留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富油微藻-真菌共培养资源化处理模拟畜禽养殖废水的效能研究

李双喜 朱联东

李双喜, 朱联东. 富油微藻-真菌共培养资源化处理模拟畜禽养殖废水的效能研究[J]. 环境科学研究, 2023, 36(4): 715-723. doi: 10.13198/j.issn.1001-6929.2022.10.10
引用本文: 李双喜, 朱联东. 富油微藻-真菌共培养资源化处理模拟畜禽养殖废水的效能研究[J]. 环境科学研究, 2023, 36(4): 715-723. doi: 10.13198/j.issn.1001-6929.2022.10.10
LI Shuangxi, ZHU Liandong. Performance of Simulated Livestock Wastewater Resource Recovery by Co-Cultivation of Oleaginous Microalgae and Fungi[J]. Research of Environmental Sciences, 2023, 36(4): 715-723. doi: 10.13198/j.issn.1001-6929.2022.10.10
Citation: LI Shuangxi, ZHU Liandong. Performance of Simulated Livestock Wastewater Resource Recovery by Co-Cultivation of Oleaginous Microalgae and Fungi[J]. Research of Environmental Sciences, 2023, 36(4): 715-723. doi: 10.13198/j.issn.1001-6929.2022.10.10

富油微藻-真菌共培养资源化处理模拟畜禽养殖废水的效能研究

doi: 10.13198/j.issn.1001-6929.2022.10.10
基金项目: 国家自然科学基金项目(No.22278323);湖北省杰出青年基金项目(No.2022CFA070);国家重点研发计划项目(No.2019YFD1101303)
详细信息
    作者简介:

    李双喜(1994-),男,湖北襄阳人,博士,主要从事藻菌共培养废水处理研究,lishuangxi@whu.edu.cn

    通讯作者:

    朱联东(1983-),男,福建龙岩人,教授,博士,博导,主要从事废水培养微藻及其生物质能研究,ldzhu@whu.edu.cn

  • 中图分类号: X713

Performance of Simulated Livestock Wastewater Resource Recovery by Co-Cultivation of Oleaginous Microalgae and Fungi

Funds: National Natural Science Foundation of China (No.22278323); Outstanding Youth Fund Project of Hubei Province, China (No.2022CFA070); National Key Research and Development Program of China (No.2019YFD11013003)
  • 摘要: 为探究富油微藻-真菌共培养处理畜禽养殖废水的可行性,构建小球藻(Chlorella vulgaris)和米曲霉菌(Aspergillus oryzae)的共培养体系,通过调节不同比例的微藻真菌初始接种量,对模拟畜禽养殖废水污染物去除、藻菌结合与采收、生物质干质量与生化组分以及生物柴油生产能力进行系统研究. 结果表明:①C. vulgarisA. oryzae在废水处理过程中具有协同效应,与C. vulgaris单独处理相比,共培养更有利于污染物的去除. 最优藻菌接种比例为25∶1,TN、NH4+-N、TP、COD和Cu(Ⅱ)的去除率分别达72.51%、71.19%、92.23%、91.47%和90.38%. 藻菌共培养对3种磺胺类药物(SAs)也具有显著的生物去除效果,磺胺二甲嘧啶(SMZ)、磺胺甲恶唑(SMX)和磺胺间甲氧嘧啶(SMM)的去除率分别达57.61%、58.31%和50.48%. ②丝状真菌易于与微藻形成球状体,在菌丝强力支撑作用下,C. vulgaris在废水中呈现悬浮状态,提高污染物的去除率,并实现对微藻的高效采收,最高采收效率为76.91%,采收后的总生物质干质量高达1.26 g/L,总叶绿素含量达15.99 mg/g. ③藻菌生物质中蛋白质、多糖和油脂的含量分别为111、136和249 mg/g,而脂肪酸组分主要以C16∶0(棕榈酸)、C18∶1(油酸)和C18:2(亚油酸)为主,有利于生物柴油生产. 研究显示,C. vulgarisA. oryzae共培养不仅能有效去除废水中的各类污染物,而且能实现生物质的资源化利用,在畜禽养殖废水处理中具有潜在的工程应用价值.

