留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于修复效果的污染土壤修复工程环境足迹分析

刘文晓 夏天翔 张丽娜 贾晓洋 朱笑盈 梁竞 蔡敏琦

刘文晓, 夏天翔, 张丽娜, 贾晓洋, 朱笑盈, 梁竞, 蔡敏琦. 基于修复效果的污染土壤修复工程环境足迹分析[J]. 环境科学研究, 2022, 35(10): 2367-2377. doi: 10.13198/j.issn.1001-6929.2022.07.05
引用本文: 刘文晓, 夏天翔, 张丽娜, 贾晓洋, 朱笑盈, 梁竞, 蔡敏琦. 基于修复效果的污染土壤修复工程环境足迹分析[J]. 环境科学研究, 2022, 35(10): 2367-2377. doi: 10.13198/j.issn.1001-6929.2022.07.05
LIU Wenxiao, XIA Tianxiang, ZHANG Lina, JIA Xiaoyang, ZHU Xiaoying, LIANG Jing, CAI Minqi. Environmental Footprint Analysis of Contaminated Soil Remediation Projects Based on Remediation Effects[J]. Research of Environmental Sciences, 2022, 35(10): 2367-2377. doi: 10.13198/j.issn.1001-6929.2022.07.05
Citation: LIU Wenxiao, XIA Tianxiang, ZHANG Lina, JIA Xiaoyang, ZHU Xiaoying, LIANG Jing, CAI Minqi. Environmental Footprint Analysis of Contaminated Soil Remediation Projects Based on Remediation Effects[J]. Research of Environmental Sciences, 2022, 35(10): 2367-2377. doi: 10.13198/j.issn.1001-6929.2022.07.05

基于修复效果的污染土壤修复工程环境足迹分析

doi: 10.13198/j.issn.1001-6929.2022.07.05
基金项目: 国家重点研发计划项目(No.2020YFC1807502, 2018YFC1801401)
详细信息
    作者简介:

    刘文晓(1997-),男,山东滨州人,lwxwxl@qq.com

    通讯作者:

    张丽娜(1982-),女,河南焦作人,副研究员,硕士,主要从事土壤和地下水污染防治研究,zhln2011@163.com

  • 中图分类号: X53

Environmental Footprint Analysis of Contaminated Soil Remediation Projects Based on Remediation Effects

Funds: National Key Research and Development Program of China (No.2020YFC1807502, 2018YFC1801401)
  • 摘要: 为定量评估污染土壤修复工程的环境影响,基于北方某焦化厂有机污染场地原位热脱附和阻隔通风技术的实际修复效果,计算了该工程各阶段的环境足迹及相对贡献,阐明了其主要来源,并对这两种技术修复单位方量土壤的环境足迹和基于污染物含量变化与风险削减的环境足迹强度进行了分析. 结果表明:在达到修复目标的情况下,工程施工准备阶段环境足迹占比仅在1%左右,高风险区原位热脱附施工运行阶段温室气体排放量、能源消耗量、耗水量、空气污染物排放量占比分别为63.39%、93.02%、72.82%和71.08%,低风险区阻隔通风施工运行阶段温室气体排放量、能源消耗量、耗水量、空气污染物排放量占比分别为35.40%、6.77%、26.26%和27.74%;原位热脱附技术修复单位方量土壤的环境足迹高于阻隔通风技术,原位热脱附技术的能源消耗量约为阻隔通风技术的49.70倍,温室气体排放量、耗水量、空气污染物排放量为阻隔通风技术的6.32~10.30倍. 研究显示:天然气使用、电能消耗和现场机械设备使用是该工程环境足迹的主要来源,在高风险区原位热脱附修复工程中苯的环境足迹强度高于苯并[a]芘,原位热脱附技术的能源强度高于阻隔通风技术,基于污染物含量降低情况的环境足迹强度对量化原位热脱附技术的环境足迹适用性较好,而基于风险削减的环境足迹强度适用于阻隔通风技术.

