Stoichiometry of Soil Carbon, Nitrogen and Phosphorus and Soil Enzyme Activity at Various Reaches of the Dry-Hot Valley of Jinsha River
-
摘要: 探明金沙江干热河谷土壤C、N、P化学计量和土壤酶活性特征,是该区域生态恢复的重要决策依据. 2021年1月通过野外调查、土样采集及室内分析,对金沙江干热河谷上、中、下游共32个样地表层土壤的C、N、P化学计量和酶活性特征及其相互关系进行研究. 结果表明:①金沙江干热河谷土壤C、N、P元素含量受气候、土壤和植被等环境因子影响,其含量均表现为上游>下游>中游的特征,而土壤C/N值(含量比)从上游向下游逐渐降低,土壤C/P值(含量比)和N/P值(含量比)均呈从上游向下游逐渐增加的趋势. ②土壤脲酶(Ure)、β-葡萄糖苷酶(BG)和酸性磷酸酶(AP)的酶活性受金沙江干热河谷上、中、下游气候以及土壤、植被等环境因子的影响,其活性均表现为上游>下游>中游的特征. ③金沙江干热河谷不同植被类型土壤C、N、P含量和酶活性均表现为天然林>人工林>稀树灌草丛的特征. 研究显示:金沙江干热河谷上、中、下游土壤C、N、P元素含量及其化学计量比和土壤酶活性存在空间差异,可能与不同区段的气候、土壤、植被等因素有关;适宜的气候、土壤和植被能增加土壤C、N、P元素含量,提高土壤Ure、BG和AP酶活性.Abstract: Identifying soil C, N, P stoichiometry and enzyme activity in the Dry-Hot Valley of Jinsha River is the decision-making basis for regional ecological restoration. The relationships between soil C, N, P stoichiometry and enzyme activities were studied from 32 soil samples in the upper, middle and lower reaches of the Dry-Hot Valley of Jinsha River. The results showed that: (1) The contents of soil C, N and P were affected by climate, soil and vegetation, and the highest contents of soil C, N and P were in the upper reaches and the lowest were in the middle reaches, and soil C/N ratios were decreased down the Jinsha River, and C/P and N/P ratios were increased down the Jinsha River. (2) The activities of soil urease (Ure), β -glucosidase (BG) and acid phosphatase (AP) were affected by climate, soil, vegetation and other environmental factor, and the activities were showed as upper reaches> lower reaches> middle reaches. (3) Soil C, N, P contents and enzyme activities from plots of different vegetation types were as follows: natural forest >plantation forest > savannah. The results showed that the spatial differences of soil C, N, P contents and soil enzyme activities at various reaches of the Dry-Hot Valley of Jinsha River may be related to climate, soil, vegetation and other factors in the region. Suitable climate, soil and vegetation can increase soil C, N and P contents, and improve the soil enzyme activities.
-
Key words:
- Dry-Hot Valley /
- reach /
- element stoichiometry /
- enzyme activity
-
表 1 样地基本信息
Table 1. Plot information
区段 样方
个数年均
气温/℃年降
水量/mm全年日
照时长/h年蒸
发量/mm相对
湿度/%海拔/m 地理位置 坡度/(°) 坡向 坡位 阳坡 阴坡 坡上 坡中 坡下 上游 8 19.4 775 2351.6 2054.5 58 1381 26.09°N、100.30°E 21.88 4 4 0 6 2 中游 12 21.2 800 2685.2 3052.0 53 1412 26.09°N、101.77°E 17.08 5 7 1 4 7 下游 12 23.5 812 2292.6 2810.8 66 1407 26.25°N、102.56°E 15.83 6 6 1 8 3 注:坡向、坡位中数字表示对应指标的样方个数. 表 2 样地土壤特征及个数
Table 2. Soil characteristics and quantity of plots
区段 土壤类型 土质 石粒含量 土壤紧实度 土壤根系含量 燥红土 黄壤 黄棕壤 紫色土 壤土 砂土 少量 中量 大量 疏松 紧实 少量 中量 大量 上游 1 4 3 0 4 4 7 0 1 7 1 4 2 1 中游 0 6 1 5 0 12 8 1 3 9 3 4 1 3 下游 6 2 2 2 1 11 8 0 4 8 4 5 0 3 注:表中数字代表对应指标的样方个数. 表 3 金沙江干热河谷样地植被信息
Table 3. Vegetation information of plots in the Dry-Hot Valley of Jinsha River
