留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤CO2浓度变化特征及其对岩溶碳循环的影响

黄淑卿 赵瑞一 张乾柱 何世季 何迁 黄薇巍 刘畅

黄淑卿, 赵瑞一, 张乾柱, 何世季, 何迁, 黄薇巍, 刘畅. 土壤CO2浓度变化特征及其对岩溶碳循环的影响[J]. 环境科学研究, 2022, 35(10): 2322-2329. doi: 10.13198/j.issn.1001-6929.2022.08.12
引用本文: 黄淑卿, 赵瑞一, 张乾柱, 何世季, 何迁, 黄薇巍, 刘畅. 土壤CO2浓度变化特征及其对岩溶碳循环的影响[J]. 环境科学研究, 2022, 35(10): 2322-2329. doi: 10.13198/j.issn.1001-6929.2022.08.12
HUANG Shuqing, ZHAO Ruiyi, ZHANG Qianzhu, HE Shiji, HE Qian, HUANG Weiwei, LIU Chang. Characteristics of Soil CO2 Concentration Change and Its Influence on Karst Carbon Cycle[J]. Research of Environmental Sciences, 2022, 35(10): 2322-2329. doi: 10.13198/j.issn.1001-6929.2022.08.12
Citation: HUANG Shuqing, ZHAO Ruiyi, ZHANG Qianzhu, HE Shiji, HE Qian, HUANG Weiwei, LIU Chang. Characteristics of Soil CO2 Concentration Change and Its Influence on Karst Carbon Cycle[J]. Research of Environmental Sciences, 2022, 35(10): 2322-2329. doi: 10.13198/j.issn.1001-6929.2022.08.12

土壤CO2浓度变化特征及其对岩溶碳循环的影响

doi: 10.13198/j.issn.1001-6929.2022.08.12
基金项目: 国家重点研发计划项目(No.2018YFD1100104);岩溶环境重庆市重点实验室开放课题(No.Cqk202101);山东省地下水环境保护与修复工程技术研究中心(筹)开放基金项目(No.801KF-2021-10)
详细信息
    作者简介:

    黄淑卿(1996-),女,江苏南通人,hsq960820@163.com

    通讯作者:

    赵瑞一(1987-),男,河北唐山人,副教授,博士,主要从事岩溶环境与地质生态研究,swu506@163.com

  • 中图分类号: X144

Characteristics of Soil CO2 Concentration Change and Its Influence on Karst Carbon Cycle

Funds: National Key Research and Development Program of China (No.2018YFD1100104);Open Project of Chongqing Key Laboratory of Karst Environment, China (No.Cqk202101);Shandong Groundwater Environmental Protection and Restoration Engineering Technology Research Center (Preparatory) Open Fund Project, China (No.801KF-2021-10)
  • 摘要: 为探究土壤CO2浓度变化特征及其对岩溶碳循环的影响,于2018年6—12月对重庆市南川区后沟泉水化学及泉域上覆土壤CO2(监测点土地利用类型为玉米-油菜轮作地)进行为期7个月的连续监测和采样,并结合1—5月的监测数据,定量分析旱雨季土壤CO2浓度与岩溶碳汇量的季节性演变特征及二者的相互关联性. 结果表明:①土壤CO2浓度具有显著的季节性变化特征,主要表现为雨季较高、旱季较低,其最高值和最低值分别出现在9月(13 316 μmol/mol)和1月(2 262.63 μmol/mol). ②温度与土壤CO2浓度之间存在较强的正相关关系(R2=0.82,0.001<P<0.005),降水量与土壤CO2浓度之间不具相关性(R2=0.17,P>0.5),说明土壤CO2浓度主要受温度的影响. ③泉水Ca2++Mg2+、HCO3浓度在雨季明显高于旱季,而水体CO2净消耗量在旱雨季无较大差异,这可能是由于受土壤CO2效应、降水稀释效应和H2SO4/HNO3释放CO2的共同影响. 研究显示,土壤CO2浓度的变化特征表现为季节性差异,但在土壤CO2浓度及外部环境的多重影响下,岩溶碳循环的季节性变化并不明显.

