Industrial Structure Adjustment Path in Coastal Areas with Developed Manufacturing Industries from Perspective of Synergistic Reduction of Pollutants and CO2 Emissions
-
摘要: 碳达峰碳中和是我国的重大战略决策,对推进产业转型升级和绿色发展具有重要意义. 实现经济增长与资源能源消耗、污染物和碳排放的总量与强度双控制,是推进“双碳”目标的重要支撑. 我国沿海地区制造业发达,污染物和碳排放量较大,寻找减污降碳协同增效路径对区域绿色转型具有重大现实意义. 本文以浙江省宁波市为对象,对全部经济门类的产业结构开展实证研究,运用多准则决策模型和情景分析法,以能源、水资源、4种主要污染物(化学需氧量、氨氮、二氧化硫、氮氧化物)和二氧化碳为约束条件建立了产业结构优化调整模型,将各产业增加值占比的变化程度作为决策变量,筛选出产业结构调整平稳、减排幅度大的调整方案. 制造业作为宁波市经济发展的主体,贡献了较高比例的污碳排放和能源资源消耗. 4.5%、5.5%、6.5%三种年均经济增速情景下宁波市通过产业结构调整实现减污降碳协同增效的潜力分析显示,2020—2030年预期可实现累计97%的经济增长,且能满足区域资源环境的约束限制. 面向2030年提出宁波市产业结构优化调整路径,建议严格控制高排放制造业的准入门槛,提升第一产业和采矿业的资源能源利用效率,推进电力、热力的生产与供应业等存量行业的减污降碳,鼓励发展高附加值的第三产业和循环经济产业.Abstract: Carbon dioxide peaking and carbon neutrality are China's grand strategic goals which are of great significance for promoting the eco-transformation and green development of the manufacturing industry. Achieving the decoupling of economic growth from resource-energy consumption and pollutants-carbon dioxide emissions will underpin the goals substantially. Driven by the manufacturing industry, China′s coastal regions are well developed, but also have serious pollutants and carbon dioxide emissions. Thus, synergizing the reduction of pollutants and carbon dioxide emissions has great practical significance for regional eco-transformation. Taking Ningbo City in Zhejiang Province as a case study, this article conducts empirical research on the industrial structure adjustment of two-digital level industries by establishing a multi-criteria decision-making model under different scenarios. The model takes energy, four major pollutants (water resources, chemical oxygen demand, ammonia nitrogen, sulfur dioxide, nitrogen oxide), and carbon dioxide as constraints, and takes the degree of change in the proportion of the added value of each industry as the decision-making variable, and finally proposes the adjustment scheme with a relatively reasonable industrial structure variation and the largest emissions reduction. The manufacturing industries, as the main body of Ningbo′s economic development, contribute to a large part of pollutants and carbon dioxide emissions, and consume a lot of energy and water resources. This paper explores the potential of Ningbo City to synergize the pollutants and carbon dioxide reduction through industrial structure adjustment under three annual economic growth rates of 4.5%, 5.5% and 6.5%. The results show that Ningbo City can achieve a maximum cumulative economic growth of 97% from 2020 to 2030 while achieving the goal of pollutants and carbon dioxide emissions reduction. This paper puts forward suggestions for Ningbo City to facilitate industrial structure adjustment targeting the year 2030, including controlling the entry threshold for emission-intensive manufacturing industries, improving resource and energy productivity in the primary sector and mining industry, reducing pollutants and carbon dioxide emissions of electricity and heat production and supply industries further, and encouraging the development of high value-added tertiary industries and circular economy industry.
