Environmental Transformation and Classified Management of Per- and Polyfluoroalkyl Substances (PFASs)
-
摘要: 全氟和多氟烷基类化合物(per- and polyfluoroalkyl substances, PFASs)具有环境持久性、生物累积性和生物毒性(PBT),其暴露所引发的环境与健康风险已在世界范围内引起关注. 近期,有学者提议将PFASs作为一类高持久性物质进行全面管控,并淘汰PFASs的所有非必要用途. 鉴于PFASs在工业领域的不可或缺性,加快PFASs的淘汰进程势必会对社会和经济产生较大影响. 因此,淘汰PFASs需要一个漫长的过渡期. 在这期间,亟需开展积极有效的应对措施,最大程度地将PFASs暴露对生态环境乃至人体健康产生的潜在危害降到最低. 笔者认为加强PFASs的降解转化研究是目前较为有效且可行的策略之一,这将有助于理解PFASs的PBT特性,进而推动PFASs的分类管理. 笔者提出可在“疑似靶向/非靶向高分辨率质谱技术开发”“PFASs的传递、积累、代谢和消除行为”和“PFASs转化产物与不良健康影响之间关系的系统毒理学网络”等方面开展PFASs的降解转化研究. 通过高效筛查识别PFASs的分子转化机制,解析转化产物的PBT性质,进而对PFASs进行合理归类划分,并为制定PFASs及替代品的分类管控决策提供依据.
-
关键词:
- 全氟和多氟烷基类化合物 /
- 环境转化 /
- 化学品管控 /
- 非靶向分析 /
- 生物学网络
Abstract: Per- and polyfluoroalkyl substances (PFASs) with persistence, bioaccumulation, and toxicity (PBT) properties have gained attention worldwide because of their potential environmental risks and adverse health effects. Regulation of PFASs remains a big concern for society. Based on the knowledge that C-F is the strongest single bond in organic chemistry, PFASs are considered as high persistent substances by some scientists. Therefore, it is recommended that PFASs be managed as a highly persistent category and that all ‘nonessential’ uses of these chemicals should be phased out. In view of their wide application in various fields, involving huge socio-economic impacts, accelerating the phase-out of PFASs is bound to have a huge impact on society and economy. It is therefore a long way to go in reaching consensus on PFASs management. As a result, phasing out PFASs requires a lengthy transition period. Currently, meaningful actions are needed to minimize the potential exposure risk of PFASs while meeting their social needs. In fact, there are approximately 5000 PFASs available on the global market. Studies indicate that the transformation behaviors of PFASs happen under different conditions, which result in various kinds of new emerging PFASs in natural environment and biota. There are limited data on the PBT properties of these new PFASs. Actually, some new PFASs are environmentally friendly themselves, but they can degrade to highly toxic and persistent PFASs such as PFOS, PFOA and PFHxS. These transformation products thereby become indirect sources of traditional PFASs in the environment, which would eventually lead to constant human exposure to these chemicals. Thus, it is very important to study the transformation of PFASs. Transformational studies can help identify transformational products with lower persistence and toxicity, which will provide valuable insights into the design of safer fluorinated alternatives. Here, for the first time, we propose that strengthening the study on the transformation of PFASs is an important strategy for classifying and managing fluorinated alternatives, and this will provide technical framework and support for the regulation of fluorinated alternatives. Furthermore, we make these proposals on the way forward for investigating transformational process of PFASs. Firstly, nontargeted and high-resolution mass spectrometry technologies must be continually developed, as these investigation methods are able to implement high