留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤锑胁迫下赤子爱胜蚓在个体和细胞水平的毒性效应

程佳琪 马宏瑞 常健 潘明慧 李琴莲 王谦 侯红

程佳琪, 马宏瑞, 常健, 潘明慧, 李琴莲, 王谦, 侯红. 土壤锑胁迫下赤子爱胜蚓在个体和细胞水平的毒性效应[J]. 环境科学研究, 2023, 36(1): 63-71. doi: 10.13198/j.issn.1001-6929.2022.11.10
引用本文: 程佳琪, 马宏瑞, 常健, 潘明慧, 李琴莲, 王谦, 侯红. 土壤锑胁迫下赤子爱胜蚓在个体和细胞水平的毒性效应[J]. 环境科学研究, 2023, 36(1): 63-71. doi: 10.13198/j.issn.1001-6929.2022.11.10
CHENG Jiaqi, MA Hongrui, CHANG Jian, PAN Minghui, LI Qinlian, WANG Qian, HOU Hong. Toxicity of Soil Antimony to Eisenia fetida at Individual and Cellular Levels[J]. Research of Environmental Sciences, 2023, 36(1): 63-71. doi: 10.13198/j.issn.1001-6929.2022.11.10
Citation: CHENG Jiaqi, MA Hongrui, CHANG Jian, PAN Minghui, LI Qinlian, WANG Qian, HOU Hong. Toxicity of Soil Antimony to Eisenia fetida at Individual and Cellular Levels[J]. Research of Environmental Sciences, 2023, 36(1): 63-71. doi: 10.13198/j.issn.1001-6929.2022.11.10

土壤锑胁迫下赤子爱胜蚓在个体和细胞水平的毒性效应

doi: 10.13198/j.issn.1001-6929.2022.11.10
基金项目: 国家重点研发计划项目(No.2020YFC1807703, 2019YFC1804603)
详细信息
    作者简介:

    程佳琪(1996-),女,河北张家口人,1539764697@qq.com

    通讯作者:

    ②王谦(1975-),女,北京人,博士,主要从事流域、土壤、农业农村污染治理研究

    ①侯红(1963-),女,山西太原人,研究员,博士,主要从事土壤重金属生物地球化学循环和生态环境效应研究,houhong@craes.org.cn

  • 中图分类号: X171.5

Toxicity of Soil Antimony to Eisenia fetida at Individual and Cellular Levels

Funds: National Key Research and Development Program of China (No.2020YFC1807703, 2019YFC1804603)
  • 摘要: 随着锑(Sb)矿的开采,Sb及其化合物对矿区周围生物暴露风险增大,Sb污染研究在国内外日益受到重视. 为阐明矿区Sb污染土壤对周边生物的毒性效应,本文通过向人工土壤添加焦锑酸钾(KSbO6H6)模拟受污染土壤,分别探究了Sb对土壤无脊椎模式生物——赤子爱胜蚓(Eisenia fetida)存活、Sb富集、总蛋白、抗氧化系统酶、丙二醛(malondialdehyde, MDA)的影响,并利用生物标志物响应指数(biomarker response index, BRI)对Sb胁迫下蚯蚓的毒性效应进行综合评价. 结果表明:①蚯蚓死亡率与土壤Sb浓度和暴露时间剂量效应关系明显,经计算蚯蚓56 d LC50为4 380.37 mg/kg. ②蚯蚓对Sb仅有少量吸收,最高处理组(12 800 mg/kg)在暴露56 d后Sb富集量仅为213 mg/kg. ③超氧化物歧化酶(superoxide dismutase, SOD)、过氧化物酶(peroxidase, POD)、MDA在暴露28 d内呈现先升高后降低的倒“U”型变化,过氧化氢酶(catalase, CAT)总体呈现“上升—下降—上升—下降”的变化趋势;总蛋白随时间和处理水平增加呈现不断下降趋势. ④在暴露期间共计24个含Sb处理组中,20个处理受到中等及以下水平健康影响,仅有4个处理组BRI小于2.5,属于严重健康影响. 研究显示,总蛋白、SOD、CAT、POD、MDA均对Sb比较敏感,Sb对赤子爱胜蚓的毒性效应不强,该研究结果可为我国土壤Sb污染提供关键毒理学数据.

