Characteristics and Spatiotemporal Variation of PM2.5 and O3 in Shandong Province
-
摘要: 山东省PM2.5-O3复合污染特征突出,空间差异性明显,本文基于2016—2020年国控和省控环境空气自动监测站监测数据以及同期各气象代表站气象监测数据,分析PM2.5和O3时空分布的变化特征,初步探究其与气象因子及前体物的关系. 结果表明:①2016—2020年山东省空气质量逐步改善,优良天数比例上升了7.1%,重污染天数比例下降了3.5%. 除O3年评价值上升9.6%以外,SO2、PM10、PM2.5、CO和NO2的浓度均下降,降幅依次为61.3%、29.8%、28.6%、26.3%和11.4%. 各市PM2.5年评价值均下降(范围为18.4%~34.9%);除德州市外,其他15市O3年评价值均上升,滨州市的升幅(30.8%)最大. 1月PM2.5平均浓度最高,呈现先下降后上升的年变化趋势,6月O3平均浓度最高,且逐年上升. ②山东省PM2.5和O3均呈现内陆地区高于沿海地区的分布特征,PM2.5浓度在西部内陆地区较高,O3浓度在中北部内陆地区较高,PM2.5-O3复合污染特征在中西部地区较明显. 统计期间共计出现PM2.5-O3复合污染日224 d,分布在2—11月,出现天数逐年减少. ③为探究PM2.5-O3复合污染的影响因素及气象特征,进行相关性分析及气象因子阈值筛查,结果表明,PM2.5日均浓度和O3_8 h (臭氧日最大8小时滑动平均值)与其主要前体物和气象因子均呈现相反的相关关系,且对不同因子的响应有一定区域性差异. 当气温为14.9~24.1 ℃、相对湿度为55.5%~75.1%、风速为0.6~2.9 m/s、气压为992.8~1 018.8 hPa时PM2.5-O3复合污染易于发生,该条件下大部分城市的气温、相对湿度和气压平均值介于PM2.5和O3污染单独发生时的对应因子平均值,但平均风速小于PM2.5和O3污染单独发生的平均风速. 研究显示,“十三五”期间山东省PM2.5浓度波动下降,O3浓度波动上升,二者的协同关系日趋明显,气象因素对PM2.5和O3的生成和累积有一定影响.Abstract: The composite characteristics of PM2.5-O3 in Shandong Province were relatively prominent and also showed obvious spatial differences. To study characteristics of co-pollution of surface O3 and PM2.5 in Shandong province, the spatial distribution of the PM2.5 and O3 concentration was analyzed, and the relationship between O3 and PM2.5, meteorological parameters and their precursors was explored based on the monitoring data of national and provincial ambient air quality monitoring sites and meteorological sites from 2016 to 2020. The results indicated that: (1) During 2016-2020, the air quality in Shandong Province improved gradually, the number of days with excellent and good air quality increased by 7.1%, and heavily polluted days decreased by 3.5%. Except for the 90th percentile of the maximum daily 8-hour average of the O3 concentration (O3 MDA8 90th), which increased by 9.6%, the concentration of SO2, PM10, PM2.5, CO and NO2 decreased by 61.3%, 29.8%, 28.6%, 26.3% and 11.4%, respectively. The annual average PM2.5 values of all cities in Shandong Province decreased by 18.4% to 34.9%. The O3 MDA8 90th increased in all the cities except for Dezhou City. The largest increasing ratio of O3 MDA8 90th was 30.8% in Binzhou City. The highest average PM2.5 concentration occurred in January, while the highest average O3 concentration occurred in June. The PM2.5 concentration in January decreased and then increased from 2016 to 2020, while the O3 concentration in June increased from 2016 to 2020. (2) The PM2.5 and O3 concentration in inland cities was higher than those in coastal cities. PM2.5 concentration in the western inland area was higher, and O3 concentration in central and northern inland area was higher. The synergistic pollution characteristics of PM2.5 and O3 were obvious in the central and western Shandong Province. During the whole study period, there were 224 days of the synergistic pollution of PM2.5 and O3, which mainly occurred from February to November. The number of PM2.5 and O3 synergistic pollution days decreased year by year. (3) The correlations between PM2.5 or O3 concentration and meteorological factors, and the thresholds of meteorological factors during PM2.5, O3 or PM2.5-O3 composite pollutant days were also studied. The results showed that the daily average PM2.5 and O3_8 h concentrations had negative correlations with their precursors and meteorological parameters. Moreover, there were spatial differences in the correlations between PM2.5 and O3, their precursors and meteorological parameters. The statistical results showed that PM2.5-O3 complex pollution was favorable to occur when the atmospheric temperature, relative humidity, wind speed, and atmospheric pressure were 14.9-24.1 °C, 55.5%-75.1%, 0.6-2.9 m/s, and 992.8-1018.8 hPa, respectively. In most cities of Shandong Province, the average values of atmospheric temperature, relative humidity and atmospheric pressure during the synergistic pollution of PM2.5 and O3 were between those during the PM2.5 pollution and those during the O3 pollution. But the average wind speed during the synergistic pollution of PM2.5 and O3 was lower than those during the PM2.5 pollution and during the O3 pollution. In summary, the study showed that the PM2.5 concentration decreased overall, while O3 concentration increased, and the synergistic changes of PM2.5 and O3 became more obvious during the ‘13th Five-Year Plan’ period. Meteorological factors played a role in the formation and accumulation of PM2.5 and O3.