     

  • 图  1  不同微藻-真菌比例(M:F)对TN和NH4+-N的去除率

    Figure  1.  Removal efficiency of TN and NH4+-N under different microalgae-fungi ratios (M:F)

    图  2  不同微藻-真菌比例(M:F)对TP和COD的去除率

    Figure  2.  Removal efficiency of TP and COD under different microalgae-fungi ratios (M:F)

    图  3  不同微藻-真菌比例(M∶F)对Cu(Ⅱ)的去除变化

    Figure  3.  Removal of Cu(Ⅱ) under different microalgae-fungi ratios (M∶F)

    图  4  不同微藻-真菌比例(M∶F)对SMZ、SMM、SMX的去除性能

    Figure  4.  Removal performance of SMZ, SMM, SMX under different microalgae-fungi ratios (M∶F)

    图  5  A. oryzaeC. vulgaris相互结合的电镜图

    Figure  5.  SEM of A. oryzae and C. vulgaris combined with each other

    图  6  不同微藻-真菌比例(M∶F)对微藻的采收效率

    Figure  6.  Harvesting efficiency of microalgae with different microalgae-fungi ratios (M∶F)

    表  1  模拟畜禽养殖废水的水质参数

    Table  1.   Characteristics of simulated livestock wastewater

    参数数值
    NH4+-N浓度/(mg/L)123.6
    TN浓度/(mg/L)158.6
    TP浓度/(mg/L)20.6
    COD浓度/(mg/L)1008
    Cu(Ⅱ)浓度/(mg/L)0.50
    SAs浓度/(mg/L)0.40
    pH7.40
    下载: 导出CSV

    表  2  初始小球藻和真菌孢子投加量

    Table  2.   Initial concentration of microalgae and fungi

    微藻-真菌比例(M∶F)C. vulgaris投加量/(106 cells/mL)A. oryzae投加量/(105 spores/mL)
    100∶02.050
    100∶12.050.21
    50∶12.050.42
    25∶12.050.84
    10∶12.052.05
    1∶12.0520.5
    下载: 导出CSV

    表  3  总生物量与叶绿素含量变化

    Table  3.   Changes of total biomass and chlorophyll contents

    M∶F干质量/
    (g/L)
    叶绿素a
    含量/(mg/g)
    叶绿素b
    含量/(mg/g)
    总叶绿素
    含量/(mg/g)
    100∶00.94±0.01915.49±1.749.93±1.0525.43±1.86
    100∶11.10±0.02311.98±3.657.26±0.5819.24±1.23
    50∶11.13±0.01813.24±1.597.39±0.8120.64±0.98
    25∶11.26±0.01211.59±0.414.05±0.8515.99±0.82
    10∶10.91±0.0148.87±0.775.28±0.9914.16±0.65
    1∶10.79±0.0138.19±1.655.39±0.6313.59±0.86
    下载: 导出CSV

    表  4  多糖、蛋白质和油脂的含量

    Table  4.   The contents of carbohydrate, protein and lipid

    M∶F多糖含量/(mg/g)蛋白质含量/(mg/g)油脂含量/(mg/g)
    100∶0124±13108±6.6233±17
    100∶1131±16114±7.5245±14
    50∶1137±6.2115±2.3247±20
    25∶1136±5.1111±7.4249±21
    10∶1162±9.6105±6.5234±21
    1∶1174±21109±7.7258±13
    下载: 导出CSV

    表  5  主要脂肪酸组分的分布

    Table  5.   Distribution of major fatty acid composition

    脂肪酸组分占比/%
    100∶0100∶150∶125∶110∶11∶1
    C14∶00.990.710.360.431.311.03
    C16∶030.6833.2635.0238.2038.6840.50
    C16∶10.575.114.732.430.572.25
    C18∶01.894.202.113.411.891.70
    C18∶134.2631.1435.2137.5240.2640.32
    C18∶221.7119.3217.8012.5311.717.89
    C18∶39.906.264.775.485.586.31
    TSFA33.5638.1737.4942.0441.8843.23
    TMUFA34.8336.2539.9439.9540.8342.57
    TPUFA31.6125.5822.5718.0117.2914.20
    下载: 导出CSV
  • [1] 蔡敬,赵陆敏,黄旭雄,等.不同氮磷比条件下绿球藻对猪场污水的净化效率[J].环境科学学报,2017,37(10):3696-3701. doi: 10.13671/j.hjkxxb.2017.0149

    CAI J,ZHAO L M,HUANG X X,et al.Purification efficiency of swine wastewater by Chlorococcum sp. with different N:P ratios[J].Acta Scientiae Circumstantiae,2017,37(10):3696-3701. doi: 10.13671/j.hjkxxb.2017.0149
    [2] CAO L P,ZHOU T,LI Z H,et al.Effect of combining adsorption-stripping treatment with acidification on the growth of Chlorella vulgaris and nutrient removal from swine wastewater[J].Bioresource Technology,2018,263:10-16. doi: 10.1016/j.biortech.2018.04.094
    [3] 吴恒,张千,刘向阳,等.生物强化方式对生物转盘处理养殖废水效果及生物多样性的影响[J].环境科学研究,2020,33(4):958-968. doi: 10.13198/j.issn.1001-6929.2019.08.25

    WU H,ZHANG Q,LIU X Y,et al.Comparison of swine wastewater treatment performance and microbial diversity of rotating biological contractor with different bioaugmentation methods[J].Research of Environmental Sciences,2020,33(4):958-968. doi: 10.13198/j.issn.1001-6929.2019.08.25
    [4] 肖亚兵,张雪纯,季斌,等.微藻生物强化对藻-菌颗粒污泥的形成影响及污染物去除研究[J].环境科学研究,2022,35(3):761-767.