throughput analysis of transformation products by assembling formulas and possible structures from molecular precursor and fragment data of existing PFASs. Secondly, the transmission, accumulation, metabolism, and elimination behaviors of PFASs in different matrices should be of high concern. In this regard, a combination of multi-omics, high-throughput toxicity testing, theory calculation, and machine learning is recommended to explor the potential mechanisms, and the essential factors affecting the process. Through this, the transformation products with PBT properties can be ascertained, prioritized, and managed. Lastly, biological networks elaborating the relationship between PFASs transformation products and adverse health effects should be established. The transformation products of PFASs may eventually pose adverse public health risks, which suggests that mapping a systematic transformation network would be beneficial to the classified management of fluorinated alternatives. This is challenging because of their diverse structures and huge numbers, however, the accomplishment of the first two proposals above will facilitate this process. -
表 1 PFOS和PFOA及常见替代品
Table 1. PFOS and PFOA, and their substitutes
化合物 英文名称(缩写) 结构式 CAS号 应用 PFOS及其
常见替代品全氟辛基磺酸 Perfluorooctane sulfonate
(PFOS)1763-23-1 电气和电子零件、消防泡沫、照相成像、液压油、纺织品 全氟丁基磺酸 Perfluorobutanesulfonic acid
(PFBS)375-73-5 镀铬行业的除雾剂和阻燃剂 全氟己基磺酸 Perfluorohexanesulfonic acid
(PFHxS)355-46-4 镀铬行业的除雾剂、纺织品处理中的抗水防污剂 6:2氯化聚氟烷基醚磺酸 6:2 Chlorinated polyfluorinated ether sulfonate
(6:2 Cl-PFESA/F53B)73606-19-6 镀铬行业的除雾剂 6:2氟调聚物磺酸 6:2 Fluorotelomer sulfonate
(6:2 FTSA)59587-39-2 镀铬行业的防雾剂、消防泡沫中的含氟表面活性剂 6:2氟调聚物磺酰胺烷基甜菜碱 6:2 Fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) 34455-29-3 消防泡沫中的含氟表面活性剂 全氟壬烯氧基苯磺酸钠 Sodium p-perfluoro nonenoxybenzene sulfonate (OBS) 70829-87-7 消防泡沫中的含氟表面活性剂、石油中的氟表面活性剂 全氟烷基乙基丙烯酸酯 Perfluoroalkyl ethyl acrylates
(PFAEA)65605-70-1 皮革和纺织品涂饰剂、石材保护 PFOA及其
常见替代品全氟辛酸 Perfluorooctanoic acid
(PFOA)335-67-1 不粘厨具、食品加工设备 全氟丁酸 Perfluorobutanoic acid
(PFBA)375-22-4 含氟聚合物生产中的加工助剂 全氟己酸 Perfluorohexanoic acid
(PFHxA)307-24-4 含氟聚合物生产中的加工助剂 六氟环氧丙烷二聚酸 Hexafluoropropylene oxide-dimer acid (HFPO-DA/Gen-X) 62037-80-3 含氟聚合物生产中的加工助剂 六氟环氧丙烷三聚酸 Hexafluoropropylene oxide-trimer acid (HFPO-TA) 13252-14-7 含氟聚合物生产中的加工助剂 六氟环氧丙烷四聚酸 Hexafluoropropylene oxide tetramer acid (HFPO-TeA) 65294-16-8 含氟聚合物生产中的加工助剂 4,8-二氧杂环己烷-3H-全氟壬酸铵 Dodecafluoro-3H-4,8-dioxanonanoate (ADONA) 958445-44-8 含氟聚合物生产中的加工助剂 七氟丙基1,2,2,2-四氟乙醚 Heptafluoropropyl 1,2,2,2-tetrafluoroethyl ether (Fluoroether E-1) 3330-15-2 含氟聚合物生产中的加工助剂 全氟-3,6-二氧辛酸 Perfluoro-3,6-dioxaoctanoic acid (EEA) 908020-52-0 含氟聚合物生产中的加工助剂 全氟-2,5-二甲基-3,6-二氧杂庚酸
铵盐Ammonium 2,3,3,3-tetrafluoro-
2-[1,1,2,3,3,3-hexafluoro-2-
(trifluoromethoxy) propoxy]
propanoate510774-77-3 含氟聚合物生产中的加工助剂 -