-
表 1 2016—2020年山东省常规污染物、优良日和重污染日率、综合指数及气象要素平均值
Table 1. Annual average values of air pollutants, proportions of excellent, good and heavily polluted days, composite air quality index and meteorological parameters in Shandong Province from 2016 to 2020
年份 SO2年评
价值/(μg/m3)NO2年评
价值/(μg/m3)PM10年评
价值/(μg/m3)PM2.5年评
价值/(μg/m3)O3年评
价值/(μg/m3)CO年平均值/
(mg/m3)优良天数
占比/%重污染
天数占比/%综合指数 年均
气温/℃年均相对
湿度(RH)/%2016 31 35 114 63 157 1.9 63.0 5.9 6.29 15.1 60.4 2017 21 34 101 54 171 1.7 65.1 3.5 5.67 15.1 57.8 2018 15 33 92 47 169 1.5 68.0 3.1 5.16 15.2 61.0 2019 14 35 94 50 186 1.5 59.7 3.4 5.42 15.3 62.9 2020 12 31 80 45 172 1.4 70.1 2.4 4.84 14.7 65.5 表 2 2016—2020年山东省各污染物作为首要污染物的天数
Table 2. The number of the days of different primary pollutants in Shandong Province from 2016 to 2020
年份 各污染物作为首要污染物的天数/d PM10 O3_8 h PM2.5 NO2 SO2 2016 103.4 94.1 132.3 1.8 0.1 2017 106.1 118.9 102.9 3.1 0 2018 103.0 133.7 84.4 4.8 0 2019 92.6 141.5 91.1 7.0 0 2020 77.4 140.2 94.5 6.9 0 表 3 2016—2020年山东省各月累积PM2.5-O3复合污染日统计
Table 3. The monthly numbers of PM2.5-O3 co-pollution days in Shandong Province from 2016 to 2020
年份 PM2.5-O3复合污染日数/d 1月 2月 3月 4月 5月 6月 7月 9月 10月 11月 12月 合计 2016 0 0 12 22 16 12 11 49 2 0 0 124 2017 0 0 1 10 4 19 3 4 0 0 0 41 2018 0 0 10 14 2 0 0 0 0 1 0 27 2019 0 1 0 9 1 0 1 0 3 0 0 15 2020 0 0 0 3 2 2 0 0 10 0 0 17 表 4 山东省各市PM2.5及O3_8 h与其前体物和气象因素的双变量相关分析
Table 4. Bivariate correlation analysis between PM2.5 and O3, their precursors and meteorological factors in each city of Shandong Province
地区 v T RH P SO2 NO2 CO PM2.5-O3_8 h v1) v-
PM2.5v-
O3_8 hT2) T-
PM2.5T-
O3_8 hRH3) RH-
PM2.5RH-
O3_8 hP4) P-
PM2.5P-
O3_8 hSO25) SO2-
PM2.5SO2-
O3_8 hNO26) NO2-
PM2.5NO2-
O3_8 hCO7) CO-
PM2.5CO-
O3_8 hPM2.58) O3_8 h9) O3_8 h-
PM2.5济宁市 0.9 −0.18 −0.11 16.1 −0.59 0.77 62.2 0.14 −0.27 1016.2 0.13 −0.23 15.5 0.43 −0.03 35.0 0.62 −0.39 1.5 0.85 −0.37 53.0 184.5 −0.34 临沂市 2.1 −0.17 −0.16 14.9 −0.50 0.75 64.4 0.08 −0.08 1017.4 0.41 −0.62 13.5 0.63 −0.20 36.0 0.7 −0.27 1.6 0.85 −0.20 53.0 182.5 −0.25 潍坊市 1.5 −0.33 −0.08 14.6 −0.49 0.74 61.6 0.07 −0.13 1017.3 0.36 −0.64 12.0 0.59 −0.36 34.5 0.69 −0.33 1.7 0.9 −0.36 50.5 174.0 −0.24 泰安市 1.2 −0.19 −0.07 14.7 −0.51 0.78 61.3 0.17 −0.16 1017.6 0.39 −0.68 14.5 0.51 −0.09 32.5 0.64 −0.36 1.5 0.8 −0.39 50.5 189.0 −0.30 济南市 1.5 −0.20 0.15 15.5 −0.51 0.83 54.6 0.15 −0.18 1017.2 0.38 −0.72 14.0 0.58 −0.30 38.0 0.61 −0.41 1.6 0.83 −0.38 50.5 195.0 −0.33 淄博市 1.2 −0.33 −0.08 14.4 −0.49 0.74 63.5 0.07 −0.13 1017.2 0.36 −0.64 18.5 0.59 −0.36 40.0 0.69 −0.33 1.9 0.9 −0.36 54.5 196.0 −0.24 滨州市 1.6 −0.31 −0.13 14.3 −0.41 0.77 61.5 0.15 −0.05 1017.1 0.22 −0.55 18.0 0.51 −0.17 37.5 0.64 −0.34 1.6 0.85 −0.17 50.0 197.5 −0.22 东营市 1.4 −0.29 0.02 14.7 −0.40 0.8 60.6 0.15 −0.07 1017.3 0.27 −0.68 15.0 0.47 −0.07 33.5 0.63 −0.28 1.4 0.86 −0.13 46.5 188.0 −0.19 聊城市 1.0 −0.16 −0.07 14.7 −0.56 0.8 66.4 0.24 −0.18 1017.0 0.12 −0.22 14.0 0.36 −0.07 36.5 0.58 −0.40 1.7 0.86 −0.38 56.0 188.0 −0.36 德州市 1.3 −0.19 −0.08 14.6 −0.54 0.84 61.8 0.26 −0.15 1017.0 0.39 −0.74 14.0 0.51 −0.28 31.5 0.63 −0.51 1.6 0.88 −0.43 52.5 191.5 −0.39 菏泽市 1.9 −0.19 0.04 15.9 −0.62 0.79 63.4 0.26 −0.33 1016.8 0.38 −0.54 12.5 0.31 −0.04 31.5 0.55 −0.39 1.4 0.84 −0.35 56.0 179.5 −0.40 枣庄市 1.3 −0.02 −0.07 15.8 −0.56 0.71 63.9 0.07 −0.24 1017.3 0.25 −0.31 16.5 0.41 −0.01 32.0 0.69 −0.29 1.4 0.89 −0.35 56.5 183.0 −0.29 日照市 2.2 −0.03 −0.07 14.4 −0.44 0.67 67.9 0.1 0.09 1017.3 0.34 −0.56 9.0 0.59 −0.17 33.0 0.63 −0.12 1.5 0.82 −0.24 40.5 163.0 −0.20 青岛市 2.6 −0.08 −0.22 14.1 −0.47 0.66 68.9 0.12 0.18 1017.3 0.04 −0.05 8.0 0.69 −0.34 30.5 0.68 −0.27 1.4 0.87 −0.26 35.0 146.5 −0.20 威海市 2.7 −0.26 −0.06 13.9 −0.33 0.57 62.0 0.08 −0.05 1017.2 0.21 −0.53 5.5 0.64 −0.01 18.0 0.71 −0.12 1.0 0.87 −0.11 26.0 151.0 0.03 烟台市 2.7 −0.18 −0.09 13.5 −0.34 0.67 63.0 0.08 −0.01 1017.3 0.25 −0.58 8.5 0.64 −0.22 25.5 0.71 −0.20 1.3 0.83 −0.26 33.0 155.5 −0.11 内陆地区 1.4 0.21 0.05 15.0 0.52 0.78 62.1 0.15 0.16 1017.1 0.31 0.55 14.8 0.49 0.17 34.9 0.64 0.36 1.6 0.86 0.32 52.5 187.4 0.30 沿海地区 2.6 0.14 0.11 13.9 0.4 0.64 65.4 0.1 0.05 1017.3 0.21 0.43 7.8 0.64 0.19 26.8 0.68 0.18 1.3 0.85 0.22 33.6 154.0 0.12 山东省 1.7 −0.19 −0.09 14.7 −0.49 0.74 62.9 0.14 −0.11 1017.2 0.28 −0.52 13.1 0.53 −0.17 32.8 0.65 −0.31 1.5 0.86 −0.30 47.8 179.0 −0.25 注:1)v单位为m/s;2)T单位为℃;3)RH单位为%;4)P单位为hPa;5)SO2浓度单位为μg/m3;6)NO2浓度单位为μg/m3;7)CO浓度单位为mg/m3;8)PM2.5浓度单位为μg/m3;9)O3_8 h浓度单位为μg/m3. -
[1] 花丛,江琪,迟茜元,等.我国中东部地区2015—2020年夏半年PM2.5和臭氧复合污染气象特征分析[J].环境科学研究,2022,35(3):650-658.HUA C,JIANG Q,CHI X Y,et al.Meteorological characteristics of PM2.5-O3 air combined pollution in central and eastern China in the summer half years of 2015-2020[J].Research of Environmental Sciences,2022,35(3):650-658. [2] 董佳丹,陈晓玲,蔡晓斌,等.基于中国大气环境监测站点的2015—2019年大气质量状况时空变化分析[J].地球信息科学学报,2020,22(10):1983-1995. doi: 10.12082/dqxxkx.2020.200212DONG J D,CHEN X L,CAI X B,et al.Analysis of the temporal and spatial variation of atmospheric quality from 2015 to 2019 based on China atmospheric environment monitoring station[J].Journal of Geo-Information Science,2020,22(10):1983-1995. doi: 10.12082/dqxxkx.2020.200212 [3] 陈菁,彭金龙,徐彦森.北京市2014—2020年PM2.5和O3时空分布与健康效应评估[J].