留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤中三价锑的老化对秀丽隐杆线虫毒性的影响

宋子杰 赵龙 党秀丽 侯红 蔡世鑫 王京原

宋子杰, 赵龙, 党秀丽, 侯红, 蔡世鑫, 王京原. 土壤中三价锑的老化对秀丽隐杆线虫毒性的影响[J]. 环境科学研究, 2022, 35(9): 2195-2204. doi: 10.13198/j.issn.1001-6929.2022.07.09
引用本文: 宋子杰, 赵龙, 党秀丽, 侯红, 蔡世鑫, 王京原. 土壤中三价锑的老化对秀丽隐杆线虫毒性的影响[J]. 环境科学研究, 2022, 35(9): 2195-2204. doi: 10.13198/j.issn.1001-6929.2022.07.09
SONG Zijie, ZHAO Long, DANG Xiuli, HOU Hong, CAI Shixin, WANG Jingyuan. Effects of Trivalent Antimony Aging on Toxicity of Soil-Dwelling Caenorhabditis elegans[J]. Research of Environmental Sciences, 2022, 35(9): 2195-2204. doi: 10.13198/j.issn.1001-6929.2022.07.09
Citation: SONG Zijie, ZHAO Long, DANG Xiuli, HOU Hong, CAI Shixin, WANG Jingyuan. Effects of Trivalent Antimony Aging on Toxicity of Soil-Dwelling Caenorhabditis elegans[J]. Research of Environmental Sciences, 2022, 35(9): 2195-2204. doi: 10.13198/j.issn.1001-6929.2022.07.09

土壤中三价锑的老化对秀丽隐杆线虫毒性的影响

doi: 10.13198/j.issn.1001-6929.2022.07.09
基金项目: 国家重点研发计划项目(No.2019YFC1804603)
详细信息
    作者简介:

    宋子杰(1996-),男,上海人,15801999133@163.com

    通讯作者:

    ①赵龙(1983-),男,山西太原人,研究员,博士,主要从事土壤环境化学研究,zhaolong1227@126.com

    ②党秀丽(1976-),女,辽宁沈阳人,副教授,博士,主要从事土壤污染修复研究,dxl@syau.edu.cn

  • 中图分类号: X53

Effects of Trivalent Antimony Aging on Toxicity of Soil-Dwelling Caenorhabditis elegans

Funds: National Key Research and Development Program of China (No.2019YFC1804603)
  • 摘要: 为明确老化过程对土壤外源三价锑〔Sb(Ⅲ)〕毒性的影响,结合土壤中Sb的化学分析和生物毒性测试,以模式生物秀丽隐杆线虫(Caenorhabditis elegans)为测试生物,研究经Sb(Ⅲ)处理后老化7和56 d的2种土壤(安徽黄棕壤和新疆灰漠土)中不同价态Sb浓度、可提取态Sb浓度以及对线虫生长、生育、繁殖毒性的变化. 结果表明:①经Sb(Ⅲ)处理后老化56 d的安徽黄棕壤和新疆灰漠土中Sb(Ⅴ)的占比均显著高于老化7 d的土壤,与安徽黄棕壤相比,新疆灰漠土中Sb(Ⅲ)能更快地转化为毒性较低的Sb(Ⅴ). ②相较经Sb(Ⅲ)处理后老化7 d的土壤,经56 d老化的安徽黄棕壤和新疆灰漠土中可提取态Sb浓度分别下降了9.3%~36.8%和3.3%~47.0%. ③经Sb(Ⅲ)处理后老化56 d的安徽黄棕壤和新疆灰漠土对线虫生长毒性的EC50(50%效应浓度)值较老化7 d的土壤分别提升1.7和2.3倍,对线虫生育毒性的EC50值分别提升1.1和2.4倍,对线虫繁殖毒性的EC50值分别提升1.2和1.9倍. 研究显示,老化过程可降低土壤中可提取态Sb浓度和毒性较高的Sb(Ⅲ)占比,导致外源Sb(Ⅲ)对线虫毒性的减弱,pH、有机质含量以及铁锰铝氧化物含量对土壤中Sb(Ⅲ)氧化和Sb吸附过程的影响导致外源Sb(Ⅲ)老化效应以及对线虫毒性的差异.