     

  • 图  1  蚯蚓存活率与土壤实测总Sb的剂量-效应关系

    Figure  1.  Dose response curves between the survival rate of Eisenia fetida and the total concentration of Sb in soil

    图  2  不同暴露时间赤子爱胜蚓对Sb的富集

    Figure  2.  The Sb concentration of enriched within Eisenia fetida under different exposure times

    图  3  暴露期间赤子爱胜蚓总蛋白含量、CAT活性、POD活性、SOD活性和MDA含量的变化情况

    Figure  3.  The changes of total protein content, CAT activity, POD activity, SOD activity and MDA content in Eisenia fetida during exposure

    图  4  赤子爱胜蚓在锑胁迫下的生物标志物响应指数

    Figure  4.  The biomarker response index of Eisenia fetida under Sb stress

    表  1  不同试验组蚯蚓锑富集系数

    Table  1.   Sb bioconcentration factors of Eisenia fetida in different experimental groups

    暴露时间/d富集系数
    3901)7301)1 2201)2 2501)5 8701)11 7301)
    140.043 7b0.047 7a0.037 5c0.020 9d0.013 3e0.008 1f
    280.106 2a0.061 1b0.053 0c0.048 5d0.026 7e0.015 1f
    560.117 2a0.076 8b0.066 4c0.051 4d0.034 2e0.018 2f
    注:1)表示实测土壤中Sb含量,单位为mg/kg. 不同小写字母表示不同剂量处理组下蚯蚓Sb富集系数存在显著性差异(P<0.05).
    下载: 导出CSV

    表  2  生物标志物变异水平及得分

    Table  2.   Level of variation and corresponding scores of biomarkers

    暴露时间生物标
    志物
    S1处理组S2处理组S3处理组S4处理组S5处理组S6处理组
    变异
    水平
    得分变异
    水平
    得分变异
    水平
    得分变异
    水平
    得分变异
    水平
    得分变异
    水平
    得分
    7 d总蛋白1.5%421.5%335.9%339.5%334.1%344.4%3
    CAT21.1%379.0%295.4%281.0%273.1%2120.0%1
    SOD43.2%317.1%439.8%313.6%478.4%248.5%3
    MDA21.4%39.0%419.0%447.0%319.3%430.6%3
    POD4.7%414.3%435.0%347.0%342.9%319.0%4
    14 d总蛋白25.3%334.7%357.4%246.6%359.3%255.4%2
    CAT39.3%343.7%388.3%29.3%418.9%4173.1%1
    SOD32.2%332.9%370.4%223.7%315.0%49.0%4
    MDA11.4%425.0%318.2%415.9%419.0%440.3%3
    POD4.0%428.0%31.0%428.0%313.0%419.0%4
    21 d总蛋白15.1%435.8%349.7%338.5%346.7%349.6%3
    CAT67.5%271.8%2160.1%1271.6%1258.8%1233.5%1
    SOD5.6%444.4%378.5%219.5%467.2%294.0%2
    MDA22.0%37.9%419.0%447.3%318.0%451.0%2
    POD39.4%334.0%317.0%447.0%319.0%479.0%2
    28 d总蛋白30.0%358.4%257.6%264.4%266.2%268.7%2
    CAT29.9%327.1%350.1%291.3%235.2%393.5%2
    SOD43.4%366.8%244.9%344.9%368.8%293.7%2
    MDA30.4%313.0%415.1%458.7%210.0%41.1%4
    POD44.9%35.0%449.2%367.0%2123.7%161.0%2
    下载: 导出CSV
  • [1] 何孟常,云影.锑矿区土壤中锑的形态及生物有效性[J].环境化学,2003,22(2):126-130. doi: 10.3321/j.issn:0254-6108.2003.02.005

    HE M C,YUN Y.The speciation and bioavailability of antimony in the soils near antimony mine area[J].Environmental Chemistry,2003,22(2):126-130. doi: 10.3321/j.issn:0254-6108.2003.02.005
    [2] 何孟常,万红艳.环境中锑的分布、存在形态及毒性和生物有效性[J].化学进展,2004,16(1):131-135. doi: 10.3321/j.issn:1005-281X.2004.01.020