[1] 周庆,张满成,卢宇飞,等.全氟类化合物的检测与治理研究进展[J].环境科学与技术,2008,31(7):44-52. doi: 10.3969/j.issn.1003-6504.2008.07.013ZHOU Q,ZHANG M C,LU Y F,et al.Research trends on determination and treatment of perfluoronic compounds[J].Environmental Science & Technology (China),2008,31(7):44-52. doi: 10.3969/j.issn.1003-6504.2008.07.013 [2] SZNAJDER-KATARZYŃSKA K,SURMA M,CIEŚLIK I.A review of perfluoroalkyl acids (PFAAs) in terms of sources,applications,human exposure,dietary intake,toxicity,legal regulation,and methods of determination[J].Journal of Chemistry,2019,2019:2717528. [3] GLÜGE J,SCHERINGER M,COUSINS I T,et al.An overview of the uses of per- and polyfluoroalkyl substances (PFAS)[J].Environmental Science Processes & Impacts,2020,22(12):2345-2373. [4] JOHANSSON J H,SALTER M E,NAVARRO J C A,et al.Global transport of perfluoroalkyl acids via sea spray aerosol[J].Environmental Science Processes & Impacts,2019,21(4):635-649. [5] EVICH M G,DAVIS M,MCCORD J P,et al.Per- and polyfluoroalkyl substances in the environment[J].Science,2022,375(6580):eabg9065. doi: 10.1126/science.abg9065 [6] 陈诗艳,仇雁翎,朱志良,等.土壤中全氟和多氟烷基化合物的污染现状及环境行为[J].环境科学研究,2021,34(2):468-478. doi: 10.13198/j.issn.1001-6929.2020.10.15CHEN S Y,QIU Y L,ZHU Z L,et al.Current pollution status and environmental behaviors of PFASs in soil[J].Research of Environmental Sciences,2021,34(2):468-478. doi: 10.13198/j.issn.1001-6929.2020.10.15 [7] ELLIS D A,DENKENBERGER K A,BURROW T E,et al.The use of 19F NMR to interpret the structural properties of perfluorocarboxylate acids: a possible correlation with their environmental disposition[J].The Journal of Physical Chemistry A,2004,108(46):10099-10106. doi: 10.1021/jp049372a [8] MCMURDO C J,ELLIS D A,WEBSTER E,et al.Aerosol enrichment of the surfactant PFO and mediation of the water:air transport of gaseous PFOA[J].Environmental Science & Technology,2008,42(11):3969-3974. [9] 乔肖翠,赵兴茹,郭睿,等.典型岩溶区水环境中全氟化合物分布特征及风险评价[J].环境科学研究,2019,32(12):2148-2156. doi: 10.13198/j.issn.1001-6929.2019.03.05QIAO X C,ZHAO X R,GUO R,et al.Distribution characteristics and risk assessment of per-and polyfluoroalkyl substances in water environment in typical karst region[J].Research of Environmental Sciences,2019,32(12):2148-2156. doi: 10.13198/j.issn.1001-6929.2019.03.05 [10] 郑平平,陈晓倩,沈璐,等.上海市电镀企业周边地表水中全氟和多氟烷基物质(PFASs)的污染特征[J].环境科学研究,2022.doi: 10.13198/j.issn.1001-6929.2022.06.12.ZHENG P P,CHEN X Q,SHEN L,et al.Pollution characteristics of per and polyfluoroalkyl substances (PFASs) in adjacent surface water of electroplating industries in Shanghai[J].Research of Environmental Sciences,2022.doi: 10.13198/j.issn.1001-6929.2022.06.12. [11] 刘琰,江秋枫,韩梅,等.红枫湖流域表层沉积物中全氟化合物的污染特征[J].环境科学研究,2015,28(4):517-523. doi: 10.13198/j.issn.1001-6929.2015.04.05LIU Y,JIANG Q F,HAN M,et al.Contamination profiles of perfluorinated substances in surface sediments of Hongfeng Lake Basin[J].Research of Environmental Sciences,2015,28(4):517-523. doi: 10.13198/j.issn.1001-6929.2015.04.05 [12] CHEN C E,YANG Y Y,ZHAO J L,et al.Legacy and alternative per- and polyfluoroalkyl substances (PFASs) in the West River and North River,South China:occurrence,fate,spatio-temporal variations and potential sources[J].Chemosphere,2021,283:131301. doi: 10.1016/j.chemosphere.2021.131301 [13] 张杰,赵璞君,夏星辉.河流不同分子量溶解性有机质结合态全氟化合物的分布特征[J].环境科学研究,2022.doi: 10.13198/j.issn.1001-6929.2022.06.07ZHANG J,ZHAO P J,XIA X H.Distribution of polyfluoroalkyl substances associated with different molecular weight dissolved organic matter in river[J].Research of Environmental Sciences,2022.doi: 10.13198/j.issn.1001-6929.2022.06.07 [14] SHAN G Q,QIAN X,CHEN X,et al.Legacy and emerging per- and poly-fluoroalkyl substances in surface seawater from northwestern Pacific to Southern Ocean:evidences of current and historical release[J].Journal of Hazardous Materials,2021,411:125049. doi: 10.1016/j.jhazmat.2021.125049 [15] MENG L Y,SONG B Y,ZHONG H F,et al.Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in the Bohai Sea and its inflow rivers[J].Environment International,2021,156:106735. doi: 10.1016/j.envint.2021.106735 [16] LI J,DEL-VENTO S,SCHUSTER J,et al.Perfluorinated compounds in the Asian atmosphere[J].Environmental Science & Technology,2011,45(17):7241-7248. [17] YU S Y,LIU W J,XU Y S,et al.Characteristics of perfluoroalkyl acids in atmospheric PM10 from the coastal cities of the Bohai and Yellow Seas,northern China[J].Environmental Pollution,2018,243:1894-1903. doi: 10.1016/j.envpol.2018.10.002 [18] LI J F,HE J H,NIU Z G,et al.Legacy per- and polyfluoroalkyl substances (PFASs) and alternatives (short-chain analogues,F-53B,GenX and FC-98) in residential soils of China:present implications of replacing legacy PFASs[J].Environment International,2020,135:105419. doi: 10.1016/j.envint.2019.105419 [19] WANG Y,WANG L,LIANG Y,et al.Modulation of dietary fat on the toxicological effects in thymus and spleen in BALB/c mice exposed to perfluorooctane sulfonate[J].Toxicology Letters,2011,204(2/3):174-182. [20] CUI Q Q,PAN Y T,WANG J H,et al.Exposure to per- and polyfluoroalkyl substances (PFASs) in serum versus semen and their association with male reproductive hormones[J].Environmental Pollution,2020,266:115330. doi: 10.1016/j.envpol.2020.115330 [21] PAN Y T,CUI Q Q,WANG J H,et al.Profiles of emerging and legacy per-/ polyfluoroalkyl substances in matched serum and semen samples:new implications for human semen quality[J].Environmental Health Perspectives,2019,127(12):127005. doi: 10.1289/EHP4431 [22] WANG W,ZHOU W,WU S W,et al.Perfluoroalkyl substances exposure and risk of polycystic ovarian syndrome related infertility in Chinese women[J].Environmental Pollution,2019,247:824-831. doi: 10.1016/j.envpol.2019.01.039 [23] KIM H Y,KIM K N,SHIN C H,et al.The relationship between perfluoroalkyl substances concentrations and thyroid function in early childhood:a prospective cohort study[J].Thyroid:Official Journal of the American Thyroid Association,2020,30(11):1556-1565. doi: 10.1089/thy.2019.0436 [24] KHALIL N,CHEN A M,LEE M,et al.Association of perfluoroalkyl substances,bone mineral density,and osteoporosis in the US population in NHANES 2009-2010[J].Environmental Health Perspectives,2016,124(1):81-87. doi: 10.1289/ehp.1307909 [25] MA D H,LU Y,LIANG Y,et al.A critical review on transplacental transfer of per- and polyfluoroalkyl substances:prenatal exposure levels,characteristics,and mechanisms[J].Environmental Science & Technology,2022,56(10):6014-6026. [26] WANG M J,LI Q Q,HOU M F,et al.Inactivation of common airborne antigens by perfluoroalkyl chemicals modulates early life allergic asthma[J].Proceedings of the National Academy of Sciences of the United States of America,2021,118(24):e2011957118. doi: 10.1073/pnas.2011957118 [27] NZERIBE B N,CRIMI M,MEDEDOVIC THAGARD S,et al.Physico-chemical