     

  • 图  1  不同老化时间的安徽黄棕壤和新疆灰漠土中Sb()占总Sb比例

    注:**表示处理之间存在极显著差异(P<0.01).

    Figure  1.  Proportion of Sb(Ⅴ) in total Sb in Anhui yellow-brown soil and Xinjiang grey dessert soil with different aging time

    图  2  不同老化时间的安徽黄棕壤和新疆灰漠土中可提取态Sb浓度

    注:*表示处理之间存在显著差异(P<0.05);**表示处理之间存在极显著差异(P<0.01).

    Figure  2.  Extracted Sb concentration in Anhui yellow-brown soil and Xinjiang grey dessert soil with different aging time

    图  3  不同老化时间的安徽黄棕壤和新疆灰漠土中Sb对线虫的生长毒性

    Figure  3.  Growth toxicity of Sb to C. elegans in Anhui yellow-brown soil and Xinjiang grey dessert soil with different aging time

    图  4  不同老化时间的安徽黄棕壤和新疆灰漠土中Sb对线虫的生育毒性

    Figure  4.  Fertility toxicity of Sb to C. elegans in Anhui yellow-brown soil and Xinjiang grey dessert soil with different aging time

    图  5  不同老化时间的安徽黄棕壤和新疆灰漠土中Sb对线虫的繁殖毒性

    Figure  5.  Reproduction toxicity of Sb to C. elegans in Anhui yellow-brown soil and Xinjiang grey dessert soil with different aging time

    表  1  土壤性质及测定方法

    Table  1.   Soil properties and determination methods

    土壤性质测定方法土壤类型
    安徽黄棕壤新疆灰漠土
    黏粒/% 激光粒度仪法 29.64±1.11 18.97±0.44
    田间持水量/% 《土壤检测 第22部分:土壤田间持水量的测定—环刀法》(NY/T 1121.22—2010) 22.3±1.42 18.2±0.26
    pH 《土壤检测 第2部分:土壤pH的测定》(NY/T 1137—2007) 5.29±0.02 8.17±0.04
    阳离子交换量/(cmol/kg) 银-硫脲法[22] 14.41±0.24 10.59±0.13
    有机质含量/(g/kg) 重铬酸钾容量法[23] 21.88±0.17 14.22±0.23
    无定型铁氧化物含量/(g/kg) H2C2O4-(NH4)2C2O4提取后通过邻菲啰啉比色法测定[24] 1.98±0.03 0.59±0.04
    无定型锰氧化物含量/(g/kg) 0.44±0.20 0.38±0.04
    无定型铝氧化物含量/(g/kg) 1.30±0.21 0.62±0.25
    游离铁氧化物含量/(g/kg) C6H5Na3O7-NaHCO3-Na2S2O4提取后通过邻菲啰啉比色法测定[25] 23.93±0.61 4.03±0.24
    游离锰氧化物含量(g/kg) 0.43±0.10 0.34±0.11
    游离铝氧化物含量/(g/kg) 2.86±0.01 0.58±0.03
    锑本底浓度/(mg/kg) HF-HClO4-HNO3消解处理后测定[24] 1.47±0.02 0.45±0.04
    下载: 导出CSV

    表  2  毒性测试有效性

    Table  2.   Validity of toxicity test

    参数对照组测试有效标准毒性测试结果
    回收率 80%~120% 83%~90%
    单次重复雄性率 ≤20% 0
    平均雄性率 ≤10% 0
    平均生育率 ≥80% 0
    平均繁殖数 ≥50条 52~76条
    生长量变异系数 ≤15% 3%~4%
    生育率变异系数 ≤15% 0%~6%
    繁殖数变异系数 ≤30% 7%~18%
    下载: 导出CSV