     

  • 图  1  研究区概况示意

    Figure  1.  Location of the study site

    图  2  温度和降水量与土壤CO2浓度的相关性

    Figure  2.  Correlation between temperature, precipitation, and soil CO2 concentration

    图  3  温度、降水量和土壤CO2浓度的年变化情况

    Figure  3.  Annual variation of temperature, precipitation and soil CO2 concentration

    图  4  Mg2+、Ca2+、Ca2++Mg2+、SO42−、HCO3浓度的年变化情况

    注:泉域1月、2月、4月、12月枯水,无水样.

    Figure  4.  Annual variation of Mg2+, Ca2+, Ca2++Mg2+, SO42−, HCO3 concentrations

    图  5  泉点Ca2++Mg2+浓度与HCO3浓度的关系

    Figure  5.  Relationship of concentration between Ca2+ + Mg2+ and HCO3 at the spring

    图  6  CO2净消耗量的年变化情况

    Figure  6.  Annual variation of net CO2 consumption

    图  7  [Ca2++Mg2+]/[HCO3]与δ13CDIC的相关性

    Figure  7.  Correlation between [Ca2++Mg2+]/[HCO3] and δ13CDIC

    表  1  泉水中主要离子的化学组成

    Table  1.   Chemical composition of major ion concentrations in spring water

    月份浓度/(mmol/L)CO2净消耗量/
    (mmol/L)
    K+Na+Ca2+Mg2+ClSO42−NO3HCO3
    1
    2
    30.010.122.730.090.140.940.503.400.58
    4
    50.030.152.820.160.151.040.453.400.42
    60.010.132.830.160.191.140.373.800.82
    70.030.122.890.130.131.140.373.600.58
    80.070.223.170.140.201.160.374.100.79
    90.030.123.040.120.151.190.154.401.24
    100.040.103.070.130.101.120.484.100.91
    110.030.132.690.110.131.170.133.700.91
    12
    注:—表示该月份枯水,无水样.
    下载: 导出CSV
  • [1] 宋晓晖,吕晨,王丽娟,等.建设项目温室气体环境影响评价方法研究[J].环境科学研究,2022,35(2):405-413. doi: 10.13198/j.issn.1001-6929.2021.11.20

    SONG X H,LV C,WANG L J,et al.Method of greenhouse gas environmental impact assessment for construction projects[J].Research of Environmental Sciences,2022,35(2):405-413. doi: 10.13198/j.issn.1001-6929.2021.11.20
    [2] DIFFENBAUGH N S,SINGH D,MANKIN J S,et al.Quantifying the influence of global warming on unprecedented extreme climate events[J].Proceedings of the National Academy of Science,2017:4881-4886.
    [3] 袁道先.现代岩溶学和全球变化研究[J].地学前缘,1997(Z1):21-29. doi: 10.3321/j.issn:1005-2321.1997.01.003

    YUAN D X.Modern karstology and global change study[J].Earth Science Frontiers,1997(Z1):21-29. doi: 10.3321/j.issn:1005-2321.1997.01.003
    [4] 袁道先,章程.岩溶动力学的理论探索与实践[J].地球学报,2008(3):355-365. doi: 10.3321/j.issn:1006-3021.2008.03.009

    YUAN D X,ZHANG C.Karst dynamics theory in China and its practice[J].Acta Geoscientica Sinica,2008(3):355-365. doi: 10.3321/j.issn:1006-3021.2008.03.009
    [5] 曹建华,蒋忠诚,袁道先,等.岩溶动力系统与全球变化研究进展[J].中国地质,2017,44(5):874-900. doi: 10.12029/gc20170504