    XIAO Y B,ZHANG X C,JI B,et al.Effect of microalgae bio-augmentation on formation of microalgal-bacterial granular sludge and the pollutants removal[J].Research of Environmental Sciences,2022,35(3):761-767.
    [5] YANG L M,LI H K,WANG Q.A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater[J].Bioresource Technology,2019,275:35-43. doi: 10.1016/j.biortech.2018.12.036
    [6] WREDE D,TAHA M,MIRANDA A F,et al.Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells,lipid production and wastewater treatment[J].PLoS One,2014,9(11):e113497. doi: 10.1371/journal.pone.0113497
    [7] JAISWAL K K,KUMAR V,GURURANI P,et al.Bio-flocculation of oleaginous microalgae integrated with municipal wastewater treatment and its hydrothermal liquefaction for biofuel production[J].Environmental Technology & Innovation,2022,26:102340.
    [8] KHANRA A,VASISTHA S,RAI MP,et al.Green bioprocessing and applications of microalgae-derived biopolymers as a renewable feedstock:circular bioeconomy approach[J].Environmental Technology & Innovation,2022,28:102872.
    [9] YANG J,ZHAO T,CUI X,et al.New insights into the carbon neutrality of microalgae from culture to utilization:a critical review on the algae-based solid biofuels[J].Biomass and Bioenergy,2022,166:106599. doi: 10.1016/j.biombioe.2022.106599
    [10] LIN W,CHEN L,TAN Z,et al.Application of filamentous fungi in microalgae-based wastewater remediation for biomass harvesting and utilization:from mechanisms to practical application[J].Algal Research,2022,62:102614. doi: 10.1016/j.algal.2021.102614
    [11] LI S X,LI Z,LIU D Y,et al.Response of fungi-microalgae pellets to copper regulation in the removal of sulfonamides and release of dissolved organic matters[J].Journal of Hazardous Materials,2022,434:128932. doi: 10.1016/j.jhazmat.2022.128932
    [12] LI S X,YU Y J,GAO X X,et al.Evaluation of growth and biochemical responses of freshwater microalgae Chlorella vulgaris due to exposure and uptake of sulfonamides and copper[J].Bioresource Technology,2021,342:126064. doi: 10.1016/j.biortech.2021.126064
    [13] ZHU L D,LI Z H,GUO D B,et al.Cultivation of Chlorella sp. with livestock waste compost for lipid production[J].Bioresource Technology,2017,223:296-300. doi: 10.1016/j.biortech.2016.09.094
    [14] 于小娣,师玥,周斌,等.重金属离子胁迫对赤潮微藻的急性毒性[J].环境科学研究,2012,25(9):1047-1053. doi: 10.13198/j.res.2012.09.92.yuxd.003

    YU X D,SHI Y,ZHOU B,et al.Acute toxic effects of heavy metal ions on growth of marine bloom-forming microalgae[J].Research of Environmental Sciences,2012,25(9):1047-1053. doi: 10.13198/j.res.2012.09.92.yuxd.003
    [15] ZHU L D,YAN C,LI Z H.Microalgal cultivation with biogas slurry for biofuel production[J].Bioresource Technology,2016,220:629-636. doi: 10.1016/j.biortech.2016.08.111
    [16] CAI T,PARK S Y,LI Y B.Nutrient recovery from wastewater streams by microalgae:status and prospects[J].Renewable and Sustainable Energy Reviews,2013,19:360-369. doi: 10.1016/j.rser.2012.11.030
    [17] WANG S K,YANG K X,ZHU Y R,et al.One-step co-cultivation and flocculation of microalgae with filamentous fungi to valorize starch wastewater into high-value biomass[J].Bioresource Technology,2022,361:127625. doi: 10.1016/j.biortech.2022.127625
    [18] CAO W X,WANG X,SUN S Q,et al.Simultaneously upgrading biogas and purifying biogas slurry using cocultivation of Chlorella vulgaris and three different fungi under various mixed light wavelength and photoperiods[J].Bioresource Technology,2017,241:701-709. doi: 10.1016/j.biortech.2017.05.194
    [19] GUO G Y,CAO W X,SUN S Q,et al.Nutrient removal and biogas upgrading by integrating fungal-microalgal cultivation with anaerobically digested swine wastewater treatment[J].Journal of Applied Phycology,2017,29(6):2857-2866. doi: 10.1007/s10811-017-1207-2
    [20] ZHAO Y J,GUO G Y,SUN S Q,et al.Co-pelletization of microalgae and fungi for efficient nutrient purification and biogas upgrading[J].Bioresource Technology,2019,289:121656. doi: 10.1016/j.biortech.2019.121656
    [21] LI B,ZHANG T,YANG Z G.Immobilizing unicellular microalga on pellet-forming filamentous fungus:can this provide new insights into the remediation of arsenic from contaminated water?[J].Bioresource Technology,2019,284:231-239. doi: 10.1016/j.biortech.2019.03.128
    [22] 崔晗,陈晓,刘莹,等.混合抗生素对铜绿微囊藻的生物效应[J].环境科学研究,2014,27(10):1143-1149. doi: 10.13198/j.issn.1001-6929.2014.10.08

