究[J].环境工程技术学报,2020,10(1):150-159. doi: 10.12153/j.issn.1674-991X.20190063

    LI Y H.System simulation and policy optimization of carbon emission reduction in Shandong Province[J].Journal of Environmental Engineering Technology,2020,10(1):150-159. doi: 10.12153/j.issn.1674-991X.20190063
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  372
  • HTML全文浏览量:  127
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-06-07

目录

    /

    返回文章
    返回