    CAO J H,JIANG Z C,YUAN D X,et al.The progress in the study of the karst dynamic system and global changes in the past 30 years[J].Geology in China,2017,44(5):874-900. doi: 10.12029/gc20170504
    [6] XI H,WANG S,BAI X,et al.The responses of weathering carbon sink to eco-hydrological processes in global rocks[J].Science of the Total Environment,2021,788(1):147706.
    [7] LIU Z H,DREYBRODT W,LIU H.Atmospheric CO2 sink:silicate weathering or carbonate weathering?[J].Applied Geochemistry,2011,26:292-294. doi: 10.1016/j.apgeochem.2011.03.085
    [8] ZENG S B,LIU Z H,KAUFMANN G.Sensitivity of the global carbonate weathering carbon-sink flux to climate and land-use changes[J].Nature communications,2019,10(1):5749. doi: 10.1038/s41467-019-13772-4
    [9] WU Z Y,ZHANG C,JIANG Z C,et al.Subsoil carbonate dissolution rates and their determining factors in a karst drainage basin,SW China[J].Environmental Earth Sciences,2020,79(22):508. doi: 10.1007/s12665-020-09255-1
    [10] HUANG F,ZHANG C L,XIE Y C,et al.Inorganic carbon flux and its source in the karst catchment of Maocun,Guilin,China[J].Environmental Earth Sciences,2015,74(2):1079-1089. doi: 10.1007/s12665-015-4478-4
    [11] JIANG P P,YU G,ZHANG Q,et al.Chemical weathering and CO2 consumption rates of rocks in the Bishuiyan subterranean basin of Guangxi,China[J].Scientific Reports,2020,10(1):11677. doi: 10.1038/s41598-020-68572-4
    [12] YAO Y,JINREN N,PHILIPPE C,et al.Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(24):6617-6622. doi: 10.1073/pnas.1523358113
    [13] 何师意,徐胜友,张美良.岩溶土壤中CO2浓度、水化学观测及其与岩溶作用关系[J].中国岩溶,1997(4):39-44.

    HE S Y,XU S Y,ZHANG M L,et al.Observation on soil CO2 concentration,hydrochemistry,and their relationship with karst processes[J].Carsologica Sinica,1997(4):39-44.
    [14] BUYANOVSKY G A,WAGNER G H.Annual cycles of carbon dioxide level in soil air[J].Soil Science Society of America Journal,1983,47(6):1139-1145. doi: 10.2136/sssaj1983.03615995004700060016x
    [15] 李涛,曹建华,张美良,等.桂林盘龙洞岩溶表层带土壤CO2浓度的季节变化研究[J].中国岩溶,2011,30(3):348-353. doi: 10.3969/j.issn.1001-4810.2011.03.018

    LI T,CAO J H,ZHANG M L,et al.The seasonal variation of soil CO2 concentration in epikarst in the Panlong Cave,Guilin[J].Carsologica Sinica,2011,30(3):348-353. doi: 10.3969/j.issn.1001-4810.2011.03.018
    [16] 蒲敏,孙玉川,刘宁坤,等.岩溶区石漠化土壤CO2浓度和地表CO2通量研究[J].广东农业科学,2019,46(5):74-82.

    PU M,SUN Y C,LIU N K,et al.Study on soil CO2 concentration and surface CO2 flux in karst rocky desertification area[J].Guangdong Agricultural Sciences,2019,46(5):74-82.
    [17] 郑维熙,周忠发,朱粲粲,等.典型岩溶区不同土地利用类型土壤CO2浓度时空变化特征及影响因素分析:以贵州双河洞为例[J].土壤通报,2021,52(3):594-601.

    ZHENG W X,ZHOU Z F,ZHU C C,et al.Spatiotemporal variation characteristics of CO2,and its influencing factors under different land use types in typical karst areas:a case study of the Shuanghe Cave,Guizhou[J].Chinese Journal of Soil Science,2021,52(3):594-601.
    [18] 赵瑞一,李建鸿,董莉莉,等.不同土地利用类型下岩溶泉域土壤CO2时空变化特征及来源分析[J].生态环境学报,2020,29(1):81-87.

    ZHAO R Y,LI J H,DONG L L,et al.Spatio-temporal variation characteristics and source of soil CO2 in karst spring catchments under different land use types[J].Ecology and Environmental Sciences,2020,29(1):81-87.
    [19] ZHAO R,LIU Z,HUANG H,et al.Difference in the relationship between soil CO2 concentration and the karst-related carbon cycle under different land use types in southwest China[J].Carbonates and Evaporites,2019,34(4):1569-1581. doi: 10.1007/s13146-019-00506-2
    [20] 代林玉,肖时珍,曾成,等.湿润亚热带典型白云岩区不同土地利用的土壤CO2浓度特征及其影响因素[J].中国岩溶,2021,40(4):617-624.

