Shelter Effects of Different Intercropping and Harvesting Modes in Fallow Period of Sandy Farmland Crops
-
摘要: 油沙豆(Cyperus esculentus)是集粮、油、牧、饲于一体的高利用价值新兴经济作物,在我国沙区调整种植结构及沙化土地改良中有重要作用. 油沙豆茎块在采收过程中易破坏表层土壤、引发风蚀,因此,探究油沙豆防风阻沙的保护性耕作模式是实现油沙豆在沙区种植的重要前提. 本文基于乌兰布和沙漠油沙豆农田现有间作模式,通过风洞模拟试验,探究不同风速下6种间作模式(2种间作作物×3种带间距)的防风蚀效果. 结果表明:①不同带间距模式在各风速下的风速廓线均呈对数形式,粗糙度随带间距的增加而减小. ②间作作物对垂直流场结构分布特征有显著影响,间作玉米各带间距模式近地表风速均低于当地起沙风速(6 m/s);间作向日葵各带间距模式近地表风速均高于起沙风速,约为9 m/s. ③风速对各间作模式的防风效能具有显著影响,防风效能随风速的增大呈减小趋势. ④间作带的防风效能随带间距的增加而减小,表现为带间距8 m>带间距16 m>带间距24 m. 间作玉米模式的防风效能大于间作向日葵模式,其中,玉米带间距8 m及16 m的模式其近地表防风效能均大于50%,是油沙豆农田防风阻沙的最优模式. 研究显示,考虑到农田的经济效益,带间距16 m的间作玉米模式是油沙豆农田兼顾生态效益和经济效益的最优间作模式.Abstract: Cyperus esculentus is an emerging economic crop with a high utilization value that involves the integration of grain cultivation, oil production, animal husbandry and foraging. This crop plays an important role in adjusting the planting structure in sandy areas in China and combating desertification. However, traditional harvesting can easily damage surface soil and can cause wind erosion. Therefore, the exploration of protective farming modes of Cyperus esculentus to prevent wind and sand erosion is an important prerequisite for the realization of Cyperus esculentus planting in sandy areas.In this study, the wind erosion prevention effects of six intercropping modes (two types of intercropping crops × three types of spacings between intercropping strips) under different wind speeds on wind tunnel were studied. The results indicated that (1) The wind speed profiles of the various intercropping modes at different wind speeds conformed to logarithmic function. The roughness decreased with increasing belt spacing. (2) Intercropping significantly impacted the distribution characteristics of the vertical flow field structure. The near-surface wind speeds of the Zea mays intercropping modes were lower than 6 m/s. The wind speeds of the Helianthus annuus intercropping modes reached approximately 9 m/s on average, which is higher than the threshold wind velocity of sand movement. (3) The wind speed significantly affected the shelter efficiency of the intercropping modes. The shelter efficiency decreased with increasing wind speed. (4) The shelter efficiency of the intercropping belt decreased with increasing belt spacing. The shelter efficiency decreased with the intercropping strip spacing in the increasing order of 8 m, 16 m, and 24 m. The shelter efficiency of the Zea mays intercropping mode was higher than that of the Helianthus annuus mode. The near-surface shelter efficiency under Zea mays belt spacings of 8 m and 16 m was higher than 50%, which is the optimal mode in regard to wind and sand resistance in Cyperus esculentus farmland. Considering the economic benefits of farmland, the study demonstrated that the Zea mays intercropping mode with a spacing of 16 m was the optimal intercropping mode considering both ecological and economic benefits in Cyperus esculentus farmland. This research provides a theoretical basis and practical reference for protective tillage practices of Cyperus esculentus in sand areas to prevent wind and sand erosion.