     

  • 图  1  修复技术工艺原理示意

    Figure  1.  Schematic diagram of the remediation principle

    图  2  技术路线及系统边界

    Figure  2.  Technical route and system boundary

    图  3  高风险区热脱附修复前后污染物含量分布

    Figure  3.  Concentration of pollutants before and after ISTD in high-risk zones

    图  4  工程各阶段温室气体排放情况

    注:RH代表废弃物处理;EU代表设备使用;T-E代表设备运输;T-P代表人员运输;C代表材料使用. 下同.

    Figure  4.  GHG emissions at each stage

    图  5  工程各阶段能源消耗情况

    Figure  5.  Energy consumption at each stage

    图  6  工程各阶段空气污染物排放情况

    Figure  6.  Air pollutant emissions at each stage

    表  1  污染场地概况

    Table  1.   Overview of the contaminated site

    区域修复面积/m2土方量/m3主要污染物含量范围/(mg/kg)
    苯并[a]芘
    高风险区7 56730 41340~1 08015~1 810
    低风险区22 013110 0674~403.1~15
    下载: 导出CSV

    表  2  土壤修复过程中使用的材料和能源

    Table  2.   Materials and energy used in the soil remediation

    项目Stage ⅠStage ⅡStage Ⅲ
    热脱附废水废气处理水平阻隔生物通风废气处理
    能源消耗量1)天然气0766 51428 8000015 600
    48 000360 000560 0002 430480 000240 000
    柴油9 62938 8068 90618 790506708
    耗水量/m36401153 47795785414
    材料使用量2)钢铁27 868310 26520 367000
    混凝土2 0972 270022 74300
    水泥3001 51302 37400
    HDPE3500000
    PVC00001 0000
    燃油使用量/L运输货物3 6005 26544611 3431 433564
    运输人员400897367212114134
    注:1) 天然气、电、柴油的能源消耗量单位分别为m3、kW·h、L. 2) 钢铁、混凝土、水泥、HDPE、PVC的材料使用量单位分别kg、m3、m3、kg、kg.
    下载: 导出CSV

    表  3  阻隔通风前后风险评估关键参数取值

    Table  3.   Key parameters of risk assessment before and after ISBB

    参数阻隔通风前阻隔通风后
    土壤污染含量/(mg/kg)苯并[a]芘,14.25;
    苯,32.06
    苯并[a]芘,14.70;
    苯,3.50
    污染土壤厚度/m0~100.5~3.5
    平行于风险污染源长度/m100100
    土壤孔隙中水体积比0.260.34
    土壤孔隙中空气体积比0.170.02
    土壤容重/(g/cm3)1.71.7
    土壤有机碳含量/(g/kg)0.009 50.022 5
    下载: 导出CSV

    表  4  低风险区阻隔通风实施前后致癌风险与危害商

    Table  4.   Carcinogenic risk and hazard quotient before and after the ISBB in low-risk zones

    暴露途径致癌风险危害商
    苯并[a]芘苯并[a]芘
    阻隔前阻隔后阻隔前阻隔后阻隔前阻隔后阻隔前阻隔后
    经口摄入6.43×10−705.29×10−600.026900.1070
    皮肤接触004.15×10−60000.08420
    吸入土壤尘6.29×10−1002.19×10−602.47×10−500.1110
    吸入室外上层土壤挥发气体3.80×10−705.10×10−600.014900.2580
    吸入室外下层土壤挥发气体7.21×10−62.90×10−71.55×10−106.62×10−110.2840.011403.35×10−4
    总计8.24×10−62.90×10−79.51×10−66.62×10−110.3260.01140.5613.35×10−7
    下载: 导出CSV