-
表 1 模型中使用的各类参数及其定义
Table 1. Definitions of key parameters used in the model
参数 定义 n 行业分类总数 h 基准年至目标年的时间跨度 ${{\text{iav} _ {i} }}^{\text{0(t)} }$ 序号为i的行业基准年(目标年)的产业增加值(104元) $ {\text{iav}}^{\text{0(t)}} $ 全部行业基准年(目标年)的总产业增加值,即经济总量(104元) iav 目标设定的全部行业目标年的总产业增加值,即目标经济总量(104元) $ {\text{IAV}}^{\text{0(t)}} $ 基准年(目标年)的产业增加值列向量,其中第i行的元素为${\mathrm{i}\mathrm{a}{\text{v} }_{ {i} }}^{\text{0(t)} }$ ${ {s}_ {i} }^{\text{0(t)} }$ 基准年(目标年)序号为i的行业的产业增加值占经济总量的比例(%) g 总产业增加值的年均增长率(%) q 污染物指标,包括化学需氧量(COD)、氨氮、二氧化硫(SO2)和氮氧化物(NOx) ${{C}_{ {i,q}} }^{\text{0(t)} }$ 序号为i的行业在基准年(目标年)的污染物指标q的排放/消费总量(t) ${{\text{C} }_{ {q} }}^{\text{0(t)} }$ 基准年(目标年)污染物指标q的全部行业排放/消费总量(t) ${{ {\rho } }_{ {i,q} }}^{\text{0(t)} }$ 序号为i的行业在基准年(目标年)的指标q的排放/消费强度
〔(t/(104元)〕${{\rho }_{ {q} }}^{\text{0(t)} }$ 基准年(目标年)指标q的排放强度行向量,其中第i列元素为${{\rho }_{i,q}}^{\text{0(t)} }$ I 单位矩阵,主对角线上的元素均为1,其余元素为0 ${{d} }_{{i,q} }$ 基准年至目标年间序号为i的行业污染物指标q排放/消费强度的减少比例(%) ${{d} }_{{q} }$ ${n}\times {n}$对角矩阵,其中对角线上的第i个元素为${{d} }_{{i,q} }$ ${{K}_{i}}^{\mathrm{B}\mathrm{A}\mathrm{U} }$ 产业结构调整因子,序号为i的行业目标年产业增加值占比相对于基准情景的倍数 T 用于反映产业结构变动方式是否平稳 Score 用于反映各类污染物的减排幅度与资源消费的减少幅度 [l,m] ${{K}_{i}}^{\mathrm{B}\mathrm{A}\mathrm{U} }$的取值范围 表 2 2014—2019年宁波市各项经济环境数据
Table 2. Economic and environmental performance of Ningbo City from 2014 to 2019
年份 全行业能源消费总量/
(以标准煤计)/(104 t)全行业万元增加值能耗/
(以标准煤计)/[kg/(104 元)]全行业用水量/
(104 t)规模以上工业碳
排放量/(104 t)全行业碳排放量/
(104 t)2014 3 112.02 511.99 60 278.28 17 449.36 18 345.51 2015 3 257.13 496.3 59 511.34 16 857.46 17 779.10 2016 3 464.33 492.91 61 690.20 16 590.99 17 522.99 2017 3 602.24 476.7 64 797.20 18 313.71 19 219.36 2018 3 640.05 418.07 65 735.74 17 716.00 18 509.76 2019 3 792.49 405.08 64 905.53 17 991.60 18 759.62 表 3 模型相关参数计算结果
Table 3. Results of key parameters used in the model
指标 2019年 2030年目标值 情景 BAU-1 BAU-2 ISA-1 ISA-2 ISA-3 工业增加值/(108元) 9 362 — 16 872 16 872 15 209 16 956 18 879 CO2 排放量/(104 t) 18 760 19 219.36 28 202 17 146 13 637 16 386 16 800 相对目标值的比例/% — — 46.74 −10.79 −29.05 −14.74 −12.59 COD 排放量/t 6 584 6 057 4832 3 496 2 883 3 113 3573 相对目标值的比例/% — — −20.22 −42.28 −52.41 −48.60 −41.02 氨氮 排放量/t 264 237 101 73 61 67 76 相对目标值的比例/% — — −57.42 −69.31 −74.32 −71.88 −68.08 SO2 排放量/t 13 458 11 439 5 648 3 996 3 400 3 807 4 246 相对目标值的比例/% — — −50.63 −65.07 −70.28 −66.72 −62.88 NOx 排放量/t 29 137 24 767 13 877 8 909 7 227 8 216 8 940 相对目标值的比例/% — — −43.97 −64.03 −70.82 −66.83 −63.90 水资源 消费量/(104 t) 69 961 57 311 108 591 67845 51 972 57 311 64 341 相对目标值的比例/% — — 67.31 4.53 −16.12 −11.70 −0.87 能源 消费量(以标准煤计)/(104 t) 3 793 5 078 6 025 4 890 4 106 4 637 5 078 相对目标值的比例/% — — 29.34 4.97 −2.13 −0.45 −0.40 表 4 ISA-2情景下的敏感性分析结果