-
表 1 不同间作模式模型配置参数
Table 1. Model configuration parameters for different intercropping modes
间作物种 间作带垄数 间作带高度/cm 行距/cm 垄间距/cm 带间距/cm 玉米 2 8 1.4 3 32、64、96 向日葵 2 6 2.0 4 32、64、96 表 2 不同间作模式水平测点设计
Table 2. Design of horizontal measuring points in different intercropping modes
间作物种 带间距/cm 水平测点布设 玉米 32 1 H、2 H、3 H 64 1 H、3 H、5 H、6 H、7 H 96 1 H、3 H、5 H、7 H、9 H、10 H、11 H 向日葵 32 1 H、2 H、3 H、4 H 64 1 H、3 H、5 H、7 H、9 H、10 H 96 1 H、3 H、5 H、7 H、10 H、13 H、14 H、15 H 注:H表示间作带高度,单位为cm. 下同. 表 3 玉米、向日葵不同带间距对近地表风速影响的双因素方差分析结果(F值)
Table 3. Two-way ANOVA results (F values) of the influence of the different belt spacing of Zea mays andHelianthus annuus on the near-surface wind speed
变量 风速 6 m/s 8 m/s 12 m/s 16 m/s 间作作物 1 420.006** 889.446** 1 748.494** 1 725.455** 带间距 52.449** 44.005** 61.509** 61.840** 间作作物×带间距 2.721 0.921 2.594 5.073** 注:**表示P<0.01. 表 4 不同风速下各间作模式近地表防风效能的差异
Table 4. Differences in the near-surface shelter efficiency of each intercropping mode under the different wind speeds
间作物种 带间距/cm 不同风速下的防风效能 6 m/s 8 m/s 12 m/s 16 m/s 玉米 8 55.55%±2.47%a 54.74%±2.13%a 54.01%±2.84%a 49.59%±2.9%a 16 52.08%±0.98%a 51.59%±1.3%a 51.35%±0.9%a 47.82%±1.21%a 24 45.62%±2.19%a 45.67%±2.7%a 45.21%±2.07%ab 41.48%±2.31%b 向日葵 8 28.98%±0.81%a 30.4%±0.76%a 28.02%±0.48%a 23.94%±0.89%a 16 24.96%±1.15%a 26.42%±1.5%ab 22.53%±1.35%b 22.87%±1.3%b 24 21.74%±2.18%a 23.56%±1.34%a 19.46%±1.58%b 19.93%±0.9%b 注:小写字母相同表示在P<0.05水平上差异不显著,小写字母不同表示在P<0.05水平上差异显著. 表 5 间作作物、带间距及风速对防风效能影响的多因素方差分析结果
Table 5. Multivariate ANOVA of the effects of intercropping, band spacing and wind speed on the shelter efficiency
变量 自由度 样本 F P 间作作物 1 132 6 369.335 <0.001 带间距 2 132 229.818 <0.001 间作作物×带间距 2 132 11.071 <0.001 风速 3 132 39.384 <0.001 间作作物×风速 3 132 4.566 0.005 带间距×风速 6 132 1.309 0.259 带间距×风速×间作作物 6 132 0.523 0.79 -
[1] XIAO L G,LI G Q,ZHAO R Q,et al.Effects of soil conservation measures on wind erosion control in China:a synthesis[J].Science of the Total Environment,2021,778:146308. doi: 10.1016/j.scitotenv.2021.146308 [2] LI T K,DAI Q L,BI X H,et al.Size distribution and chemical characteristics of particles from crop residue open burning in North China[J].Journal of Environmental Sciences,2021,109:66-76. doi: 10.1016/j.jes.2021.02.019 [3] 赵一蕾,黄文婕,曹明,等.1961—2019年黄土高原植被潜在蒸散及影响因子[J].环境科学研究,2021,34(9):2208-2219. doi: 10.13198/j.issn.1001-6929.2021.05.40ZHAO Y L,HUANG W J,CAO M,et al.Potential evapotranspiration and influence factors of vegetation in Loess Plateau from 1961 to 2019[J].Research of Environmental Sciences,2021,34(9):2208-2219. doi: 10.13198/j.issn.1001-6929.2021.05.40 [4] 贾振宇,王世曦,刘学,等.辽河保护区土壤保持功能时空变化及其影响因素分析[J].环境工程技术学报,2021,11(4):686-692. doi: 10.12153/j.issn.1674-991X.20200231JIA Z Y,WANG S X,LIU X,et al.Spatial and temporal variation of soil conservation function and its in fluencing factors in Liaohe Conservation Area[J].Journal of Environmental Engineering Technology,2021,11(4):686-692. doi: 10.12153/j.issn.1674-991X.20200231 [5] 李海生,李鸣晓,邹天森,等.持续创新,打造我国生态环境科技2.0[J].