环境科学,2021,42(9):4071-4082.CHEN J,PENG J L,XU Y S.Spatiotemporal distribution and health impacts of PM2.5 and O3 in Beijing,from 2014 to 2020[J].Environmental Science,2021,42(9):4071-4082. [4] 张凤英,周密,李一龙,等.“十三五”期间中国生态环境质量变化特征[J].中国环境监测,2021,37(3):1-8. doi: 10.19316/j.issn.1002-6002.2021.03.01ZHANG F Y,ZHOU M,LI Y L,et al.Characteristics of eco-environmental quality changes in China during the ‘13th Five-Year Plan’ period[J].Environmental Monitoring in China,2021,37(3):1-8. doi: 10.19316/j.issn.1002-6002.2021.03.01 [5] 王君悦,刘朝顺.基于WRF-Chem的长三角地区PM2.5和O3污染协同控制研究[J].环境科学学报,2022,42(7):32-42.WANG J Y,LIU C S.Study on the synergistic control of PM2.5 and O3 pollution in the Yangtze River Delta region based on WRF-Chem model[J].Acta Scientiae Circumstantiae,2022,42(7):32-42. [6] 刘可欣,卢苗苗,张裕芬,等.天津市夏秋季O3-PM2.5复合污染特征及气象成因分析[J].环境科学学报,2021,41(9):3650-3662.LIU K X,LU M M,ZHANG Y F,et al.Analysis of characteristics and meteorological causes of O3-PM2.5 compound pollution in summer and autumn over Tianjin[J].Acta Scientiae Circumstantiae,2021,41(9):3650-3662. [7] 邵平,辛金元,安俊琳,等.长三角工业区夏季近地层臭氧和颗粒物污染相互关系研究[J].大气科学,2017,41(3):618-628. doi: 10.3878/j.issn.1006-9895.1609.16173SHAO P,XIN J Y,AN J L,et al.An analysis on the relationship between ground-level ozone and particulate matter in an industrial area in the Yangtze River Delta during summer time[J].Chinese Journal of Atmospheric Sciences,2017,41(3):618-628. doi: 10.3878/j.issn.1006-9895.1609.16173 [8] 李红,鲍捷萌,毕方,等.PM2.5与臭氧污染协同控制:挑战与应对[J].世界环境,2020(5):24-29.LI H,BAO J M,BI F,et al.Synergistic control of PM2.5 and ozone pollution:challenges and responses[J].World Environment,2020(5):24-29. [9] LI K,JACOB D J,LIAO H,et al.A two-pollutant strategy for improving ozone and particulate air quality in China[J].Nature Geoscience,2019,12(11):906-910. doi: 10.1038/s41561-019-0464-x [10] 翁佳烽,梁晓媛,邓开强,等.不同季节肇庆市PM2.5和O3污染特征及潜在源区分析[J].环境科学研究,2021,34(6):1306-1317.WENG J F,LIANG X Y,DENG K Q,et al.Characteristics and potential sources of PM2.5 and O3 in different seasons in Zhaoqing City[J].Research of Environmental Sciences,2021,34(6):1306-1317. [11] 李红,彭良,毕方,等.我国PM2.5与臭氧污染协同控制策略研究[J].环境科学研究,2019,32(10):1763-1778.LI H,PENG L,BI F,et al.Strategy of coordinated control of PM2.5 and ozone in China[J].Research of Environmental Sciences,2019,32(10):1763-1778. [12] 栗泽苑,杨雷峰,华道柱,等.2013—2018年中国近地面臭氧浓度空间分布特征及其与气象因子的关系[J].