区段 草本 灌木 乔木 地表凋落物厚度/cm 种类/种 草本覆盖度 种类/种 灌木覆盖度 种类/种 郁闭度 上游 6.75±1.31b 68.75%±6.24%a 3.00±0.94a 23.75%±8.49%a 1.25±0.31a 0.41±0.08a 0.93±0.25b 中游 12.50±1.81a 66.92%±5.82%a 3.58±0.71a 36.00%±7.83%a 2.42±0.72a 0.34±0.09a 1.72±0.30a 下游 13.00±1.65a 72.08%±4.86%a 4.00±1.00a 32.92%±8.12%a 2.83±0.67a 0.43±0.06a 1.03±0.11b 注:表中数值为平均值±标准差. 不同小写字母表示不同区段差异显著(P<0.05). 表 4 金沙江干热河谷不同区段土壤理化性质特征
Table 4. Soil physical and chemical properties at various reaches of the Dry-Hot Valley of Jinsha River
区段 土壤容重/(g/cm3) 土壤总孔隙度 土壤毛细管孔隙度 土壤自然含水率 土壤pH 上游 1.26±0.05a 56.90%±1.33%a 45.62%±0.68%a 16.48%±13.16%a 6.38±0.08b 中游 1.37±0.06a 54.79%±1.52%a 44.21%±1.02%a 14.89%±12.14%a 6.71±0.19b 下游 1.33±0.04a 55.47%±1.40%a 44.87%±0.98%a 15.77%±13.09%a 7.35±0.18a 注:表中数值为平均值±标准差. 不同小写字母表示不同区段差异显著(P<0.05). 表 5 金沙江干热河谷不同区段土壤C、N、P 化学计量特征
Table 5. Stoichiometric characteristics of soil C, N and P at various reaches of the Dry-Hot Valley of Jinsha River
区段 植被类型 SOC含量/(g/kg) TN含量/(g/kg) TP含量/(g/kg) C/N C/P N/P 金沙江干热河谷 天然林 20.91±0.76a 1.82±0.11a 1.12±0.11a 11.85±0.76a 20.01±1.49a 1.72±0.14a 人工林 18.48±0.91ab 1.54±0.11ab 0.90±0.63ab 12.56±0.69a 21.59±1.15a 1.76±0.09a 稀树灌草丛 16.86±1.02b 1.33±0.15b 0.78±0.04b 12.97±0.96a 21.61±1.32a 1.69±0.14a 平均值 19.04±0.62 1.60±0.08 0.95±0.05 12.39±0.47 21.10±0.51 1.74±0.07 上游 天然林 24.10±0.55a 1.90±0.30a 1.43±0.10a 13.06±2.38a 16.95±1.60a 1.32±0.12b 人工林 22.09±0.52a 1.62±0.22a 1.03±0.11ab 14.39±1.90a 22.24±2.47a 1.56±0.05ab 稀树灌草丛 17.85±0.37b 1.56±0.18a 0.86±0.04b 11.61±1.07a 20.88±1.29a 1.83±0.28a 平均值 21.53±0.90A 1.67±0.13A 1.08±0.10A 13.36±1.10A 20.58±1.46A 1.57±0.09A 中游 天然林 19.51±0.85a 1.70±0.19a 0.93±0.11a 12.04±1.31a 21.90±2.01a 1.86±0.19a 人工林 16.51±1.07a 1.57±0.27a 0.88±0.09a 11.34±1.42a 19.05±1.09a 1.76±0.18a 稀树灌草丛 15.86±2.02a 1.10±0.08a 0.71±0.01a 14.34±0.79a 22.33±2.77a 1.55±0.11a 平均值 17.65±0.76B 1.55±0.14A 0.87±0.06A 12.13±0.82A 20.78±1.05A 1.77±0.11AB 下游 天然林 21.14±1.06a 1.97±0.10a 1.22±0.28a 10.71±0.16a 18.89±3.48a 1.76±0.33a 人工林 17.97±1.46a 1.48±0.14b 0.85±0.11a 12.41±0.77a 22.72±1.92a 1.84±0.14a 平均值 18.76±1.18AB 1.70±0.14A 0.94±0.11A 11.45±0.73A 21.76±1.68A 1.92±0.12A 注:不同小写字母表示不同植被类型差异显著(P<0.05),不同大写字母表示不同区段差异显著(P<0.05). 表 6 金沙江干热河谷不同区段土壤酶活性特征
Table 6. Characteristics of soil enzyme activities at various reaches of the Dry-Hot Valley of Jinsha River
区段 植被类型 Ure活性/[µg/(g·h)] BG活性/[nmol/(g·h)] AP活性/[nmol/(g·h)] 金沙江干热河谷 天然林 39.94±3.56a 118.32±9.46a 1 196.70±84.42a 人工林 27.67±2.69b 89.81±8.08a 924.28±46.62b 稀树灌草丛 11.18±1.04c 36.25±4.11b 708.34±26.90b 平均值 29.44±2.43 92.02±6.93 982.42±46.40 上游 天然林 50.61±1.05a 146.76±9.64a 1 521.77±24.27a 人工林 37.48±4.09a 110.84±11.55a 1 131.47±86.16b 稀树灌草丛 12.04±0.20b 40.93±0.74b 727.58±12.93c 平均值 34.40±5.62A 102.34±15.56A 1 128.07±113.50A 中游 天然林 34.88±5.60a 104.62±16.05a 1 077.52±111.89a 人工林 22.00±3.88ab 78.08±14.66ab 813.85±27.55ab 稀树灌草丛 10.32±2.23b 31.57±7.56b 689.10±58.61b 平均值 25.42±3.82A 81.39±11.44A 902.92±64.90A 下游 天然林 41.25±4.59a 122.18±4.31a 1 178.62±133.23a 人工林 26.47±3.99b 86.98±12.67b 893.54±66.63b 平均值 30.16±3.66A 95.78±10.46A 964.81±67.92A 注:不同小写字母表示不同植被类型差异显著(P<0.05),不同大写字母表示不同区段差异显著(P<0.05). 表 7 土壤C、N、P化学计量及酶活性与其他因子的相关性分析