processes for the treatment of per- and polyfluoroalkyl substances (PFAS):a review[J].Critical Reviews in Environmental Science and Technology,2019,49(10):866-915. doi: 10.1080/10643389.2018.1542916 [28] KWIATKOWSKI C F,ANDREWS D Q,BIRNBAUM L S,et al.Scientific basis for managing PFAS as a chemical class[J].Environmental Science & Technology Letters,2020,7(8):532-543. [29] PAN Y T,WANG J H,YEUNG L W Y,et al.Analysis of emerging per- and polyfluoroalkyl substances:progress and current issues[J].TrAC Trends in Analytical Chemistry,2020,124:115481. doi: 10.1016/j.trac.2019.04.013 [30] WANG X B,YU N Y,QIAN Y L,et al.Non-target and suspect screening of per- and polyfluoroalkyl substances in Chinese municipal wastewater treatment plants[J].Water Research,2020,183:115989. doi: 10.1016/j.watres.2020.115989 [31] LI J,CAO H M,FENG H R,et al.Evaluation of the estrogenic/antiestrogenic activities of perfluoroalkyl substances and their interactions with the human estrogen receptor by combining in vitro assays and in silico modeling[J].Environmental Science & Technology,2020,54(22):14514-14524. [32] BRENDEL S,FETTER É,STAUDE C,et al.Short-chain perfluoroalkyl acids:environmental concerns and a regulatory strategy under REACH[J].Environmental Sciences Europe,2018,30(1):9. doi: 10.1186/s12302-018-0134-4 [33] MUNOZ G,LIU J X,VO DUY S,et al.Analysis of F-53B,Gen-X,ADONA,and emerging fluoroalkylether substances in environmental and biomonitoring samples:a review[J].Trends in Environmental Analytical Chemistry,2019,23:e00066. doi: 10.1016/j.teac.2019.e00066 [34] LAI T T,EKEN Y,WILSON A K.Binding of per- and polyfluoroalkyl substances to the human pregnane X receptor[J].Environmental Science & Technology,2020,54(24):15986-15995. [35] CORDNER A,GOLDENMAN G,BIRNBAUM L S,et al.The true cost of PFAS and the benefits of acting now[J].Environmental Science & Technology,2021,55(14):9630-9633. [36] COUSINS I T,DEWITT J C,GLÜGE J,et al.The high persistence of PFAS is sufficient for their management as a chemical class[J].Environmental Science Processes & Impacts,2020,22(12):2307-2312. [37] LANI R.Socio-economic assessment of the US fluoropolymer industry-executive summary[R].London:Wood Environment & Infrastructure Solutions UK Limited,2020. [38] LU Y,LIANG Y,ZHOU Z,et al.Possible fluorinated alternatives of PFOS and PFOA:ready to go?[J].Environmental Science & Technology,2019,53(24):14091-14092. [39] PESCHKA M,FICHTNER N,HIERSE W,et al.Synthesis and analytical follow-up of the mineralization of a new fluorosurfactant prototype[J].Chemosphere,2008,72(10):1534-1540. doi: 10.1016/j.chemosphere.2008.04.066 [40] BANERJEE S,SCHMIDT J,TALMON Y,et al.A degradable fluorinated surfactant for emulsion polymerization of vinylidene fluoride[J].Chemical Communications (Cambridge,England),2018,54(81):11399-11402. doi: 10.1039/C8CC05290E [41] HUANG S,JAFFÉ P R.Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6[J].Environmental Science & Technology,2019,53(19):11410-11419. [42] GOLD S C,WAGNER W E.Filling gaps in science exposes gaps in chemical regulation[J].Science,2020,368(6495):1066-1068. doi: 10.1126/science.abc1250 [43] ZHANG Z M,SARKAR D,BISWAS J K,et al.Biodegradation of per- and polyfluoroalkyl substances (PFAS):a review[J].Bioresource Technology,2022,344:126223. doi: 10.1016/j.biortech.2021.126223 [44] ZHANG L Y,REN X M,WAN B,et al.Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor Γ[J].Toxicology and Applied Pharmacology,2014,279(3):275-283. doi: 10.1016/j.taap.2014.06.020 [45] HEKSTER F M,LAANE R W,DE-VOOGT P.Environmental and toxicity effects of perfluoroalkylated substances[J].Reviews of Environmental Contamination and Toxicology,2003,179:99-121. [46] WALLINGTON T J,HURLEY M D,XIA J,et al.Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol[J].Environmental Science & Technology,2006,40(3):924-930. [47] MABURY S A.Exploring indirect sources of human exposure to perfluoroalkyl carboxylates (PFCAs):evaluating uptake,elimination,and biotransformation of polyfluoroalkyl phosphate esters (PAPs) in the rat[J].Environmental Health Perspectives,2011,119(3):344-350. doi: 10.1289/ehp.1002409 [48] YI S J,ZHU L Y,MABURY S A.First report on in vivo pharmacokinetics and biotransformation of chlorinated polyfluoroalkyl ether sulfonates in rainbow trout[J].Environmental Science & Technology,2020,54(1):345-354. [49] ATEIA M,MAROLI A,THARAYIL N,et al.The overlooked short- and ultrashort-chain poly- and perfluorinated substances:a review[J].Chemosphere,2019,220:866-882. doi: 10.1016/j.chemosphere.2018.12.186 [50] LEE Y J,CHOI S Y,YANG J H.PFHxS induces apoptosis of neuronal cells via ERK1/2-mediated pathway[J].Chemosphere,2014,94:121-127. doi: 10.1016/j.chemosphere.2013.09.059 [51] BUTENHOFF J L,CHANG S C,EHRESMAN D J,et al.Evaluation of potential reproductive and developmental toxicity of potassium perfluorohexanesulfonate in Sprague Dawley rats[J].Reproductive Toxicology,2009,27(3/4):331-341. [52] DAS K P,WOOD C R,LIN M T,et al.Perfluoroalkyl acids-induced liver steatosis:effects on genes controlling lipid homeostasis[J].Toxicology,2017,378:37-52. doi: 10.1016/j.tox.2016.12.007 [53] KNIGHT E R,BRÄUNIG J,JANIK L J,et al.An investigation into the long-term binding and uptake of PFOS,PFOA and PFHxS in soil-plant systems[J].Journal of Hazardous Materials,2021,404:124065. doi: 10.1016/j.jhazmat.2020.124065 [54] European Chemical Agency.Inclusion of substances of very high concern in the Candidate List for eventual inclusion in Annex Ⅳ[R].Helsinki:Decision of the European Chemicals Agency,2017. [55] United Nations Environment Programme.Perfluorohexane sulfonic acid (PFHxS),its salts and PFHxS-related compounds[R].Rome:Persistent Organic Pollutants Review Committee Fifteenth Meeting,2019. [56] BARRETT H,DU X,HOUDE M,et al.Suspect and nontarget screening revealed class-specific temporal trends (2000-2017) of poly- and perfluoroalkyl substances in St.Lawrence beluga whales[J].Environmental Science & Technology,2021,55(3):1659-1671. [57] PAN Y T,ZHANG H X,CUI Q Q,et al.First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid:an emerging concern[J].Environmental Science & Technology,2017,51(17):9553-9560. [58] YANG D W,HAN J J,HALL D R,et al.Nontarget screening of per- and polyfluoroalkyl substances binding to human liver fatty acid binding protein[J].Environmental Science & Technology,2020,54(9):5676-5686. [59] 李忠民,郭良宏.