    表  5  各阶段环境足迹及其占比

    Table  5.   Environmental footprint and percentage at each stage

    阶段温室气体
    排放量/t
    能源消耗量/GJ耗水量/m3NOx
    排放量/t
    SOx
    排放量/t
    PM10
    排放量/t
    Stage I104.34
    (1.21)
    1 154.10
    (0.20)
    45.42
    (0.92)
    0.56
    (1.06)
    0.31
    (1.44)
    0.08
    (1.13)
    Stage Ⅱ热脱附4 136.93474 312.36115.0835.6911.782.58
    废水废气处理1 309.7457 840.683 476.542.303.671.89
    小计5 446.67
    (63.39)
    532 153.05
    (93.02)
    3 591.62
    (72.82)
    37.99
    (71.99)
    15.45
    (71.56)
    4.47
    (62.87)
    Stage Ⅲ水平阻隔1 845.4620 226.6595.018.264.521.52
    生物通风667.5011 732.51785.983.000.810.61
    废气处理528.516 793.39414.102.950.490.43
    小计3 041.47
    (35.40)
    38 752.56
    (6.77)
    1 295.09
    (26.26)
    14.22
    (26.95)
    5.82
    (26.96)
    2.56
    (36.01)
    总计8 592.48572 059.74 932.1452.7721.597.11
    注:括号中数值为环境足迹占比,单位为%.
    下载: 导出CSV

    表  6  修复单位方量土壤的环境足迹

    Table  6.   Environmental footprint per unit soil of remediation

    区域修复技术温室气体
    排放量/kg
    能源消耗
    量/(kW·h)
    耗水量/LNOx
    排放量/g
    SOx
    排放量/g
    PM10
    排放量/g
    高风险区原位热脱附179.094 860.46118.101 249.14508.01146.98
    低风险区阻隔通风27.6397.8011.77129.1952.8823.26
    下载: 导出CSV

    表  7  基于污染物含量的环境足迹强度

    Table  7.   Environmental footprint intensity based on contaminant concentration

    区域污染物
    类别
    计算取值污染物含量/(mg/kg)温室气体
    强度/kg
    能源效率/
    (kW·h)
    水强度/LNOx
    强度/g
    SOx
    强度/g
    PM10
    强度/g
    修复前修复后
    高风险区最大值1 080.002.890.174.510.111.160.470.14
    平均值51.910.263.4794.102.2924.189.842.85
    苯并[a]芘最大值1 810.001.390.102.690.070.690.280.08
    平均值56.690.703.2086.812.1122.319.072.63
    低风险区最大值32.063.500.973.420.414.521.850.81
    平均值2.210.2814.3250.676.1066.9427.412.05
    下载: 导出CSV

    表  8  基于风险变化的环境足迹强度

    Table  8.   Environmental footprint strength based on risk changes

    区域污染物
    类别
    总致癌风险温室气体
    强度/kg
    能源效率/
    (kW·h)
    水强度/LNOx
    强度/g
    SOx
    强度/g
    PM10
    强度/g
    修复前修复后
    高风险区2.77×10−47.42×10−70.4813.020.323.351.360.39
    苯并[a]芘1.19×10−39.12×10−70.143.720.090.960.390.11
    低风险区8.24×10−62.90×10−70.973.440.414.551.860.82
    苯并[a]芘9.51×10−66.62×10−111.92×10−46.81×10−48.19×10−58.99×10−43.68×10−41.62×10−4
    下载: 导出CSV
  • [1] 重庆市环境科学学会. 关于切实做好企业搬迁过程中环境污染防治工作的通知[C].重庆:污染场地修复产业国际论坛暨重庆市环境科学学会第九届学术年会会刊,2011.
    [2] 李笑诺,易诗懿,陈卫平.污染场地风险管控可持续评价指标体系构建及关键影响因素分析[J].环境科学,2022,43(5):2699-2708. doi: 10.13227/j.hjkx.202109211

    LI X N,YI S Y,CHEN W P.Construction of sustainability evaluation index system for contaminated site risk management and analysis on key influential factors[J].Environmental Science,2022,43(5):2699-2708. doi: 10.13227/j.hjkx.202109211
    [3] 姜林,梁竞,钟茂生,等.复杂污染场地的风险管理挑战及应对[J].环境科学研究,2021,34(2):458-467.