Table 4. Sensitivity analysis of the ISA-2 scenario
情景 ${{K}_{i}}^{\mathrm{B}\mathrm{A}\mathrm{U}\text{-}2} < 1$
的行业${{K}_{i}}^{\mathrm{B}\mathrm{A}\mathrm{U}\text{-}2} > 1$
的行业T ISA-2 行业1、8、9、12 行业26 1.3 目标年水资源消费强度降幅为基准情景的1.1倍 行业1、9、15 行业26 1.1 目标年能源消费强度降幅为基准情景的1.1倍 行业1、9、15 行业26 1.1 目标年水资源消费强度降幅为基准情景的0.9倍 行业1、8、9、12 行业26 1.3 目标年能源消费强度降幅为基准情景的0.9倍 行业1、8、9、12 行业26 1.3 目标年能源、水资源消费强度降幅均为基准情景的0.9倍 行业1、8、9、12 行业26 1.4 -
[1] JAKOB M,STECKEL J C,KLASEN S,et al.Feasible mitigation actions in developing countries[J].Nature Climate Change,2014,4(11):961-968. [2] 王灿,邓红梅,郭凯迪,等.温室气体和空气污染物协同治理研究展望[J].中国环境管理,2020,12(4):5-12. doi: 10.16868/j.cnki.1674-6252.2020.04.005WANG C,DENG H M,GUO K D,et al.Research progress on cooperative governance of greenhouse gases and air pollutants[J].Chinese Journal of Environmental Management,2020,12(4):5-12. doi: 10.16868/j.cnki.1674-6252.2020.04.005 [3] FAN S G,ZHANG X B,ROBINSON S.Structural change and economic growth in China[J].Review of Development Economics,2003,7(3):360-377. [4] 翁智雄,马忠玉,葛察忠,等.差异化碳减排目标对区域产业部门经济与碳减排的影响[J].环境科学研究,2019,32(8):1264-1274. doi: 10.13198/j.issn.1001-6929.2019.03.25WENG Z X,MA Z Y,GE C Z,et al.Economic and mitigating impacts of differential carbon reduction targets on regional industries[J].Research of Environmental Sciences,2019,32(8):1264-1274. doi: 10.13198/j.issn.1001-6929.2019.03.25 [5] 国务院.中共中央国务院关于加快推进生态文明建设的意见[EB/OL].北京:国务院,(2015-05-05)[2022-07-24].http://www.gov.cn/xinwen/2015-05/05/content_2857363.htm [6] 田金平,陈吕军,杜鹏飞,等.基于情景分析的浙江沿海地区环境污染防治战略研究[J].环境科学,2013,34(1):336-346. doi: 10.13227/j.hjkx.2013.01.043TIAN J P,CHEN L J,DU P F,et al.Study on strategies of pollution prevention in coastal city of Zhejiang Province based on scenario analysis[J].Environmental Science,2013,34(1):336-346. doi: 10.13227/j.hjkx.2013.01.043 [7] 国家统计局.中华人民共和国2020年国民经济和社会发展统计公报[EB/OL].北京:国家统计局,(2021-02-28)[2022-07-24].http://www.stats.gov.cn/tjsj/zxfb/202102/t20210227_1814154.html [8] GUO Y,ZENG Z Z,TIAN J P,et al.Uncovering the strategies of green development in a Chinese province driven by reallocating the emission caps of multiple pollutants among industries[J].Science of the Total Environment,2017,607/608:1487-1496. [9] GUO Y,GUO X L,TIAN J P,et al.Study of reciprocal effects between mandatory pollutant emissions reduction policy and structural change within the manufacturing sector in a Chinese coastal area[J].Environmental Science & Technology,2015,49(21):12840-12850. [10] 李健,李海霞.