    表  3  土壤中Sb对线虫生长、生育、繁殖毒性的EC50值及老化因子

    Table  3.   EC50 values of Sb in soil and aging factors derived from the growth, fertility, and reproduction of C. elegans

    土壤类型评价终点EC50值/(mg/kg)老化因子1)
    老化7 d老化56 d
    安徽黄棕壤生长量/μm2 098 (1 767~2 429)5 709 (4 192~7 226)2.7
    生育率/%1 595 (1 410~1 780)3 357 (2 602~4 412)2.1
    繁殖数/条1 089 (727~1 452)2 356 (1 548~3 163)2.2
    新疆灰漠土生长量/μm1 233 (808~1 659)4 057 (3 354~4 760)3.3
    生育率/%928 (508~1 348)3 116 (2 360~3 872)3.4
    繁殖数/条773 (443~1 132)2 206 (2 111~2 302)2.9
    注:括号内数值为EC50值的95%置信区间. 1) 老化因子为老化56 d土壤中Sb毒性的EC50值与老化7 d土壤中Sb毒性的EC50值的比值.
    下载: 导出CSV
  • [1] DUPONT D,ARNOUT S,JONES P T,et al.Antimony recovery from end-of-life products and industrial process residues:a critical review[J].Journal of Sustainable Metallurgy,2016,2(1):79-103. doi: 10.1007/s40831-016-0043-y
    [2] RAKSHIT S,SARKAR D,PUNAMIYA P,et al.Antimony sorption at gibbsite-water interface[J].Chemosphere,2011,84(4):480-483. doi: 10.1016/j.chemosphere.2011.03.028
    [3] PIERART A,SHAHID M,SÉJALON-DELMAS N,et al.Antimony bioavailability:knowledge and research perspectives for sustainable agricultures[J].Journal of Hazardous Materials,2015,289:219-234. doi: 10.1016/j.jhazmat.2015.02.011
    [4] REIMANN C,MATSCHULLAT J,BIRKE M,et al.Antimony in the environment:lessons from geochemical mapping[J].Applied Geochemistry,2010,25(2):175-198. doi: 10.1016/j.apgeochem.2009.11.011
    [5] PHILLIPS M A,CÁNOVAS A,WU P W,et al.Parallel responses of human epidermal keratinocytes to inorganic Sb(Ⅲ) and As(Ⅲ)[J].Environmental Chemistry,2016,13(6):963-970. doi: 10.1071/EN16019
    [6] FILELLA M,BELZILE N,CHEN Y W.Antimony in the environment:a review focused on natural waters:I.occurrence[J].Earth-Science Reviews,2002,57(1/2):125-176.
    [7] HE M C,WANG N N,LONG X J,et al.Antimony speciation in the environment:recent advances in understanding the biogeochemical processes and ecological effects[J].Journal of Environmental Sciences,2019,75:14-39. doi: 10.1016/j.jes.2018.05.023
    [8] 莫昌琍,吴丰昌,符志友,等.湖南锡矿山锑矿区农用土壤锑、砷及汞的污染状况初探[J].矿物学报,2013,33(3):344-350. doi: 10.16461/j.cnki.1000-4734.2013.03.005

    MO C L,WU F C,FU Z Y,et al.Antimony,arsenic and mercury polluton in agricultural soil of antimony mine area in Xikuangshan,Hunan[J].Acta Mineralogica Sinica,2013,33(3):344-350. doi: 10.16461/j.cnki.1000-4734.2013.03.005
    [9] 林祥龙,孙在金,陈卫玉,等.锑对土壤跳虫(Folsomia candida)的毒性效应[J].环境科学研究,2017,30(7):1089-1097.