    HE M C,WAN H Y.Distribution,speciation,toxicity and bioavailability of antimony in the environment[J].Progress in Chemistry,2004,16(1):131-135. doi: 10.3321/j.issn:1005-281X.2004.01.020
    [3] BOLAN N,KUMAR M,SINGH E,et al.Antimony contamination and its risk management in complex environmental settings:a review[J].Environment International,2022,158:106908. doi: 10.1016/j.envint.2021.106908
    [4] 刘灵飞,龙健,万洪富,等.贵州喀斯特山区锑冶炼厂对农业土壤污染特征的影响及风险评价[J].土壤,2013,45(6):1036-1047. doi: 10.13758/j.cnki.tr.2013.06.013

    LIU L F,LONG J,WAN H F,et al.Distribution characteristics and risk assessment of heavy metals in agricultural soils in an abandoned antimony smelter in Guizhou Karst areas[J].Soils,2013,45(6):1036-1047. doi: 10.13758/j.cnki.tr.2013.06.013
    [5] QI C C,WU F C,DENG Q J,et al.Distribution and accumulation of antimony in plants in the super-large Sb deposit areas,China[J].Microchemical Journal,2011,97(1):44-51. doi: 10.1016/j.microc.2010.05.016
    [6] GUO W J,ZHANG Z Y,WANG H,et al.Exposure characteristics of antimony and coexisting arsenic from multi-path exposure in typical antimony mine area[J].Journal of Environmental Management,2021,289:112493. doi: 10.1016/j.jenvman.2021.112493
    [7] JONES R D.Survey of antimony workers:mortality 1961-1992[J].Occupational and Environmental Medicine,1994,51(11):772-776. doi: 10.1136/oem.51.11.772
    [8] ALKHAWAJAH A,LARBI E B,JAIN S,et al.Subacute toxicity of pentavalent antimony compounds in rats[J].Human & Experimental Toxicology,1992,11(4):283-288.
    [9] FENG R W,LEI L,SU J M,et al.Toxicity of different forms of antimony to rice plant:effects on root exudates,cell wall components,endogenous hormones and antioxidant system[J].Science of the Total Environment,2020,711:134589. doi: 10.1016/j.scitotenv.2019.134589
    [10] LI J H,ZHANG Z,WANG H,et al.Urban land-use impacts on composition and spatiotemporal variations in abundance and biomass of earthworm community[J].Journal of Forestry Research,2020,31(1):325-331. doi: 10.1007/s11676-018-0807-2
    [11] AINI S N,YUSNAINI S,TUNSIYAH T,et al.Minimum tillage and in situ mulch increasing the population and biomass of earthworms under mung bean cultivation on ultisol soil[J].Journal of Tropical Soils,2019,24(3):141. doi: 10.5400/jts.2019.v24i3.141-148
    [12] XIAO L,LI M H,DAI J,et al.Assessment of earthworm activity on Cu,Cd,Pb and Zn bioavailability in contaminated soils using biota to soil accumulation factor and DTPA extraction[J].Ecotoxicology and Environmental Safety,2020,195:110513. doi: 10.1016/j.ecoenv.2020.110513
    [13] CHEN Z B,HU S S.Heavy metals distribution and their bioavailability in earthworm assistant sludge treatment wetland[J].Journal of Hazardous Materials,2019,366:615-623. doi: 10.1016/j.jhazmat.2018.12.039
    [14] SHU W J,YANG Z F,XU Z N,et al.Effects of one-dimensional nanomaterial polyaniline nanorods on earthworm biomarkers and soil enzymes[J].Environmental Science and Pollution Research,2022,29(23):35217-35229. doi: 10.1007/s11356-021-18260-1
    [15] ČESYNAITĖ J,PRASPALIAUSKAS M,PEDIŠIUS N,et al.Biological assessment of contaminated shooting range soil using earthworm biomarkers[J].Ecotoxicology,2021,30(10):2024-2035. doi: 10.1007/s10646-021-02463-w
    [16] 颜增光,何巧力,李发生.蚯蚓生态毒理试验在土壤污染风险评价中的应用[J].环境科学研究,2007,20(1):134-142. doi: 10.3321/j.issn:1001-6929.2007.01.026

