Performance of Simulated Livestock Wastewater Resource Recovery by Co-Cultivation of Oleaginous Microalgae and Fungi
-
摘要: 为探究富油微藻-真菌共培养处理畜禽养殖废水的可行性,构建小球藻(Chlorella vulgaris)和米曲霉菌(Aspergillus oryzae)的共培养体系,通过调节不同比例的微藻真菌初始接种量,对模拟畜禽养殖废水污染物去除、藻菌结合与采收、生物质干质量与生化组分以及生物柴油生产能力进行系统研究. 结果表明:①C. vulgaris和A. oryzae在废水处理过程中具有协同效应,与C. vulgaris单独处理相比,共培养更有利于污染物的去除. 最优藻菌接种比例为25∶1,TN、NH4+-N、TP、COD和Cu(Ⅱ)的去除率分别达72.51%、71.19%、92.23%、91.47%和90.38%. 藻菌共培养对3种磺胺类药物(SAs)也具有显著的生物去除效果,磺胺二甲嘧啶(SMZ)、磺胺甲恶唑(SMX)和磺胺间甲氧嘧啶(SMM)的去除率分别达57.61%、58.31%和50.48%. ②丝状真菌易于与微藻形成球状体,在菌丝强力支撑作用下,C. vulgaris在废水中呈现悬浮状态,提高污染物的去除率,并实现对微藻的高效采收,最高采收效率为76.91%,采收后的总生物质干质量高达1.26 g/L,总叶绿素含量达15.99 mg/g. ③藻菌生物质中蛋白质、多糖和油脂的含量分别为111、136和249 mg/g,而脂肪酸组分主要以C16∶0(棕榈酸)、C18∶1(油酸)和C18:2(亚油酸)为主,有利于生物柴油生产. 研究显示,C. vulgaris和A. oryzae共培养不仅能有效去除废水中的各类污染物,而且能实现生物质的资源化利用,在畜禽养殖废水处理中具有潜在的工程应用价值.Abstract: To explore the feasibility of co-cultivation of oleaginous microalgae and fungi for the treatment of simulated livestock wastewater, a co-cultivation system of Chlorella vulgaris and Aspergillus oryzae was constructed. By adjusting different initial inoculum ratios of microalgae and fungi, the removal efficiency of pollutants from wastewater, the incorporation and harvesting of microalgae and fungi, the dry weight and biochemical composition of biomass, as well as the production capacity of biodiesel were systematically studied. The results showed that: (1) C. vulgaris and A. oryzae had synergistic effects in wastewater treatment, and the co-cultivation system was more beneficial to the removal of pollutants than C. vulgaris alone. The optimal inoculation ratio of C. vulgaris-A. oryzae was 25:1, while the removal rates of TN, NH4+-N, TP, COD and Cu(Ⅱ) were 72.51%, 71.19%, 92.23%, 91.47% and 90.38%, respectively. In addition, the co-cultivation system also showed better biological removals for three sulfonamides. The removal rates of sulfadiazine (SMZ), sulfamethoxazole (SMX) and sulfamethoxine (SMM) reached 57.61%, 58.31% and 50.48%, respectively. (2) Filamentous fungi were easy to form spherical particles with microalgae cells. With the strong support of mycelium, C. vulgaris was suspended in wastewater, which improved the removal efficiency of pollutants and realized the efficient harvesting of microalgae. The maximum harvesting efficiency of microalgal biomass was 76.91%, and the contents of biomass and total chlorophyll after harvest reached 1.26 g/L and 15.99 mg/g, respectively. (3) The contents of biomass protein, polysaccharide and lipid were 111, 438 and 249 mg/g, respectively. The main fatty acid components were C16:0 (palmitic acid), C18:1 (oleic acid) and C18:2 (linoleic acid), which were beneficial to biodiesel production. The results indicated that the co-cultivation of C. vulgaris and A. oryzae could effectively remove pollutants in livestock wastewater and realize the resource utilization of biomass, which has a potential application in livestock wastewater treatment.