环境科学研究,2021,34(9):2094-2104. doi: 10.13198/j.issn.1001-6929.2021.06.16LI Z Y,YANG L F,HUA D Z,et al.Spatial pattern of surface ozone and its relationship with meteorological variables in China during 2013-2018[J].Research of Environmental Sciences,2021,34(9):2094-2104. doi: 10.13198/j.issn.1001-6929.2021.06.16 [13] ZHU J,CHEN L,LIAO H,et al.Correlations between PM2.5 and ozone over China and associated underlying reasons[J].Atmosphere,2019,10(7):352. doi: 10.3390/atmos10070352 [14] JIN Q F,MA X Q,WANG G Y,et al.Dynamics of major air pollutants from crop residue burning in mainland China,2000-2014[J].Journal of Environmental Sciences,2018,70:190-205. doi: 10.1016/j.jes.2017.11.024 [15] YUAN M,HUANG Y P,SHEN H F,et al.Effects of urban form on haze pollution in China:spatial regression analysis based on PM2.5 remote sensing data[J].Applied Geography,2018,98:215-223. doi: 10.1016/j.apgeog.2018.07.018 [16] 许海超,李子君,姜爱霞,等.山东省空气质量指数的时空分布特征[J].济南大学学报(自然科学版),2017,31(2):168-175. doi: 10.13349/j.cnki.jdxbn.20170110.012XU H C,LI Z J,JIANG A X,et al.Temporal and spatial distribution characteristics of air quality index in Shandong Province,China[J].Journal of University of Jinan (Science and Technology),2017,31(2):168-175. doi: 10.13349/j.cnki.jdxbn.20170110.012 [17] 吴双利,乔燕.“十三五”期间滨州市城市空气质量状况分析[J].黑龙江环境通报,2022,35(2):48-49. doi: 10.3969/j.issn.1674-263X.2022.02.017WU S L,QIAO Y.Analysis of urban air quality in Binzhou during the 13th five year plan[J].Heilongjiang Environmental Journal,2022,35(2):48-49. doi: 10.3969/j.issn.1674-263X.2022.02.017 [18] 赵修敏,王绪新,王莉.聊城市2020年空气质量特征分析[J].资源节约与环保,2022(4):39-41. doi: 10.3969/j.issn.1673-2251.2022.04.011 [19] 王悦静,刘衍庆,曲红拥.烟台市环境空气质量影响因素相关性分析[J].河南科技,2022,41(16):100-104. doi: 10.19968/j.cnki.hnkj.1003-5168.2022.16.022WANG Y J,LIU Y Q,QU H Y.Correlation analysis of the ambient air quality factors in Yantai[J].Henan Science and Technology,2022,41(16):100-104. doi: 10.19968/j.cnki.hnkj.1003-5168.2022.16.022 [20] 隋玟萱,王颢樾,唐晓,等.山东省2015年PM2.5和O3污染时空分布特征[J].中国环境监测,2019,35(2):59-69.SUI M X,WANG H Y,TANG X,et al.Spatial-temporal distribution characteristics of PM2.5 and O3 over Shandong Province in 2015[J].Environmental Monitoring in China,2019,35(2):59-69. [21] 周梦鸽,杨依,孙媛,等.2016—2020年山东省空气质量时空分布特征及影响因素分析[J].环境科学,2022,43(6):2937-2946.ZHOU M G,YANG Y,SUN Y,et al.Spatio-temporal characteristics of air quality and influencing factors in Shandong Province from 2016 to 2020[J].Environmental Science,2022,43(6):2937-2946. [22] 胡京南,柴发合,段菁春,等.京津冀及周边地区秋冬季PM2.5爆发式增长成因与应急管控对策[J].环境科学研究,2019,32(10):1704-1712.HU J N,CHAI F H,DUAN J C,et al.Explosive growth of PM2.5 during the autumn and winter seasons in the JingJin-Ji and surrounding area and its control measures with emergency response[J].Research of Environmental Sciences,2019,32(10):1704-1712. [23] 冯子钰,施润和.