    JIANG L,LIANG J,ZHONG M S,et al.Challenges and response to risk management of complex contaminated sites[J].Research of Environmental Sciences,2021,34(2):458-467.
    [4] CONSULT S R.Environmental/economic evaluation and optimising of contaminated sites remediation-method to involve environmental assessment[J].EU LIFE Project,2000,96:223-230.
    [5] MORAIS S A,DELERUE-MATOS C.A perspective on LCA application in site remediation services:critical review of challenges[J].Journal of Hazardous Materials,2010,175(1/2/3):12-22. doi: 10.1016/j.jhazmat.2009.10.041
    [6] LEMMING G.Environmental assessment of contaminated site remediation in a life cycle perspective[M].Denmark:Technical University of Denmark,2010.
    [7] 李烜桢,骆永明,侯德义.土壤健康评估指标、框架及程序研究进展[J].土壤学报,2022,59(3):617-625.

    LI X Z,LUO Y M,HOU D Y.The indicators,framework and procedures for soil health:a critical review[J].Acta Pedologica Sinica,2022,59(3):617-625.
    [8] FORUM U.Sustainable remediation white paper:integrating sustainable principles,practices,and metrics into remediation projects[J].Remediation Journal,2009,19(3):5-114. doi: 10.1002/rem.20210
    [9] TUKKER A.Life cycle assessment as a tool in environmental impact assessment[J].Environmental Impact Assessment Review,2000,20(4):435-456. doi: 10.1016/S0195-9255(99)00045-1
    [10] 章菁,王洪涛,廖文杰.产品生命周期可得性水足迹计算方法[J].环境科学研究,2018,31(5):967-974.

    ZHANG J,WANG H T,LIAO W J.Calculation method for product life-cycle water availability footprint[J].Research of Environmental Sciences,2018,31(5):967-974.
    [11] LEMMING G,HAUSCHILD M Z,BJERG P L.Life cycle assessment of soil and groundwater remediation technologies:literature review[J].The International Journal of Life Cycle Assessment,2009,15(1):115-127.
    [12] PAGE C A,DIAMOND M L,CAMPBELL M,et al.Life-cycle framework for assessment of site remediation options:case study[J].Environmental Toxicology and Chemistry,1999,18(4):801-810.
    [13] VOLKWEIN S,HURTIG H W,KLÖPFFER W.Life cycle assessment of contaminated sites remediation[J].The International Journal of Life Cycle Assessment,1999,4(5):263-274. doi: 10.1007/BF02979178
    [14] CADOTTE M,DESCHÊNES L,SAMSON R.Selection of a remediation scenario for a diesel-contaminated site using LCA[J].The International Journal of Life Cycle Assessment,2007,12(4):239-251. doi: 10.1065/lca2007.05.328
    [15] 董璟琦.污染场地绿色可持续修复评估方法及案例研究[D].北京:中国地质大学(北京),2019.
    [16] FAVARA P J,KRIEGER T M,BOUGHTON B,et al.Guidance for performing footprint analyses and life-cycle assessments for the remediation industry[J].Remediation Journal,2011,21(3):39-79. doi: 10.1002/rem.20289
    [17] 王涵,马军,陈民,等.减污降碳协同多元共治体系需求及构建探析[J].环境科学研究,2022,35(4):936-944. doi: 10.13198/j.issn.1001-6929.2022.01.10