Table 7. Soil C, N, P stoichiometry and correlation analysis of enzyme activities with other factors
指标 BG活性 AP活性 SOC 含量 TN含量 TP含量 C/N C/P N/P 土壤容重 土壤总
空隙度土壤毛细
管孔隙度土壤自然
含水率土壤pH Ure活性 0.948** 0.903** 0.799** 0.688** 0.722** −0.200 −0.339 −0.157 −0.917** 0.873** 0.800** 0.752** −0.512** BG活性 1 0.822** 0.816** 0.801** 0.769** −0.312 −0.400* −0.115 −0.911** 0.876** 0.818** 0.770** −0.519** AP活性 1 0.719** 0.631** 0.723** −0.184 −0.341 −0.176 −0.851** 0.856** 0.759** 0.772** −0.483** SOC含量 1 0.618** 0.704** 0.090 −0.164 −0.287 −0.812** 0.743** 0.768** 0.684** −0.572** TN含量 1 0.746** −0.709** −0.529** 0.159 −0.770** 0.808** 0.747** 0.644** −0.479** TP含量 1 −0.324 −0.775** −0.499** −0.720** 0.784** 0.717** 0.741** −0.399* C/N 1 0.525** −0.466** 0.295 −0.381* −0.281 −0.222 0.057 C/P 1 0.495** 0.350* −0.462** −0.324 −0.413* 0.166 N/P 1 0.071 −0.101 −0.070 −0.221 0.067 注:*表示差异达显著水平(P<0.05),**表示差异达极显著水平(P<0.01). -
[1] 高海宁,李彩霞,孙小妹,等.祁连山北麓不同海拔土壤化学计量特征[J].中国沙漠,2021,41(1):219-227.GAO H N,LI C X,SUN X M,et al.Stoichiometry characteristics of soil at different altitudes in the Qilian Mountains[J].Journal of Desert Research,2021,41(1):219-227. [2] WANG T,KANG F F,CHENG X Q,et al.Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China[J].Soil and Tillage Research,2016,163:176-184. doi: 10.1016/j.still.2016.05.015 [3] HESSEN D O,AGREN G I,ANDERSON T R,et al.Carbon sequestration in ecosystems:the role of stoichiometry[J].Ecology,2004,85(5):1179-1192. doi: 10.1890/02-0251 [4] 冯燕辉,梁文俊,魏曦,等.关帝山不同海拔梯度华北落叶松林土壤养分特征分析[J].西部林业科学,2020,49(4):68-73.FENG Y H,LIANG W J,WEI X,et al.Analysis of soil nutrient characteristics of Larix principis-rupprechtii forests with different altitude gradients in Guandi Mountain[J].Journal of West China Forestry Science,2020,49(4):68-73. [5] RIGGS C E,HOBBIE S E.Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils[J].Soil Biology and Biochemistry,2016,99:54-65. doi: 10.1016/j.soilbio.2016.04.023 [6] DING L L,WANG P C,ZHANG W,et al.Shrub encroachment shapes soil nutrient concentration,stoichiometry and carbon storage in an abandoned subalpine grassland[J].Sustainability,2019,11(6):1732. doi: 10.3390/su11061732 [7] NOSRATI K,GOVERS G,AHMADI H,et al.An exploratory study on the use of enzyme activities as sediment tracers:biochemical fingerprints?[J].International Journal of Sediment Research,2011,26(2):136-151. doi: 10.1016/S1001-6279(11)60082-6 [8] RAO M A,SCELZA R,ACEVEDO F,et al.Enzymes as useful tools for environmental purposes[J].Chemosphere,2014,107:145-162. doi: 10.1016/j.chemosphere.2013.12.059 [9] SINSABAUGH R L,HILL B H,FOLLSTAD S J J.Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J].Nature,2009,462(7274):795-798. doi: 10.1038/nature08632 [10] 田静,盛茂银,汪攀,等.