环境科学研究,2021,34(9):2035-2043. doi: 10.13198/j.issn.1001-6929.2021.09.01LI H S,LI M X,ZOU T S,et al.Continuing innovation,creating a 2.0 era of the eco-environmental technology in China[J].Research of Environmental Sciences,2021,34(9):2035-2043. doi: 10.13198/j.issn.1001-6929.2021.09.01 [6] SOMASUNDARAM J,SINHA N K,DALAL R C,et al.No-till farming and conservation agriculture in South Asia:issues,challenges,prospects and benefits[J].Critical Reviews in Plant Sciences,2020,39(3):236-279. doi: 10.1080/07352689.2020.1782069 [7] FARMAHA B S,SEKARAN U,FRANZLUEBBERS A J.Cover cropping and conservation tillage improve soil health in the southeastern United States[J].Agronomy Journal,2022,114(1):296-316. doi: 10.1002/agj2.20865 [8] 赵小庆,刘和,路战远,等.北方风沙区油莎豆防风固沙技术模式[J].现代农业,2019(7):13-14. doi: 10.3969/j.issn.1008-0708.2019.07.005 [9] 阳振乐.油莎豆的特性及其研究进展[J].北方园艺,2017(17):192-201. doi: 10.11937/bfyy.20170541YANG Z L.Characteristics and research progress of Cyperus esculent[J].Northern Horticulture,2017(17):192-201. doi: 10.11937/bfyy.20170541 [10] AIKEN R M,NIELSEN D C,AHUJA L R.Scaling effects of standing crop residues on the wind profile[J].Agronomy Journal,2003,95(4):1041-1046. doi: 10.2134/agronj2003.1041 [11] LIU H Y,HOU Z F,CHEN Z,et al.Effects of standing stubble on the interception of soil erosion particles[J].Land Degradation & Development,2019,30(3):328-336. [12] ZHAO C X,ZHENG D W,STIGTER C J,et al.An index guiding temporal planting policies for wind erosion reduction[J].Arid Land Research and Management,2006,20(3):233-244. doi: 10.1080/15324980600705735 [13] 陈智,麻硕士,赵永来,等.保护性耕作农田地表风沙流特性[J].农业工程学报,2010,26(1):118-122. doi: 10.3969/j.issn.1002-6819.2010.01.020CHEN Z,MA S S,ZHAO Y L,et al.Characteristics of drifting sand flux over conservation tillage field[J].Transactions of the Chinese Society of Agricultural Engineering,2010,26(1):118-122. doi: 10.3969/j.issn.1002-6819.2010.01.020 [14] 赵彦军.利用风洞研究带状留茬间作农田抗风蚀效果[D].呼和浩特:内蒙古农业大学,2009. [15] 赵举,郑大玮,妥德宝,等.阴山北麓农牧交错带带状留茬间作轮作防风蚀技术研究[J].干旱地区农业研究,2002,20(2):5-9. doi: 10.3321/j.issn:1000-7601.2002.02.002ZHAO J,ZHENG D W,TUO D B,et al.Study on the technique of strip intercropping with stubble for controlling wind erosion at ecotone in the north area of the Yinshan Mountains[J].Agricultural Reseach in the Arid Areas,2002,20(2):5-9. doi: 10.3321/j.issn:1000-7601.2002.02.002 [16] 高婕,李倩,刘景辉,等.留茬高度对带状留茬间作农田土壤防风蚀效果的影响[J].水土保持通报,2013,33(3):29-32. doi: 10.13961/j.cnki.stbctb.2013.03.037GAO J,LI Q,LIU J H,et al.Effects of stubble height on wind erosion prevention in strip intercropping farmland with stubble[J].Bulletin of Soil and Water Conservation,2013,33(3):29-32. doi: 10.13961/j.cnki.stbctb.2013.03.037 [17] 妥德宝,段玉,赵沛义,等.带状留茬间作对防治干旱地区农田风蚀沙化的生态效应[J].华北农学报,2002,17(4):63-67. doi: 10.3321/j.issn:1000-7091.2002.04.014TUO D B,DUAN Y,ZHAO P Y,et al.Ecological effect of intercropping strips keeping stubble on preventing field from wind erosion in dryland farming areas[J].Acta Agriculturae Boreall:Sinica,2002,17(4):63-67. doi: 10.3321/j.issn:1000-7091.2002.04.014 [18] 赛克,赵媛媛,包岩峰,等.干旱半干旱区落叶期农田防护林防风效果的风洞试验研究[J].农业工程学报,2021,37(5):157-165. doi: 10.11975/j.issn.1002-6819.2021.05.018SAI K,ZHAO Y Y,BAO Y F,et al.Wind-tunnel tests study of shelter effects of deciduous farmland shelterbelts in arid and semi-arid areas[J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(5):157-165. doi: 10.11975/j.issn.1002-6819.2021.05.018 [19] 张莹花,康才周,刘世增,等.沙地云杉(Picea mongolica)农田防护林带不同配置模式的防风效果[J].