    WANG H,MA J,CHEN M,et al.Analysis of needs and construction of coordinated multi-governance system for pollution reduction and carbon reduction[J].Research of Environmental Sciences,2022,35(4):936-944. doi: 10.13198/j.issn.1001-6929.2022.01.10
    [18] 生态环境部,国家市场监督管理总局.土壤环境质量 建设用地土壤污染风险管控标准:GB 36600—2018[S].北京:中国标准出版社,2018.
    [19] BOROUMAND A,GREENBERG G,HERMAN K,et al.Incorporating green and sustainable remediation analysis in coal combustion residuals (CCR) surface impoundment closure decision making[J].Remediation Journal,2017,27(4):29-38. doi: 10.1002/rem.21527
    [20] SIMPKIN T J,FAVARA P.Overview of green and sustainable remediation for soil and groundwater remediation[C].Phoenix:Proceedings of the Waste Management 2012 Conference on Improving the Future in Waste Managemen,2012.
    [21] KIM D H,HWANG B R,MOON D H,et al.Environmental assessment on a soil washing process of a Pb-contaminated shooting range site:a case study[J].Environmental Science and Pollution Research,2013,20(12):8417-8424. doi: 10.1007/s11356-013-1599-8
    [22] 环境保护部.污染地块土壤环境管理办法(试行)[EB/OL].北京:环境保护部,(2016-12-31)[2022-06-25].https://www.mee.gov.cn/gkml/hbb/bl/201701/t20170118_394953.htm.
    [23] 生态环境部.污染地块风险管控与土壤修复效果评估技术导则:HJ 25.5—2018[S].北京:中国环境出版社,2018.
    [24] US Environmental Protection Agency.Risk assessment guidance for superfund[M].Washington DC:US Environmental Protection Agency,1989.
    [25] 生态环境部.建设用地土壤污染风险评估技术导则:HJ 25.3—2019[S].北京:生态环境部,2019.
    [26] 张丽峰.我国产业结构、能源结构和碳排放关系研究[J].干旱区资源与环境,2011,25(5):1-7.

    ZHANG L F.Relations among the industry structure,energy structure and carbon emissions[J].Journal of Arid Land Resources and Environment,2011,25(5):1-7.
    [27] HOLLAND K S,LEWIS R E,TIPTON K,et al.Framework for integrating sustainability into remediation projects[J].Remediation Journal,2011,21(3):7-38.
    [28] 李玮,王明玉,韩占涛,等.棕地地下水污染修复技术筛选方法研究:以某废弃化工厂污染场地为例[J].水文地质工程地质,2016,43(3):131-140.

    LI W,WANG M Y,HAN Z T,et al.Screening process of brownfield site groundwater remedial technologies:a case study of an abandoned chemical factory contaminated site[J].Hydrogeology & Engineering Geology,2016,43(3):131-140.
    [29] 白利平,罗云,刘俐,等.污染场地修复技术筛选方法及应用[J].环境科学,2015,36(11):4218-4224.

    BAI L P,LUO Y,LIU L,et al.Research on the screening method of soil remediation technology at contaminated sites and its application[J].Environmental Science,2015,36(11):4218-4224.
    [30] BELLO-DAMBATTA A,FARMANI R,JAVADI A A,et al.The Analytical Hierarchy Process for contaminated land management[J].Advanced Engineering Informatics,2009,23(4):433-441. doi: 10.1016/j.aei.2009.06.006
    [31] 廉新颖,杨昱,席北斗,等.地下水污染修复技术验证评价方法研究[J].环境科学研究,2018,31(10):1743-1750.

    LIAN X Y,YANG Y,XI B D,et al.Developing a verification method for groundwater contamination remediation technologies[J].Research of Environmental Sciences,2018,31(10):1743-1750.
    [32] 樊陆欢,洪岚,蒋澄宇,等.基于PROMETHEE Ⅱ法的POPs污染场地修复技术评价体系[J].环境工程,2014,32(9):172-176.