西南喀斯特土地利用变化对植物凋落物-土壤C、N、P化学计量特征和土壤酶活性的影响[J].环境科学,2019,40(9):4278-4286.TIAN J,SHENG M Y,WANG P,et al.Influence of land use change on litter and soil C,N,P stoichiometric characteristics and soil enzyme activity in Karst ecosystem,southwest China[J].Environmental Science,2019,40(9):4278-4286. [11] FU B,LIU S L,CHEN L D,et al.Soil quality regime in relation to land cover and slope position across a highly modified slope landscape[J].Ecological Research,2010,19(1):111-118. [12] 孙彩丽,王艺伟,王从军,等.喀斯特山区土地利用方式转变对土壤酶活性及其化学计量特征的影响[J].生态学报,2021,41(10):4140-4149.SUN C L,WANG Y W,WANG C J,et al.Effects of land use conversion on soil extracellular enzyme activity and its stoichiometric characteristics in Karst mountainous areas[J].Acta Ecologica Sinica,2021,41(10):4140-4149. [13] 张荣祖.横断山区干旱河谷[M].北京:科学出版社,1992. [14] 任斐鹏,张平仓,陈小平,等.金沙江干流植被空间异质性及其对生态恢复的影响分析[J].长江科学院院报,2016,33(1):24-30. doi: 10.11988/ckyyb.20150187REN F P,ZHANG P C,CHEN X P,et al.Vegetation spatial heterogeneity of valleys along the Jinsha River and its influence on ecological restoration[J].Journal of Yangtze River Scientific Research Institute,2016,33(1):24-30. doi: 10.11988/ckyyb.20150187 [15] 任鹏杰,陈先刚,王小平.金沙江河谷大气二氧化碳浓度变化特征及影响因子[J].环境科学研究,2020,33(2):252-259.REN P J,CHEN X G,WANG X P.Variation of CO2 concentration in the atmospheric and its influencing factors in Jinshajiang River valley[J].Research of Environmental Sciences,2020,33(2):252-259. [16] 余杭,潘佳虹,杨柳生,等.金沙江干热河谷优势草本植物生物量与土壤物理性质的关系[J].应用与环境生物学报,2021,27(4):884-892.YU H,PAN J H,YANG L S,et al.Relationship between biomass of dominant herbaceous plants and soil physical properties in a dry-hot valley area of the Jinsha River[J].Chinese Journal of Applied and Environmental Biology,2021,27(4):884-892. [17] 樊博,史亮涛,潘志贤,等.干热河谷土壤酶活性对碳氮添加的响应[J].生态学报,2018,38(23):8604-8611.FAN B,SHI L T,PAN Z X,et al.Response of soil enzyme activities to carbon and nitrogen addition in an arid,hot valley[J].Acta Ecologica Sinica,2018,38(23):8604-8611. [18] YUAN Y,XIONG D H,WU H,et al.Spatial variation of soil physical properties and its relationship with plant biomass in degraded slopes in dry-hot valley region of southwest China[J].Journal of Soils and Sediments,2020,20(5):2354-2366. doi: 10.1007/s11368-020-02617-z [19] 张建利,沈蕊,施雯,等.金沙江流域干热河谷上中下游草地植物群落结构与相似性[J].生态环境学报,2010,19(6):1272-1277. doi: 10.3969/j.issn.1674-5906.2010.06.002ZHANG J L,SHEN R,SHI W,et al.The structure and similarity characteristic of the grassland community in hot-dry valley upper middle and lower of Jinsha River[J].Ecology and Environmental Sciences,2010,19(6):1272-1277. doi: 10.3969/j.issn.1674-5906.2010.06.002 [20] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000. [21] 丁雪丽,韩晓增,乔云发,等.农田土壤有机碳固存的主要影响因子及其稳定机制[J].土壤通报,2012,43(3):737-744.DING X L,HAN X Z,QIAO Y F,et al.Sequestration of organic carbon in cultivated soils:main factors and their stabilization mechanisms[J].Chinese Journal of Soil Science,2012,43(3):737-744. [22] HOBBIE S E,GOUGH L.Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska[J].Oecologia,2002,131(3):453-462. doi: 10.1007/s00442-002-0892-x [23] 刘超,王洋,王楠,等.陆地生态系统植被氮磷化学计量研究进展[J].植物生态学报,2012,36(11):1205-1216.LIU C,WANG Y,WANG N,et al.Advances research in plant nitrogen,phosphorus and their stoichiometry in terrestrial ecosystems:a review[J].Chinese Journal of Plant Ecology,2012,36(11):1205-1216. [24] 孟盈盈,张黎明,远勇帅,等.土壤水分含量和凋落物特性对陌上菅细根和叶片凋落物分解的影响[J].环境科学研究,2021,34(3):707-714.MENG Y Y,ZHANG L M,YUAN Y S,et al.Effects of soil moisture content and litter quality on decomposition of Carex thunbergii fine roots and leaf litter[J].Research of Environmental Sciences,2021,34(3):707-714. [25] 许慧琼.基于武夷山土壤垂直分异规律的红壤与黄壤性状特征比较[J].安徽农学通报,2014,20(23):64-66. doi: 10.3969/j.issn.1007-7731.2014.23.033 [26] 侯征,陈伟志,张亚,等.楚雄地区北部土壤碳氮垂向分布特征及影响因素[J].云南地质,2021,40(4):393-399. doi: 10.3969/j.issn.1004-1885.2021.04.002HOU Z,CHEN W Z,ZHANG Y,et al.The vertical distribution characteristics of c and n in soil and influence factor of north Chuxiong area[J].Yunnan Geology,2021,40(4):393-399. doi: 10.3969/j.issn.1004-1885.2021.04.002 [27] 张富荣,柳洋,史常明,等.不同恢复年限刺槐林土壤碳、氮、磷含量及其生态化学计量特征[J].生态环境学报,2021,30(3):485-491.ZHANG F R,LIU Y,SHI C M,et al.Soil carbon,nitrogen,phosphorus content and their ecological stoichiometric characteristics in different plantation ages[J].Ecology and Environmental Sciences,2021,30(3):485-491. [28] JOBBÁGY E,JACKSON R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation[J].Ecological Applications,2000,10(2):423-436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 [29] 程智超,杨立宾,隋心,等.黑龙江中央站黑嘴松鸡国家级自然保护区不同森林类型土壤微生物功能多样性分析[J].环境科学研究,2021,34(5):1177-1186.CHENG Z C,YANG L B,SUI X,et al.Soil microbial functional diversity responses to different revegetation types in Heilongjiang Zhongyangzhan Black-Billed Capercaillie Nature Reserve[J].Research of Environmental Sciences,2021,34(5):1177-1186. [30] 吴昊,邹梦茹,王思芊,等.秦岭松栎林土壤生态化学计量特征及其对海拔梯度的响应[J].生态环境学报,2019,28(12):2323-2331.WU H,ZOU M R,WANG S Q,et al.Eco-stoichiometry characteristics of soil within pine and oak mixed forest and theirs responses to elevation gradient in Qinling Mountains[J].Ecology and Environmental Sciences,2019,28(12):2323-2331. [31] SUN J N,GAO P,LI C,et al.Ecological stoichiometry characteristics of the leaf-litter-soil continuum of Quercus acutissima Carr. and Pinus densiflora Sieb. in northern China[J].Environmental Earth Sciences,2019,78(1):1-13. doi: 10.1007/s12665-018-7995-0 [32] CLEVELAND C C,LIPTZIN D.C:N:P stoichiometry in soil:is there a ‘Redfield ratio ’ for the microbial biomass?[J].Biogeochemistry,2007,85(3):235-252. doi: 10.1007/s10533-007-9132-0 [33] 李欢,魏雅丽,闫帮国,等.元谋干热河谷沟蚀地区植被恢复对土壤养分和酶活性的影响[J].