-
表 1 模拟畜禽养殖废水的水质参数
Table 1. Characteristics of simulated livestock wastewater
参数 数值 NH4+-N浓度/(mg/L) 123.6 TN浓度/(mg/L) 158.6 TP浓度/(mg/L) 20.6 COD浓度/(mg/L) 1008 Cu(Ⅱ)浓度/(mg/L) 0.50 SAs浓度/(mg/L) 0.40 pH 7.40 表 2 初始小球藻和真菌孢子投加量
Table 2. Initial concentration of microalgae and fungi
微藻-真菌比例(M∶F) C. vulgaris投加量/(106 cells/mL) A. oryzae投加量/(105 spores/mL) 100∶0 2.05 0 100∶1 2.05 0.21 50∶1 2.05 0.42 25∶1 2.05 0.84 10∶1 2.05 2.05 1∶1 2.05 20.5 表 3 总生物量与叶绿素含量变化
Table 3. Changes of total biomass and chlorophyll contents
M∶F 干质量/
(g/L)叶绿素a
含量/(mg/g)叶绿素b
含量/(mg/g)总叶绿素
含量/(mg/g)100∶0 0.94±0.019 15.49±1.74 9.93±1.05 25.43±1.86 100∶1 1.10±0.023 11.98±3.65 7.26±0.58 19.24±1.23 50∶1 1.13±0.018 13.24±1.59 7.39±0.81 20.64±0.98 25∶1 1.26±0.012 11.59±0.41 4.05±0.85 15.99±0.82 10∶1 0.91±0.014 8.87±0.77 5.28±0.99 14.16±0.65 1∶1 0.79±0.013 8.19±1.65 5.39±0.63 13.59±0.86 表 4 多糖、蛋白质和油脂的含量
Table 4. The contents of carbohydrate, protein and lipid
M∶F 多糖含量/(mg/g) 蛋白质含量/(mg/g) 油脂含量/(mg/g) 100∶0 124±13 108±6.6 233±17 100∶1 131±16 114±7.5 245±14 50∶1 137±6.2 115±2.3 247±20 25∶1 136±5.1 111±7.4 249±21 10∶1 162±9.6 105±6.5 234±21 1∶1 174±21 109±7.7 258±13 表 5 主要脂肪酸组分的分布
Table 5. Distribution of major fatty acid composition
脂肪酸组分 占比/% 100∶0 100∶1 50∶1 25∶1 10∶1 1∶1 C14∶0 0.99 0.71 0.36 0.43 1.31 1.03 C16∶0 30.68 33.26 35.02 38.20 38.68 40.50 C16∶1 0.57 5.11 4.73 2.43 0.57 2.25 C18∶0 1.89 4.20 2.11 3.41 1.89 1.70 C18∶1 34.26 31.14 35.21 37.52 40.26 40.32 C18∶2 21.71 19.32 17.80 12.53 11.71 7.89 C18∶3 9.90 6.26 4.77 5.48 5.58 6.31 TSFA 33.56 38.17 37.49 42.04 41.88 43.23 TMUFA 34.83 36.25 39.94 39.95 40.83 42.57 TPUFA 31.61 25.58 22.57 18.01 17.29 14.20 -
[1] 蔡敬,赵陆敏,黄旭雄,等.不同氮磷比条件下绿球藻对猪场污水的净化效率[J].环境科学学报,2017,37(10):3696-3701. doi: 10.13671/j.hjkxxb.2017.0149CAI J,ZHAO L M,HUANG X X,et al.Purification efficiency of swine wastewater by Chlorococcum sp. with different N:P ratios[J].Acta Scientiae Circumstantiae,2017,37(10):3696-3701. doi: 10.13671/j.hjkxxb.2017.0149 [2] CAO L P,ZHOU T,LI Z H,et al.Effect of combining adsorption-stripping treatment with acidification on the growth of Chlorella vulgaris and nutrient removal from swine wastewater[J].Bioresource Technology,2018,263:10-16. doi: 10.1016/j.biortech.2018.04.094 [3] 吴恒,张千,刘向阳,等.生物强化方式对生物转盘处理养殖废水效果及生物多样性的影响[J].环境科学研究,2020,33(4):958-968. doi: 10.13198/j.issn.1001-6929.2019.08.25WU H,ZHANG Q,LIU X Y,et al.Comparison of swine wastewater treatment performance and microbial diversity of rotating biological contractor with different bioaugmentation methods[J].Research of Environmental Sciences,2020,33(4):958-968. doi: 10.13198/j.issn.1001-6929.2019.08.25 [4] 肖亚兵,张雪纯,季斌,等.微藻生物强化对藻-菌颗粒污泥的形成影响及污染物去除研究[J].环境科学研究,2022,35(3):761-767.XIAO Y B,ZHANG X C,JI B,et al.Effect of microalgae bio-augmentation on formation of microalgal-bacterial granular sludge and the pollutants removal[J].Research of Environmental Sciences,2022,35(3):761-767. [5] YANG L M,LI H K,WANG Q.A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater[J].Bioresource Technology,2019,275:35-43. doi: 10.1016/j.biortech.2018.12.036 [6] WREDE D,TAHA M,MIRANDA A F,et al.Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells,lipid production and wastewater treatment[J].PLoS One,2014,9(11):e113497. doi: 10.1371/journal.pone.0113497 [7] JAISWAL K K,KUMAR V,GURURANI P,et al.Bio-flocculation of oleaginous microalgae integrated with municipal wastewater treatment and its hydrothermal liquefaction for biofuel production[J].Environmental Technology & Innovation,2022,26:102340. [8] KHANRA A,VASISTHA S,RAI MP,et al.Green bioprocessing and applications of microalgae-derived biopolymers as a renewable feedstock:circular bioeconomy approach[J].Environmental Technology & Innovation,2022,28:102872. [9] YANG J,ZHAO T,CUI X,et al.New insights into the carbon neutrality of microalgae from culture to utilization:a critical review on the algae-based solid biofuels[J].Biomass and Bioenergy,2022,166:106599. doi: 10.1016/j.biombioe.2022.106599 [10] LIN W,CHEN L,TAN Z,et al.Application of filamentous fungi in microalgae-based wastewater remediation for biomass harvesting and utilization:from mechanisms to practical application[J].Algal Research,2022,62:102614. doi: 10.1016/j.algal.2021.102614 [11] LI S X,LI Z,LIU D Y,et al.Response of fungi-microalgae pellets to copper regulation in the removal of sulfonamides and release of dissolved organic matters[J].Journal of Hazardous Materials,2022,434:128932. doi: 10.1016/j.jhazmat.2022.128932 [12] LI S X,YU Y J,GAO X X,et al.Evaluation of growth and biochemical responses of freshwater microalgae Chlorella vulgaris due to exposure and uptake of sulfonamides and copper[J].Bioresource Technology,2021,342:126064. doi: 10.1016/j.biortech.2021.126064 [13] ZHU L D,LI Z H,GUO D B,et al.Cultivation of Chlorella sp. with livestock waste compost for lipid production[J].Bioresource Technology,2017,223:296-300. doi: 10.1016/j.biortech.2016.09.094 [14] 于小娣,师玥,周斌,等.重金属离子胁迫对赤潮微藻的急性毒性[J].环境科学研究,2012,25(9):1047-1053. doi: 10.13198/j.res.2012.09.92.yuxd.003YU X D,SHI Y,ZHOU B,et al.Acute toxic effects of heavy metal ions on growth of marine bloom-forming microalgae[J].Research of Environmental Sciences,2012,25(9):1047-1053. doi: 10.13198/j.res.2012.09.92.yuxd.003 [15] ZHU L D,YAN C,LI Z H.Microalgal cultivation with biogas slurry for biofuel production[J].Bioresource Technology,2016,220:629-636. doi: 10.1016/j.biortech.2016.08.111 [16] CAI T,PARK S Y,LI Y B.Nutrient recovery from wastewater streams by microalgae:status and prospects[J].Renewable and Sustainable Energy Reviews,2013,19:360-369. doi: 10.1016/j.rser.2012.11.030 [17] WANG S K,YANG K X,ZHU Y R,et al.One-step co-cultivation and flocculation of microalgae with filamentous fungi to valorize starch wastewater into high-value biomass[J].Bioresource Technology,2022,361:127625. doi: 10.1016/j.biortech.2022.127625 [18] CAO W X,WANG X,SUN S Q,et al.Simultaneously upgrading biogas and purifying biogas slurry using cocultivation of Chlorella vulgaris and three different fungi under various mixed light wavelength and photoperiods[J].Bioresource Technology,2017,241:701-709. doi: 10.1016/j.biortech.2017.05.194 [19] GUO G Y,CAO W X,SUN S Q,et al.Nutrient removal and biogas upgrading by integrating fungal-microalgal cultivation with anaerobically digested swine wastewater treatment[J].Journal of Applied Phycology,2017,29(6):2857-2866. doi: 10.1007/s10811-017-1207-2 [20] ZHAO Y J,GUO G Y,SUN S Q,et al.Co-pelletization of microalgae and fungi for efficient nutrient purification and biogas upgrading[J].Bioresource Technology,2019,289:121656. doi: 10.1016/j.biortech.2019.121656 [21] LI B,ZHANG T,YANG Z G.Immobilizing unicellular microalga on pellet-forming filamentous fungus:can this provide new insights into the remediation of arsenic from contaminated water?[J].Bioresource Technology,2019,284:231-239. doi: 10.1016/j.biortech.2019.03.128 [22] 崔晗,陈晓,刘莹,等.混合抗生素对铜绿微囊藻的生物效应[J].