    LIN X L,SUN Z J,CHEN W Y,et al.Toxicity effect of antimony to soil-dwelling springtail (Folsomia candida)[J].Research of Environmental Sciences,2017,30(7):1089-1097.
    [10] LIN X L,HE F,SUN Z J,et al.Influences of soil properties and long-time aging on phytotoxicity of antimony to barley root elongation[J].Environmental Pollution,2020,262:114330. doi: 10.1016/j.envpol.2020.114330
    [11] 林蕾,陈世宝,刘继芳,等.不同老化时间对土壤中外源Zn的形态转化及生态毒性阈值(ECx)的影响[J].应用生态学报,2013,24(7):2025-2032.

    LIN L,CHEN S B,LIU J F,et al.Effects of aging time on the form transformation and eco-toxicity threshold (ECx) of added Zn in typical China soils[J].Chinese Journal of Applied Ecology,2013,24(7):2025-2032.
    [12] LOCK K,JANSSEN C R.Ecotoxicity of zinc in spiked artificial soils versus contaminated field soils[J].Environmental Science & Technology,2001,35(21):4295-4300.
    [13] TSCHAN M,ROBINSON B H,SCHULIN R.Antimony in the soil-plant system:a review[J].Environmental Chemistry,2009,6(2):106. doi: 10.1071/EN08111
    [14] 何飞,赵龙,孙在金,等.锑对甘蓝的毒性阈值研究[J].环境科学研究,2020,33(12):2898-2905. doi: 10.13198/j.issn.1001-6929.2020.05.13

    HE F,ZHAO L,SUN Z J,et al.Study on antimony toxicity threshold of cabbage[J].Research of Environmental Sciences,2020,33(12):2898-2905. doi: 10.13198/j.issn.1001-6929.2020.05.13
    [15] 孙硕,李菊梅,马义兵,等.外源Pb在三种典型土壤中老化过程差异性研究[J].农业环境科学学报,2019,38(8):1936-1945. doi: 10.11654/jaes.2019-0039

    SUN S,LI J M,MA Y B,et al.Differences in the aging of added lead in three typical soils[J].Journal of Agro-Environment Science,2019,38(8):1936-1945. doi: 10.11654/jaes.2019-0039
    [16] HÖSS S,JÄNSCH S,MOSER T,et al.Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism[J].Ecotoxicology and Environmental Safety,2009,72(7):1811-1818. doi: 10.1016/j.ecoenv.2009.07.003
    [17] KIM S W,MOON J,JEONG S W,et al.Development of a nematode offspring counting assay for rapid and simple soil toxicity assessment[J].Environmental Pollution,2018,236:91-99. doi: 10.1016/j.envpol.2018.01.037
    [18] 吴颐杭,杨书慧,刘奇缘,等.荷兰人体健康土壤环境基准与标准研究及其对我国的启示[J].环境科学研究,2022,35(1):265-275. doi: 10.13198/j.issn.1001-6929.2021.08.11

    WU Y H,YANG S H,LIU Q Y,et al.Research on soil environmental criteria and standards for human health in the Netherlands and its enlightenment to China[J].Research of Environmental Sciences,2022,35(1):265-275. doi: 10.13198/j.issn.1001-6929.2021.08.11
    [19] 邱荟圆,李博,祖艳群.土壤环境基准的研究和展望[J].中国农学通报,2020,36(18):67-72.

    QIU H Y,LI B,ZU Y Q.Soil environmental criteria:research and prospect[J].Chinese Agricultural Science Bulletin[J].Chinese Agricultural Science Bulletin,2020,36(18):67-72.
    [20] ZHONG Q Y,LI L Z,HE M C,et al.Toxicity and bioavailability of antimony to the earthworm (Eisenia fetida) in different agricultural soils[J].Environmental Pollution,2021,291:118215.
    [21] 李星,林祥龙,孙在金,等.我国典型土壤中铜对白符跳(Folsomia candida)的毒性阈值及其预测模型[J].环境科学研究,2020,33(3):744-750.