中国近地面PM2.5浓度与排放的时空分布及其关联分析[J].地球信息科学学报,2021,23(7):1221-1230. doi: 10.12082/dqxxkx.2021.200367FENG Z Y,SHI R H.Spatio-temporal features and the association of ground-level PM2.5 concentration and its emission in China[J].Journal of Geo-Information Science,2021,23(7):1221-1230. doi: 10.12082/dqxxkx.2021.200367 [24] 蒋美青,陆克定,苏榕,等.我国典型城市群O3污染成因和关键VOCs活性解析[J].科学通报,2018,63(12):1130-1141. doi: 10.1360/N972017-01241JIANG M Q,LU K D,SU R,et al.Ozone formation and key VOCs in typical Chinese City clusters[J].Chinese Science Bulletin,2018,63(12):1130-1141. doi: 10.1360/N972017-01241 [25] 陈兵红,靳全锋,柴红玲,等.浙江省大气PM2.5时空分布及相关因子分析[J].环境科学学报,2021,41(3):817-829.CHEN B H,JIN Q F,CHAI H L,et al.Spatiotemporal distribution and correlation factors of PM2.5 concentrations in Zhejiang Province[J].Acta Scientiae Circumstantiae,2021,41(3):817-829. [26] 蔡彦枫,王体健,谢旻,等.南京地区大气颗粒物影响近地面臭氧的个例研究[J].气候与环境研究,2013,18(2):251-260. doi: 10.3878/j.issn.1006-9585.2012.11111CAI Y F,WANG T J,XIE M,et al.Impacts of atmospheric particles on surface ozone in Nanjing[J].Climatic and Environmental Research,2013,18(2):251-260. doi: 10.3878/j.issn.1006-9585.2012.11111 [27] 赖安琪,陈晓阳,刘一鸣,等.珠江三角洲高质量浓度PM2.5和O3复合污染特征[J].中山大学学报(自然科学版),2018,57(4):30-36.LAI A Q,CHEN X Y,LIU Y M,et al.Characteristics of complex pollution with high concentrations of PM2.5 and O3 over the Pearl River Delta,China[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2018,57(4):30-36. [28] 张淼,丁椿,李彦,等.山东省O3时空分布及影响因素分析[J].环境科学,2021,42(12):5723-5735.ZHANG M,DING C,LI Y,et al.Spatial and temporal distribution of ozone and influencing factors in Shandong Province[J].Environmental Science,2021,42(12):5723-5735. [29] 王庆良,李倩倩,童东革,等.光化学反应中自由基的作用及反应影响因素的研究进展[J].环境化学,2020,39(2):301-316. doi: 10.7524/j.issn.0254-6108.2019061802WANG Q L,LI Q Q,TONG D G,et al.Research progress on the influencing factors and the role of free radicals in photochemistry reaction[J].Environmental Chemistry,2020,39(2):301-316. doi: 10.7524/j.issn.0254-6108.2019061802 [30] 王川,夏士勇,曹礼明,等.深圳西部城区大气O3污染特征及超标成因[J].中国环境科学,2020,40(4):1414-1420. doi: 10.3969/j.issn.1000-6923.2020.04.003WANG C,XIA S Y,CAO L M,et al.Study on the characteristics and the cause of atmospheric O3 pollution in western urban of Shenzhen[J].China Environmental Science,2020,40(4):1414-1420. doi: 10.3969/j.issn.1000-6923.2020.04.003 [31] LI J,YANG W Y,WANG Z F,et al.Modeling study of surface ozone source-receptor relationships in East Asia[J].Atmospheric Research,2016,167:77-88. doi: 10.1016/j.atmosres.2015.07.010 -