    DAI L Y,XIAO S Z,ZENG C,et al.Characteristics and influencing factors of soil CO2 release under different land use patterns in typical subtropical dolomite regions[J].Carsologica Sinica,2021,40(4):617-624.
    [21] TU J,WEI X H,FAN H B,et al.Disentangling critical drivers of stem CO2 efflux from Pinus elliottii trees in Subtropical China[J].Agricultural & Forest Meteorology,2017,237:296-302.
    [22] XU Z,YIN H,ZHAO C,et al.Responses of soil respiration to warming vary between growing season and non-growing season in a mountain forest of southwestern China[J].Canadian Journal of Soil Science,2017.doi: 10.1139/CJSS-2017-0036.
    [23] 吴夏,潘谋成,朱晓燕,等.夏季降水对岩溶表层带土壤呼吸作用的影响[J].南方农业学报,2015,46(4):575-580. doi: 10.3969/j.issn.2095-1191.2015.4.575

    WU X,PAN M C,ZHU X Y,et al.Precipitation effect on soil respiration in epikarst during summer[J].Journal of Southern Agriculture,2015,46(4):575-580. doi: 10.3969/j.issn.2095-1191.2015.4.575
    [24] 陈荣荣,刘全全,王俊,等.人工模拟降水条件下旱作农田土壤“Birch效应”及其响应机制[J].生态学报,2016,36(2):306-317.

    CHEN R R,LIU Q Q,WANG J,et al.Response of soil ‘Birch Effect’ to simulated rainfalls in dry croplands[J].Acta Ecologica Sinica,2016,36(2):306-317.
    [25] COTTON J M,JEFFERY M L,SHELDON N D.Climate controls on soil respired CO2 in the United States:implications for 21st century chemical weathering rates in temperate and arid ecosystems[J].Chemical Geology,2013,358:37-45. doi: 10.1016/j.chemgeo.2013.08.048
    [26] TAN S Y,NI X Y,YUE K,et al.Increased precipitation differentially changed soil CO2 efflux in arid and humid areas[J].Geoderma,2021,388:114946. doi: 10.1016/j.geoderma.2021.114946
    [27] 黄奇波.北方半干旱岩溶区岩溶碳汇过程及效应研究[D].武汉:中国地质大学(武汉),2019:9-11.
    [28] 张笑微.煤铁残渣对表层岩溶泉水化学特征及其溶解无机碳的影响研究[D].重庆:西南大学,2014:45-47.
    [29] 禤映雪,唐常源,曹英杰,等.北江流域水化学时空变化及化学风化特征[J].环境科学研究,2018,31(6):1078-1087. doi: 10.13198/j.issn.1001-6929.2018.03.19

    XUAN Y X,TANG C Y,CAO Y J,et al.Spatial and temporal variation of hydro-chemistry and chemical weathering characteristics in the Beijiang River Basin[J].Research of Environmental Sciences,2018,31(6):1078-1087. doi: 10.13198/j.issn.1001-6929.2018.03.19
    [30] 刘再华.碳酸盐岩岩溶作用对大气CO2沉降的贡献[J].中国岩溶,2000,19(4):3-10.

    LIU Z H.Contribution of carbonate rock weathering to the atmospheric CO2 sink[J].Carsologica Sinica,2000,19(4):3-10.
    [31] 杨延梅,张田,郑明霞,等.基于水化学及当地稳定同位素的地下水硝酸盐污染空间分布特征及污染源解析[J].环境科学研究,2021,34(9):2164-2172. doi: 10.13198/j.issn.1001-6929.2021.05.21

    YANG Y M,ZHANG T,ZHENG M X,et al.Spatial distribution characteristics and pollution source analysis of nitrate pollution in groundwater based on hydroochemistry and local stable isotopes[J].Research of Environmental Sciences,2021,34(9):2164-2172. doi: 10.13198/j.issn.1001-6929.2021.05.21
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  66
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 修回日期:  2022-07-28

目录

    /

    返回文章
    返回