    FAN L H,HONG L,JIANG C Y,et al.Assessment system of pops contaminated site remediation technology based on PROMETHEE Ⅱ[J].Environmental Engineering,2014,32(9):172-176.
    [33] BAI L P,LUO Y,SHI D R,et al.TOPSIS-based screening method of soil remediation technology for contaminated sites and its application[J].Soil and Sediment Contamination:an International Journal,2015,24(4):386-397. doi: 10.1080/15320383.2015.968915
    [34] 胡新涛,朱建新,丁琼.基于生命周期评价的多氯联苯污染场地修复技术的筛选[J].科学通报,2012,57(增刊1):129-137.

    HU X T,ZHU J X,DING Q.Application of life cycle assessment (LCA) to remediation technologies selection for PCBs contaminated sites[J].Chinese Science Bulletin,2012,57(Suppl 1):129-137.
    [35] 熊樱,蔡云,王永敏,等.原位燃气热脱附技术在有机污染土壤修复工程的应用[J].化工管理,2020(31):87-90.

    XIONG Y,CAI Y,WANG Y M,et al.Application of in situ gas thermal remediation technology in organic contaminated site remediation projects[J].Chemical Enterprise Management,2020(31):87-90.
    [36] HERON G,LACHANCE J,BAKER R.Removal of PCE DNAPL from tight clays using in situ thermal desorption[J].Groundwater Monitoring & Remediation,2013,33(4):31-43.
    [37] 潘思涵,宋易南,汪军,等.耦合健康风险与生命周期评价的场地修复环境经济影响评估[J].环境科学学报,2021,41(10):4306-4314. doi: 10.13671/j.hjkxxb.2021.0112

    PAN S H,SONG Y N,WANG J,et al.Coupling health risk assessment and life cycle assessment for environmental and economic impact assessment of site remediation[J].Acta Scientiae Circumstantiae,2021,41(10):4306-4314. doi: 10.13671/j.hjkxxb.2021.0112
    [38] HOU D Y,QI S Q,ZHAO B,et al.Incorporating life cycle assessment with health risk assessment to select the ‘greenest’ cleanup level for Pb contaminated soil[J].Journal of Cleaner Production,2017,162:1157-1168. doi: 10.1016/j.jclepro.2017.06.135
    [39] HOU D Y,AL-TABBAA A,CHEN H Q,et al.Factor analysis and structural equation modelling of sustainable behaviour in contaminated land remediation[J].Journal of Cleaner Production,2014,84:439-449. doi: 10.1016/j.jclepro.2014.01.054
    [40] 孟祥帅,陈鸿汉,何亚平,等.污染场地修复技术方案筛选中环境指标建立初探:以某废弃焦化厂为例[J].环境工程,2021,39(2):153-159. doi: 10.13205/j.hjgc.202102025

    MENG X S,CHEN H H,HE Y P,et al.Establishment of the environmental indexes in selection of remediation schemes:a case study of an abandoned coking site[J].Environmental Engineering,2021,39(2):153-159. doi: 10.13205/j.hjgc.202102025
    [41] KINGSTON J T,DAHLEN P R,JOHNSON P C,et al.Critical evaluation of state-of-the-art in situ thermal treatment technologies for DNAPL source zone treatment[R].Arlington:Defense Technical Information Center,2010.
    [42] 陈俊华,李绍华,刘晋恺,等.燃气热脱附技术土壤修复效果及影响因素[J].环境工程学报,2022,16(5):1610-1619. doi: 10.12030/j.cjee.202111170

    CHEN J H,LI S H,LIU J K,et al.Soil remediation effect and influencing factors of gas thermal desorption technology[J].Chinese Journal of Environmental Engineering,2022,16(5):1610-1619. doi: 10.12030/j.cjee.202111170
    [43] KALOMOIRI A,BRAIDA W.Promoting decision making through a Sustainable Remediation Assessment Matrix (SRAM)[J].International Journal of Innovation and Sustainable Development,2013,7(3):252. doi: 10.1504/IJISD.2013.056943
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  73
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-06-25

目录

    /

    返回文章
    返回