    YAN Z G,HE Q L,LI F S.The use of earthworm ecotoxicological test in risk assessment of soil contamination[J].Research of Environmental Sciences,2007,20(1):134-142. doi: 10.3321/j.issn:1001-6929.2007.01.026
    [17] 郝桂玉,黄民生,徐亚同.蚯蚓及其在生态环境保护中的应用[J].环境科学研究,2004,17(3):75-77. doi: 10.3321/j.issn:1001-6929.2004.03.020

    HAO G Y,HUANG M S,XU Y T.Earthworms and their application to eco-environmental protection[J].Research of Environmental Sciences,2004,17(3):75-77. doi: 10.3321/j.issn:1001-6929.2004.03.020
    [18] XU Z N,YANG Z F,SHU W J,et al.Combined toxicity of soil antimony and cadmium on earthworm Eisenia fetida:Accumulation,biomarker responses and joint effect[J].Journal of Hazardous Materials Letters,2021,2:100018. doi: 10.1016/j.hazl.2021.100018
    [19] KUPERMAN R G,CHECKAI R T,SIMINI M,et al.Toxicity benchmarks for antimony,Barium,and beryllium determined using reproduction endpoints for Folsomia candida,Eisenia fetida,and Enchytraeus crypticus[J].Environmental Toxicology and Chemistry,2006,25(3):754-762. doi: 10.1897/04-545R.1
    [20] 梁淑轩,王凯,耿梦娇,等.土壤中添加Sb(Ⅲ)对赤子爱胜蚓金属硫蛋白的影响[J].环境污染和保护科学学报,2003,2(2):31-36.

    LIANG S X,WANG K,GENG M J,et al.Effect of adding antimony pollution on metallothionein of Eisenia fetida in soil[J].Scientific Journal of Environment Pollution and Protection,2003,2(2):31-36.
    [21] ZHONG Q Y,LI L Z,HE M C,et al.Toxicity and bioavailability of antimony to the earthworm (Eisenia fetida) in different agricultural soils[J].Environmental Pollution (Barking,Essex:1987),2021,291:118215. doi: 10.1016/j.envpol.2021.118215
    [22] XIA X Q,LIN S Y,ZHAO J,et al.Toxic responses of microorganisms to nickel exposure in farmland soil in the presence of earthworm (Eisenia fetida)[J].Chemosphere,2018,192:43-50. doi: 10.1016/j.chemosphere.2017.10.146
    [23] XING Y S,MENG X S,WANG L,et al.Effects of benzotriazole on copper accumulation and toxicity in earthworm (Eisenia fetida)[J].Journal of Hazardous Materials,2018,351:330-336. doi: 10.1016/j.jhazmat.2018.03.019
    [24] OECD.Test No.222:earthworm reproduction test (Eisenia fetida/Eisenia andrei)[M].Paris:OECD,2016.
    [25] ISO11268.Determination of acute toxicity to Eisenia/Eisenia andrei[S].London:International Organization for Standardization Provided,2015.
    [26] VANEWIJK P H,HOEKSTRA J A.Calculation of the EC50 and its confidence interval when subtoxic stimulus is present[J].Ecotoxicology and Environmental Safety,1993,25(1):25-32. doi: 10.1006/eesa.1993.1003
    [27] LI X Z,WANG M E,CHEN W P,et al.Evaluation of combined toxicity of Siduron and cadmium on earthworm (Eisenia fetida) using Biomarker Response Index[J].Science of the Total Environment,2019,646:893-901. doi: 10.1016/j.scitotenv.2018.07.380
    [28] PIVA F,CIAPRINI F,ONORATI F,et al.Assessing sediment hazard through a weight of evidence approach with bioindicator organisms:a practical model to elaborate data from sediment chemistry,bioavailability,biomarkers and ecotoxicological bioassays[J].Chemosphere,2011,83(4):475-485. doi: 10.1016/j.chemosphere.2010.12.064
    [29] HAGGER J A,JONES M B,LOWE D,et al.Application of biomarkers for improving risk assessments of chemicals under the Water Framework Directive:a case study[J].Marine Pollution Bulletin,2008,56(6):1111-1118. doi: 10.1016/j.marpolbul.2008.03.040
    [30] 张聪,王志新,刘新会,等.河北黄壤中铅和铬(Ⅵ)对赤子爱胜蚓的毒性效应[J].环境化学,2021,40(6):1683-1690. doi: 10.7524/j.issn.0254-6108.2020073002