环境科学研究,2014,27(10):1143-1149. doi: 10.13198/j.issn.1001-6929.2014.10.08CUI H,CHEN X,LIU Y,et al.Study on the biological effects of mixed antibiotics on Microcystis aeruginosa[J].Research of Environmental Sciences,2014,27(10):1143-1149. doi: 10.13198/j.issn.1001-6929.2014.10.08 [23] BODIN H,DANESHVAR A,GROS M,et al.Effects of biopellets composed of microalgae and fungi on pharmaceuticals present at environmentally relevant levels in water[J].Ecological Engineering,2016,91:169-172. doi: 10.1016/j.ecoleng.2016.02.007 [24] MACKAY S,GOMES E,HOLLIGER C,et al.Harvesting of Chlorella sorokiniana by co-culture with the filamentous fungus Isaria fumosorosea:a potential sustainable feedstock for hydrothermal gasification[J].Bioresource Technology,2015,185:353-361. doi: 10.1016/j.biortech.2015.03.026 [25] MURADOV N,TAHA M,MIRANDA A F,et al.Fungal-assisted algal flocculation:application in wastewater treatment and biofuel production[J].Biotechnology for Biofuels,2015,8:24. doi: 10.1186/s13068-015-0210-6 [26] OLIVEIRA H R,BASSIN I D,CAMMAROTA M C.Bioflocculation of cyanobacteria with pellets of Aspergillus niger:effects of carbon supplementation,pellet diameter,and other factors in biomass densification[J].Bioresource Technology,2019,294:122167. doi: 10.1016/j.biortech.2019.122167 [27] LENG L J,LI W T,CHEN J,et al.Co-culture of fungi-microalgae consortium for wastewater treatment:a review[J].Bioresource Technology,2021,330:125008. doi: 10.1016/j.biortech.2021.125008 [28] PIERCEY-NORMORE M D,ATHUKORALA S N P.Interface between fungi and green algae in lichen associations[J].Botany,2017,95(10):1005-1014. doi: 10.1139/cjb-2017-0037 [29] XIA C J,ZHANG J G,ZHANG W D,et al.A new cultivation method for microbial oil production:cell pelletization and lipid accumulation by Mucor circinelloides[J].Biotechnology for Biofuels,2011,4:15. doi: 10.1186/1754-6834-4-15 [30] DU Z Y,ALVARO J,HYDEN B,et al.Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata[J].Biotechnology for Biofuels,2018,11:174. doi: 10.1186/s13068-018-1172-2 [31] YIN Z H,LI S X,HU D,et al.Performance evaluation of different chitosan-clay composite materials for efficient harvesting of Chlorella vulgaris and impacts on downstream bioproduct processing and water reusability[J].Chemical Engineering Journal,2022,430:132892. doi: 10.1016/j.cej.2021.132892 [32] GUI M M,LEE K T,BHATIA S.Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock[J].Energy,2008,33(11):1646-1653. doi: 10.1016/j.energy.2008.06.002 [33] ZHENG H L,WU X D,ZOU G Y,et al.Cultivation of Chlorella vulgaris in manure-free piggery wastewater with high-strength ammonium for nutrients removal and biomass production:effect of ammonium concentration,carbon/nitrogen ratio and pH[J].Bioresource Technology,2019,273:203-211. doi: 10.1016/j.biortech.2018.11.019 [34] LI X,YANG C P,ZENG G M,et al.Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations[J].Algal Research,2020,46:101804. doi: 10.1016/j.algal.2020.101804 [35] KNOTHE G.Will biodiesel derived from algal oils live up to its promise?a fuel property assessment[J].Lipid Technology,2011,23(11):247-249. doi: 10.1002/lite.201100151 [36] ZHANG S X,PANG X F,YUE Z,et al.Sulfonamides removed from simulated livestock and poultry breeding wastewater using an in situ electro-Fenton process powered by photovoltaic energy[J].Chemical Engineering Journal,2020,397:125466. doi: 10.1016/j.cej.2020.125466 [37] CHEN Z H,SHAO S S,HE Y J,et al.Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1[J].Bioresource Technology,2020,302:122806. doi: 10.1016/j.biortech.2020.122806 -