氟调醇的环境污染与毒理学研究[J].化学进展,2016,28(7):993-1005. doi: 10.7536/PC160330LI Z M,GUO L H.Environmental occurrence and toxicology of fluorotelomer alcohols[J].Progress in Chemistry,2016,28(7):993-1005. doi: 10.7536/PC160330 [60] MAHINROOSTA R,SENEVIRATHNA L.A review of the emerging treatment technologies for PFAS contaminated soils[J].Journal of Environmental Management,2020,255:109896. doi: 10.1016/j.jenvman.2019.109896 [61] RAYNE S,FOREST K.Perfluoroalkyl sulfonic and carboxylic acids:a critical review of physicochemical properties,levels and patterns in waters and wastewaters,and treatment methods[J].Journal of Environmental Science and Health Part A:Toxic/Hazardous Substances & Environmental Engineering,2009,44(12):1145-1199. [62] SPAAN K M,van NOORDENBURG C,PLASSMANN M M,et al.Fluorine mass balance and suspect screening in marine mammals from the Northern Hemisphere[J].Environmental Science & Technology,2020,54(7):4046-4058. [63] WASHINGTON J W,ROSAL C G,MCCORD J P,et al.Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils[J].Science,2020,368(6495):1103-1107. doi: 10.1126/science.aba7127 [64] MCDONOUGH C A,LI W T,BISCHEL H N,et al.Widening the lens on PFASs:direct human exposure to perfluoroalkyl acid precursors (pre-PFAAs)[J].Environmental Science & Technology,2022,56(10):6004-6013. [65] SHENG N,WANG J H,GUO Y,et al.Interactions of perfluorooctanesulfonate and 6:2 chlorinated polyfluorinated ether sulfonate with human serum albumin:a comparative study[J].Chemical Research in Toxicology,2020,33(6):1478-1486. doi: 10.1021/acs.chemrestox.0c00075 [66] CAO H M,ZHOU Z,WANG L,et al.Screening of potential PFOS alternatives to decrease liver bioaccumulation:experimental and computational approaches[J].Environmental Science & Technology,2019,53(5):2811-2819. [67] KUMMU M,SIEPPI E,KOPONEN J,et al.Organic anion transporter 4 (OAT 4) modifies placental transfer of perfluorinated alkyl acids PFOS and PFOA in human placental ex vivo perfusion system[J].Placenta,2015,36(10):1185-1191. doi: 10.1016/j.placenta.2015.07.119 [68] CAO H M,ZHOU Z,HU Z,et al.Effect of enterohepatic circulation on the accumulation of per- and polyfluoroalkyl substances:evidence from experimental and computational studies[J].Environmental Science & Technology,2022,56(5):3214-3224. [69] WANG Y W,FU J J,WANG T,et al.Distribution of perfluorooctane sulfonate and other perfluorochemicals in the ambient environment around a manufacturing facility in China[J].Environmental Science & Technology,2010,44(21):8062-8067. [70] QIU Z Q,QU K L,LUAN F,et al.Binding specificities of estrogen receptor with perfluorinated compounds:a cross species comparison[J].Environment International,2020,134:105284. doi: 10.1016/j.envint.2019.105284 [71] STURLA S J,BOOBIS A R,FITZGERALD R E,et al.Systems toxicology:from basic research to risk assessment[J].Chemical Research in Toxicology,2014,27(3):314-329. doi: 10.1021/tx400410s [72] 田芳.复杂网络用于典型环境内分泌干扰物毒性通路的研究[D].兰州:兰州大学,2017. [73] LIU X H,ZHU Y,LIU T T,et al.Exploring toxicity of perfluorinated compounds through complex network and pathway modeling[J].Journal of Biomolecular Structure and Dynamics,2020,38(9):2604-2612. doi: 10.1080/07391102.2019.1637281 -