    ZHANG C,WANG Z X,LIU X H,et al.Toxic effects of lead and chromium(Ⅵ) on the earthworm (Eisenia fetida) in Hebei soils[J].Environmental Chemistry,2021,40(6):1683-1690. doi: 10.7524/j.issn.0254-6108.2020073002
    [31] CHEN Y J,LIU X G,YUAN S K,et al.Accumulation of epoxiconazole from soil via oleic acid-embedded cellulose acetate membranes and bioavailability evaluation in earthworms (Eisenia fetida)[J].Environmental Pollution,2022,292:118283. doi: 10.1016/j.envpol.2021.118283
    [32] WANG K,QIAO Y H,ZHANG H Q,et al.Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China[J].Ecotoxicology and Environmental Safety,2018,148:876-883. doi: 10.1016/j.ecoenv.2017.11.058
    [33] CHO J H,TAE H J,KIM I S,et al.Melatonin alleviates asphyxial cardiac arrest-induced cerebellar Purkinje cell death by attenuation of oxidative stress[J].Experimental Neurology,2019,320:112983. doi: 10.1016/j.expneurol.2019.112983
    [34] HUANG B C,LONG J,LI J,et al.Effects of antimony contamination on bioaccumulation and gut bacterial community of earthworm Eisenia fetida[J].Journal of Hazardous Materials,2021,416:126110. doi: 10.1016/j.jhazmat.2021.126110
    [35] 林祥龙,孙在金,陈卫玉,等.锑对土壤跳虫(Folsomia candida)的毒性效应[J].环境科学研究,2017,30(7):1089-1097.

    LIN X L,SUN Z J,CHEN W Y,et al.Toxicity effect of antimony to soil-dwelling springtail (Folsomia candida)[J].Research of Environmental Sciences,2017,30(7):1089-1097.
    [36] LIN X L,SUN Z J,ZHAO L,et al.Toxicity of exogenous antimony to the soil-dwelling springtail Folsomia candida[J].Environmental Science and Pollution Research,2019,26(6):5658-5667. doi: 10.1007/s11356-018-3727-y
    [37] LIMONTA G,MANCIA A,ABELLI L,et al.Effects of microplastics on head kidney gene expression and enzymatic biomarkers in adult zebrafish[J].Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP,2021,245:109037.
    [38] MAITY S,BANERJEE R,GOSWAMI P,et al.Oxidative stress responses of two different ecophysiological species of earthworms (Eutyphoeus waltoni and Eisenia fetida) exposed to Cd-contaminated soil[J].Chemosphere,2018,203:307-317. doi: 10.1016/j.chemosphere.2018.03.189
    [39] 李井懿,童一帆,程千卉,等.海水中原油对双齿围沙蚕(Perinereis aibuhitensis)的急性毒性效应及其体内抗氧化酶活性的影响[J].环境科学研究,2018,31(11):1972-1978.

    LI J Y,TONG Y F,CHENG Q H,et al.Acute toxicity and the effects on antioxidant enzyme activities of polychaete Perinereis aibuhitensis exposed to crude oil in seawater[J].Research of Environmental Sciences,2018,31(11):1972-1978.
    [40] 刘信勇,朱琳,黄碧捷,等.多壁碳纳米管对斑马鱼体组织内酶活性的影响[J].环境科学研究,2009,22(7):838-842. doi: 10.13198/j.res.2009.07.88.liuxy.013

    LIU X Y,ZHU L,HUANG B J,et al.Effects of multi-walled carbon nanotubes on enzyme activity in tissues of zebrafish[J].Research of Environmental Sciences,2009,22(7):838-842. doi: 10.13198/j.res.2009.07.88.liuxy.013
    [41] 张薇,宋玉芳,孙铁珩,等.菲和芘对蚯蚓(Eisenia fetida)细胞色素P450和抗氧化酶系的影响[J].环境化学,2007,26(2):202-206. doi: 10.3321/j.issn:0254-6108.2007.02.018

    ZHANG W,SONG Y F,SUN T H,et al.Influence of phenanthrene and pyrene on cytochrome p450 and antioxidant enzymes in earthworms (Eisenia fetida)[J].Environmental Chemistry,2007,26(2):202-206. doi: 10.3321/j.issn:0254-6108.2007.02.018
    [42] 毕爽,刘征涛,徐镜波,等.土壤Pb暴露下赤子爱胜蚓(Eisenia fetida)的急性毒性和氧化应激反应[J].环境科学研究,2014,27(2):196-202.