    CUI H,CHEN X,LIU Y,et al.Study on the biological effects of mixed antibiotics on Microcystis aeruginosa[J].Research of Environmental Sciences,2014,27(10):1143-1149. doi: 10.13198/j.issn.1001-6929.2014.10.08
    [23] BODIN H,DANESHVAR A,GROS M,et al.Effects of biopellets composed of microalgae and fungi on pharmaceuticals present at environmentally relevant levels in water[J].Ecological Engineering,2016,91:169-172. doi: 10.1016/j.ecoleng.2016.02.007
    [24] MACKAY S,GOMES E,HOLLIGER C,et al.Harvesting of Chlorella sorokiniana by co-culture with the filamentous fungus Isaria fumosorosea:a potential sustainable feedstock for hydrothermal gasification[J].Bioresource Technology,2015,185:353-361. doi: 10.1016/j.biortech.2015.03.026
    [25] MURADOV N,TAHA M,MIRANDA A F,et al.Fungal-assisted algal flocculation:application in wastewater treatment and biofuel production[J].Biotechnology for Biofuels,2015,8:24. doi: 10.1186/s13068-015-0210-6
    [26] OLIVEIRA H R,BASSIN I D,CAMMAROTA M C.Bioflocculation of cyanobacteria with pellets of Aspergillus niger:effects of carbon supplementation,pellet diameter,and other factors in biomass densification[J].Bioresource Technology,2019,294:122167. doi: 10.1016/j.biortech.2019.122167
    [27] LENG L J,LI W T,CHEN J,et al.Co-culture of fungi-microalgae consortium for wastewater treatment:a review[J].Bioresource Technology,2021,330:125008. doi: 10.1016/j.biortech.2021.125008
    [28] PIERCEY-NORMORE M D,ATHUKORALA S N P.Interface between fungi and green algae in lichen associations[J].Botany,2017,95(10):1005-1014. doi: 10.1139/cjb-2017-0037
    [29] XIA C J,ZHANG J G,ZHANG W D,et al.A new cultivation method for microbial oil production:cell pelletization and lipid accumulation by Mucor circinelloides[J].Biotechnology for Biofuels,2011,4:15. doi: 10.1186/1754-6834-4-15
    [30] DU Z Y,ALVARO J,HYDEN B,et al.Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata[J].Biotechnology for Biofuels,2018,11:174. doi: 10.1186/s13068-018-1172-2
    [31] YIN Z H,LI S X,HU D,et al.Performance evaluation of different chitosan-clay composite materials for efficient harvesting of Chlorella vulgaris and impacts on downstream bioproduct processing and water reusability[J].Chemical Engineering Journal,2022,430:132892. doi: 10.1016/j.cej.2021.132892
    [32] GUI M M,LEE K T,BHATIA S.Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock[J].Energy,2008,33(11):1646-1653. doi: 10.1016/j.energy.2008.06.002
    [33] ZHENG H L,WU X D,ZOU G Y,et al.Cultivation of Chlorella vulgaris in manure-free piggery wastewater with high-strength ammonium for nutrients removal and biomass production:effect of ammonium concentration,carbon/nitrogen ratio and pH[J].Bioresource Technology,2019,273:203-211. doi: 10.1016/j.biortech.2018.11.019
    [34] LI X,YANG C P,ZENG G M,et al.Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations[J].Algal Research,2020,46:101804. doi: 10.1016/j.algal.2020.101804
    [35] KNOTHE G.Will biodiesel derived from algal oils live up to its promise?a fuel property assessment[J].Lipid Technology,2011,23(11):247-249. doi: 10.1002/lite.201100151
    [36] ZHANG S X,PANG X F,YUE Z,et al.Sulfonamides removed from simulated livestock and poultry breeding wastewater using an in situ electro-Fenton process powered by photovoltaic energy[J].Chemical Engineering Journal,2020,397:125466. doi: 10.1016/j.cej.2020.125466
    [37] CHEN Z H,SHAO S S,HE Y J,et al.Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1[J].Bioresource Technology,2020,302:122806. doi: 10.1016/j.biortech.2020.122806
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  24
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-05
  • 修回日期:  2022-09-28

目录

    /

    返回文章
    返回