产业转移视角下京津冀石化产业碳排放因素分解与减排潜力分析[J].环境科学研究,2020,33(2):324-332. doi: 10.13198/j.issn.1001-6929.2019.05.05LI J,LI H X.Analysis of carbon emission factors decomposition and emission reduction potential of Beijing-Tianjin-Hebei Regional petrochemical industry from the perspective of industrial transfer[J].Research of Environmental Sciences,2020,33(2):324-332. doi: 10.13198/j.issn.1001-6929.2019.05.05 [11] 温绍娇.碳排放约束下山东省产业结构调整研究[D].济南:山东大学,2014. [12] 徐成龙.基于产业结构调整的山东省低碳情景研究[D].济南:山东师范大学,2012. [13] 吴潜.碳排放约束下的江苏省产业结构调整研究[D].徐州:中国矿业大学,2017. [14] 魏丽娟.低碳导向下产业结构调整分析:以浙江省为例[D].杭州:浙江工商大学,2012. [15] 雷松松.基于碳排放的福建省产业结构调整研究[D].福州:福建农林大学,2015. [16] 陈静.碳减排目标下福建省产业结构调整路径研究[D].泉州:华侨大学,2017. [17] 蔡露露.广东省区域创新、产业结构调整与碳排放效率的关系研究[D].哈尔滨:哈尔滨工业大学,2020. [18] 王力,冯相昭,马彤等.典型城市减污降碳协同控制潜力评价研究:以渭南市为例[J/OL].环境科学研究,2022.doi: 10.13198/j.issn.1001-6929.2022.06.30.WANG L,FENG X Z,MA T,et al.A Study of evaluation on the potential of co-controlling air pollutants and carbon emission in typical cities:taking Weinan City as a case[J].Research of Environmental Sciences,2022.doi: 10.13198/j.issn.1001-6929.2022.06.30. [19] 郭建娜.环境约束下的宁波产业结构调整方向和对策[D].宁波:宁波大学,2012. [20] 吴唯,张庭婷,谢晓敏,等.基于LEAP模型的区域低碳发展路径研究:以浙江省为例[J].生态经济,2019,35(12):19-24.WU W,ZHANG T T,XIE X M,et al.Research on regional low carbon development path based on LEAP model:taking Zhejiang Province as an example[J].Ecological Economy,2019,35(12):19-24. [21] 王美涵.税收大辞典[Z].沈阳:辽宁人民出版社,1991. [22] HAO J M,TIAN H Z,LU Y Q.Emission inventories of NOx from commercial energy consumption in China,1995-1998[J].Environmental Science & Technology,2002,36(4):552-560. [23] SHI Y,XIA Y F,LU B H,et al.Emission Inventory and Trends of NOx for China,2000-2020[J].Journal of Zhejiang University:SCIENCE A,2014,15(6):454-464. [24] 稂小洛,曹国良,黄学敏.中国区域氮氧化物排放清单[J].环境与可持续发展,2008,33(6):19-22. doi: 10.3969/j.issn.1673-288X.2008.06.008 [25] LORRAINE S,CHRISTOPHER K,EDWARD L.Greenhouse gas emissions from chinese cities[J].Journal of Industrial Ecology,2012,16(4):552-563. [26] Intergovernmental Panel on Climate Change.2006 IPCC guidelines for national greenhouse gas inventories[R].Geneva:IPCC,2006. [27] Intergovernmental Panel on Climate Change.2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[R].Geneva:IPCC,2019. -