    LI X,LIN X L,SUN Z J,et al.Toxicity threshold and prediction model of copper to soil-dwelling springtail (Folsomia candida) in Chinese soils[J].Research of Environmental Sciences,2020,33(3):744-750.
    [22] DOHRMANN R.Cation exchange capacity methodology Ⅱ:a modified silver-thiourea method[J].Applied Clay Science,2006,34(1/2/3/4):38-46.
    [23] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [24] FAN J X,WANG Y J,CUI X D,et al.Sorption isotherms and kinetics of Sb(Ⅴ) on several Chinese soils with different physicochemical properties[J].Journal of Soils and Sediments,2013,13(2):344-353. doi: 10.1007/s11368-012-0612-z
    [25] MEHRA O P.Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate[J].Clays and Clay Minerals,1958,7(1):317-327. doi: 10.1346/CCMN.1958.0070122
    [26] International Organization for Standardization.Water and soil quality:determination of the toxic effect of sediment and soil samples on growth,fertility and reproduction of Caenorhabditis elegans (Nematoda):ISO 10872 [S].Geneva,Switzerland:International Organization for Standardization,2020.
    [27] SACCÀ M L,FAJARDO C,COSTA G,et al.Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms[J].Chemosphere,2014,104:184-189. doi: 10.1016/j.chemosphere.2013.11.013
    [28] ETTLER V,MIHALJEVIČ M,ŠEBEK O,et al.Antimony availability in highly polluted soils and sediments:a comparison of single extractions[J].Chemosphere,2007,68(3):455-463. doi: 10.1016/j.chemosphere.2006.12.085
    [29] LIN X L,SUN Z J,MA J,et al.Effects of soil properties and long aging time on the toxicity of exogenous antimony to soil-dwelling springtail Folsomia candida[J].Chemosphere,2020,241:125100. doi: 10.1016/j.chemosphere.2019.125100
    [30] 朱侠,李连祯,涂晨,等.不同性质农田土壤中铜的可提取性与生物有效性及毒性[J].土壤,2020,52(5):911-919. doi: 10.13758/j.cnki.tr.2020.05.006

    ZHU X,LI L Z,TU C,et al.Extractability,bioavailability and toxicity of Cu in farmland soils with different properties[J].Soils,2020,52(5):911-919. doi: 10.13758/j.cnki.tr.2020.05.006
    [31] 牟祖廷,张延一,马义兵,等.我国典型农田土壤中Cr(Ⅵ)的老化过程及主控因子[J].农业环境科学学报,2021,40(1):62-73. doi: 10.11654/jaes.2020-0827

    MU Z T,ZHANG Y Y,MA Y B,et al.Aging kinetics and main controlling factors of Cr(Ⅵ) in typical farmland soils in China[J].Journal of Agro-Environment Science,2021,40(1):62-73. doi: 10.11654/jaes.2020-0827
    [32] 马祥爱,秦俊梅,张亚尼.锑在不同土壤中的解吸行为比较[J].农业环境科学学报,2015,34(8):1528-1534. doi: 10.11654/jaes.2015.08.014