中国沙漠,2017,37(5):859-866. doi: 10.7522/j.issn.1000-694X.2016.00046ZHANG Y H,KANG C Z,LIU S Z,et al.Windbreak effect of Picea mongolica farmland shelterbelt with different configuration[J].Journal of Desert Research,2017,37(5):859-866. doi: 10.7522/j.issn.1000-694X.2016.00046 [20] SAXTON K,CHANDLER D,STETLER L,et al.Wind erosion and fugitive dust fluxes on agricultural lands in the Pacific northwest[J].Transactions of the ASAE,2000,43(3):631-640. [21] MASRI Z,VAN-DONK S,BRUGGEMAN A,et al.Post-harvest summer tillage to control wind erosion in the Khanasser Valley,Syria[J].Aeolian Research,2015,17:219-229. doi: 10.1016/j.aeolia.2015.03.004 [22] SHARRATT B S,COLLINS H P.Wind erosion potential influenced by tillage in an irrigated potato-sweet corn rotation in the Columbia basin[J].Agronomy Journal,2018,110(3):842-849. doi: 10.2134/agronj2017.12.0681 [23] 宋立来,李廷昆,毕晓辉,等.京津冀地区高空间分辨率土壤扬尘清单构建及动态化方法[J].环境科学研究,2021,34(8):1771-1781. doi: 10.13198/j.issn.1001-6929.2021.05.03SONG L L,LI T L,BI X H,et al.Construction and dynamic method of soil dust emission inventory with high spatial resolution in Beijing-Tianjin-Hebei Region[J].Research of Environmental Sciences,2021,34(8):1771-1781. doi: 10.13198/j.issn.1001-6929.2021.05.03 [24] CONG P F,YIN G H,GU J.Effects of stubble and mulching on soil erosion by wind in semi-arid China[J].Scientific Reports,2016,6:29966. doi: 10.1038/srep29966 [25] VOS H C,KARST I G,ECKARDT F D,et al.Influence of crop and land management on wind erosion from sandy soils in dryland agriculture[J].Agronomy,2022,12(2):457. doi: 10.3390/agronomy12020457 [26] ABDOURHAMANE TOURE A,RAJOT J L,GARBA Z,et al.Impact of very low crop residues cover on wind erosion in the Sahel[J].CATENA,2011,85(3):205-214. doi: 10.1016/j.catena.2011.01.002 [27] MENG Z J,DANG X H,GAO Y,et al.Interactive effects of wind speed,vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe,Inner Mongolia of China[J].Journal of Arid Land,2018,10(4):534-547. doi: 10.1007/s40333-018-0059-1 [28] MENDEZ M J,BUSCHIAZZO D E.Soil coverage evolution and wind erosion risk on summer crops under contrasting tillage systems[J].Aeolian Research,2015,16:117-124. doi: 10.1016/j.aeolia.2014.12.002 [29] 彭婉月,王兆云,李海东,等.黑河中下游防风固沙功能时空变化及影响因子分析[J].环境科学研究,2020,33(12):2734-2744. doi: 10.13198/j.issn.1001-6929.2020.10.28PENG W Y,WANG Z Y,LI H D,et al.Spation-temporal changes of sand-fixing function and its driving forces in the middle and lower reaches of Heihe River Basin[J].Research of Environmental Sciences,2020,33(12):2734-2744. doi: 10.13198/j.issn.1001-6929.2020.10.28 [30] 赵沛义,妥德宝,李焕春,等.带田残茬带宽度及高度对土壤风蚀模数影响的风洞试验[J].农业工程学报,2011,27(11):206-210. doi: 10.3969/j.issn.1002-6819.2011.11.039ZHAO P Y,TUO D B,LI H C,et al.Wind tunnel test on effect of strip width and crop stubble height on wind erosion modulus[J].Transactions of the Chinese Society of Agricultural Engineering,2011,27(11):206-210. doi: 10.3969/j.issn.1002-6819.2011.11.039 [31] CHEN Z,CUI H M,WU P,et al.Study on the optimal intercropping width to control wind erosion in North China[J].Soil and Tillage Research,2010,110(2):230-235. doi: 10.1016/j.still.2010.07.014 [32] YOUSSEF F,VISSER S M,KARSSENBERG D,et al.The effect of vegetation patterns on wind-blown mass transport at the regional scale:a wind tunnel experiment[J].Geomorphology,2012,159/160:178-188. doi: 10.1016/j.geomorph.2012.03.023 [33] 李雪琳,马彦军,马瑞,等.不同带宽的防风固沙林流场结构及防风效能风洞实验[J].中国沙漠,2018,38(5):936-944.LI X L,MA Y J,MA R,et al.Wind flow field and windproof efficiency of shelterbelt in different width[J].Journal of Desert Research,2018,38(5):936-944. -