土壤通报,2020,51(5):1118-1126.LI H,WEI Y L,YAN B G,et al.Effect of vegetation restoration on soil nutrients and enzyme activities in the gully eroded areas of Yuanmou dry-hot valley[J].Chinese Journal of Soil Science,2020,51(5):1118-1126. [34] ACOSTA-MARTÍNEZ V,CRUZ L,SOTOMAYOR-RAMÍREZ D,et al.Enzyme activities as affected by soil properties and land use in a tropical watershed[J].Applied Soil Ecology,2007,35(1):35-45. doi: 10.1016/j.apsoil.2006.05.012 [35] 靳振江,曾鸿鹄,李强,等.起源喀斯特溶洞湿地稻田与旱地土壤的微生物数量、生物量及土壤酶活性比较[J].环境科学,2016,37(1):335-341.JIN Z J,ZENG H H,LI Q,et al.Comparisons of microbial numbers,biomasses and soil enzyme activities between paddy field and dryland origins in Karst cave wetland[J].Environmental Science,2016,37(1):335-341. [36] ERHAGEN B,ILSTEDT U,NILSSON M B.Temperature sensitivity of heterotrophic soil CO2 production increases with increasing carbon substrate uptake rate[J].Soil Biology and Biochemistry,2015,80:45-52. doi: 10.1016/j.soilbio.2014.09.021 [37] SINSABAUGH R L,LAUBER C L,WEINTRAUB M N,et al.Stoichiometry of soil enzyme activity at global scale[J].Ecology Letters,2008,11(11):1252-1264. doi: 10.1111/j.1461-0248.2008.01245.x [38] 刘进,李娟,龙健,等.西南喀斯特区土壤生态化学计量与酶活性的海拔特征[J].森林与环境学报,2022,42(2):113-122.LIU J,LI J,LONG J,et al.Altitude dependence of soil ecological stoichiometry and enzyme activities in a Karst region of southwest China[J].Journal of Forest and Environment,2022,42(2):113-122. [39] BANERJEE S,BORA S,THRALL P H,et al.Soil C and N as causal factors of spatial variation in extracellular enzyme activity across grassland-woodland ecotones[J].Applied Soil Ecology,2016,105:1-8. doi: 10.1016/j.apsoil.2016.04.002 [40] KOCH O,TSCHERKO D,KANDELER E.Temperature sensitivity of microbial respiration,nitrogen mineralization,and potential soil enzyme activities in organic alpine soils[J].Global Biogeochemical Cycles,2007,21(4). [41] 周璞,魏亮,魏晓梦,等.稻田土壤β-1,4-葡萄糖苷酶活性对温度变化的响应特征[J].环境科学研究,2018,31(7):1282-1288.ZHOU P,WEI L,WEI X M,et al.Responses of β-1,4-glucosidase activity to temperature changes in paddy soil[J].Research of Environmental Sciences,2018,31(7):1282-1288. [42] JIN K,SLEUTEL S,BUCHAN D,et al.Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau[J].Soil and Tillage Research,2009,104(1):115-120. doi: 10.1016/j.still.2009.02.004 [43] 解心洁,李朝兴,贾小丽,等.武夷山土壤养分及酶活性的空间分布特征[J].安徽农业科学,2017,45(9):115-117. doi: 10.3969/j.issn.0517-6611.2017.09.038XIE X J,LI C X,JIA X L,et al.Spatial distribution characteristics of soil nutrients and enzyme activities in Wuyi Mountain[J].Journal of Anhui Agricultural Sciences,2017,45(9):115-117. doi: 10.3969/j.issn.0517-6611.2017.09.038 [44] THAKUR M P,MILCU A,MANNING P,et al.Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors[J].Global Change Biology,2015,21(11):4076-4085. doi: 10.1111/gcb.13011 [45] XIAO W,CHEN X,JING X,et al.A meta-analysis of soil extracellular enzyme activities in response to global change[J].Soil Biology and Biochemistry,2018,123:21-32. doi: 10.1016/j.soilbio.2018.05.001 -