    BI S,LIU Z T,XU J B,et al.Acute toxicity and oxidation stress response of Eisenia fetida under lead exposure in soil[J].Research of Environmental Sciences,2014,27(2):196-202.
    [43] 杜宇,王应军,武阳,等.镧胁迫对蚯蚓几种重要酶活性的影响[J].中国稀土学报,2014,32(1):84-93.

    DU Y,WANG Y J,WU Y,et al.Effects of lanthanum on several important enzyme activities of earthworm[J].Journal of the Chinese Society of Rare Earths,2014,32(1):84-93.
    [44] ZHOU D X,NING Y C,WANG B,et al.Study on the influential factors of Cd2+ on the earthworm Eisenia fetida in oxidative stress based on factor analysis approach[J].Chemosphere,2016,157:181-189. doi: 10.1016/j.chemosphere.2016.05.045
    [45] D'AGOSTINO A,GIANNONE D.Comparing alternative predictors based on large-panel factor models[J].Oxford Bulletin of Economics and Statistics,2012,74(2):306-326. doi: 10.1111/j.1468-0084.2011.00642.x
    [46] SONG X H,WANG K,GUO L L,et al.Effects of catalase and ascorbate peroxidase on the root growth of rice under cadmium stress[J].Agricultural Science and Technology Hunan,2011,12:1256-1259.
    [47] 王文银,高小刚,司晓林,等.外源钙盐对盐胁迫下沙拐枣渗透调节和膜脂过氧化的影响[J].环境科学研究,2017,30(8):1230-1237. doi: 10.13198/j.issn.1001-6929.2017.02.58

    WANG W Y,GAO X G,SI X L,et al.Effects of exogenous calcium on osmotic adjustment and peroxidation of Calligonum mongolicum membrane under salt stress[J].Research of Environmental Sciences,2017,30(8):1230-1237. doi: 10.13198/j.issn.1001-6929.2017.02.58
    [48] 王婉华,陈丽红,张聪,等.铬(Ⅵ)老化对赤子爱胜蚓抗氧化酶活性的影响[J].环境科学研究,2015,28(11):1687-1692. doi: 10.13198/j.issn.1001-6929.2015.11.05

    WANG W H,CHEN L H,ZHANG C,et al.Effects of aged chromium(Ⅵ) on activities of antioxidant enzymes of Eisenia fetida[J].Research of Environmental Sciences,2015,28(11):1687-1692. doi: 10.13198/j.issn.1001-6929.2015.11.05
    [49] FOSCOLOU A,CRITSELIS E,TYROVOLAS S,et al.Plant and animal protein consumption,cardiometabolic risk and healthy aging:attica and medis epidemiological studies[J].Atherosclerosis,2020,315:e100-e101.
    [50] MULLEN P,ABBOTT J A,WELLMAN T,et al.Neuropathy-associated histidyl-tRNA synthetase variants attenuate protein synthesis in vitro and disrupt axon outgrowth in developing zebrafish[J].The FEBS Journal,2021,288(1):142-159. doi: 10.1111/febs.15449
    [51] BROEG K,WESTERNHAGEN H V,ZANDER S,et al.The ‘bioeffect assessment index’ (BAI):a concept for the quantification of effects of marine pollution by an integrated biomarker approach[J].Marine Pollution Bulletin,2005,50(5):495-503. doi: 10.1016/j.marpolbul.2005.02.042
    [52] AARAB N,CHAMPEAU O,MORA P,et al.Scoring approach based on fish biomarkers applied to French River monitoring[J].Biomarkers,2004,9(3):258-270. doi: 10.1080/13547500400015626
    [53] NARBONNE J F,AARAB N,CLÉRANDEAU C,et al.Scale of classification based on biochemical markers in mussels:application to pollution monitoring in Mediterranean coasts and temporal trends[J].Biomarkers,2005,10(1):58-71. doi: 10.1080/13547500500071339
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  52
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-25
  • 修回日期:  2022-10-26

目录

    /

    返回文章
    返回