    MA X G,QIN J M,ZHANG Y N.A comparison of desorption behaviors of Sb in different soils[J].Journal of Agro-Environment Science,2015,34(8):1528-1534. doi: 10.11654/jaes.2015.08.014
    [33] 林祥龙.不同土壤中锑对白符跳虫的毒性效应及阈值研究[D].北京:中国环境科学研究院,2017:30.
    [34] BUSCHMANN J,SIGG L.Antimony(Ⅲ) binding to humic substances:influence of pH and type of humic acid[J].Environmental Science & Technology,2004,38(17):4535-4541.
    [35] TSERENPIL S,LIU C Q.Study of antimony(Ⅲ) binding to soil humic acid from an antimony smelting site[J].Microchemical Journal,2011,98(1):15-20. doi: 10.1016/j.microc.2010.10.003
    [36] LEUZ A K,MÖNCH H,JOHNSON C A.Sorption of Sb(Ⅲ) and Sb(Ⅴ) to goethite:influence on Sb(Ⅲ) oxidation and mobilization[J].Environmental Science & Technology,2006,40(23):7277-7282.
    [37] BAGHERIFAM S,LAKZIAN A,FOTOVAT A,et al.In situ stabilization of As and Sb with naturally occurring Mn,Al and Fe oxides in a calcareous soil:bioaccessibility,bioavailability and speciation studies[J].Journal of Hazardous Materials,2014,273:247-252. doi: 10.1016/j.jhazmat.2014.03.054
    [38] 林祥龙,孙在金,马瑾,等.土壤外源Sb(Ⅲ)的老化对其形态和跳虫(Folsomia candida)毒性的影响[J].生态毒理学报,2017,12(5):153-160. doi: 10.7524/AJE.1673-5897.20161219001

    LIN X L,SUN Z J,MA J,et al.Effects of aging on the speciation of trivalent antimony in soil and its toxicity to Folsomia candida[J].Asian Journal of Ecotoxicology,2017,12(5):153-160. doi: 10.7524/AJE.1673-5897.20161219001
    [39] CAI Y B,MI Y T,ZHANG H.Kinetic modeling of antimony(Ⅲ) oxidation and sorption in soils[J].Journal of Hazardous Materials,2016,316:102-109. doi: 10.1016/j.jhazmat.2016.05.027
    [40] FAN J X,WANG Y J,FAN T T,et al.Photo-induced oxidation of Sb(Ⅲ) on goethite[J].Chemosphere,2014,95:295-300. doi: 10.1016/j.chemosphere.2013.08.094
    [41] HOU H,YAO N,LI J N,et al.Migration and leaching risk of extraneous antimony in three representative soils of China:lysimeter and batch experiments[J].Chemosphere,2013,93(9):1980-1988. doi: 10.1016/j.chemosphere.2013.07.017
    [42] LIN X L,SUN Z J,ZHAO L,et al.Toxicity of exogenous hexavalent chromium to soil-dwelling springtail Folsomia candida in relation to soil properties and aging time[J].Chemosphere,2019,224:734-742. doi: 10.1016/j.chemosphere.2019.02.196
    [43] SMOLDERS E,OORTS K,PEETERS S,et al.Toxicity in lead salt spiked soils to plants,invertebrates and microbial processes:Unraveling effects of acidification,salt stress and ageing reactions[J].Science of the Total Environment,2015,536:223-231. doi: 10.1016/j.scitotenv.2015.07.067
    [44] 蔡琼瑶,徐俏,周振,等.外源铅在4种土壤中的老化特征及对土壤化学性质的影响[J].环境科学学报,2019,39(3):899-907. doi: 10.13671/j.hjkxxb.2018.0376

    CAI Q Y,XU Q,ZHOU Z,et al.Aging process of Pb affects the chemical properties of four types of soil[J].Acta Scientiae Circumstantiae,2019,39(3):899-907. doi: 10.13671/j.hjkxxb.2018.0376
    [45] LIN X L,SUN Z J,ZHAO L,et al.The toxicity of exogenous nickel to soil-dwelling springtail Folsomia candida in relation to soil properties and aging time[J].Ecotoxicology and Environmental Safety,2019,174:475-483. doi: 10.1016/j.ecoenv.2019.03.017
    [46] SCHERTZINGER G,ZIMMERMANN S,GRABNER D,et al.Assessment of sublethal endpoints after chronic exposure of the nematode Caenorhabditis elegans to palladium,platinum and rhodium[J].Environmental Pollution,2017,230:31-39. doi: 10.1016/j.envpol.2017.06.040
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  31
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 修回日期:  2022-06-30

目录

    /

    返回文章
    返回