留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧再生废旧臭氧催化剂处理石化废水生化出水

秦志凯 付丽亚 李敏 吴昌永

秦志凯, 付丽亚, 李敏, 吴昌永. 焙烧再生废旧臭氧催化剂处理石化废水生化出水[J]. 环境科学研究, 2023, 36(4): 724-733. doi: 10.13198/j.issn.1001-6929.2022.11.13
引用本文: 秦志凯, 付丽亚, 李敏, 吴昌永. 焙烧再生废旧臭氧催化剂处理石化废水生化出水[J]. 环境科学研究, 2023, 36(4): 724-733. doi: 10.13198/j.issn.1001-6929.2022.11.13
QIN Zhikai, FU Liya, LI Min, WU Changyong. Roasting and Regeneration of Spent Ozone Catalyst for Treatment of Petrochemical Wastewater Biochemical Effluent[J]. Research of Environmental Sciences, 2023, 36(4): 724-733. doi: 10.13198/j.issn.1001-6929.2022.11.13
Citation: QIN Zhikai, FU Liya, LI Min, WU Changyong. Roasting and Regeneration of Spent Ozone Catalyst for Treatment of Petrochemical Wastewater Biochemical Effluent[J]. Research of Environmental Sciences, 2023, 36(4): 724-733. doi: 10.13198/j.issn.1001-6929.2022.11.13

焙烧再生废旧臭氧催化剂处理石化废水生化出水

doi: 10.13198/j.issn.1001-6929.2022.11.13
基金项目: 国家重点研发计划项目(No.2020YFC1806302-03)
详细信息
    作者简介:

    秦志凯(1999-),男,河南清丰县人,1123698149@qq.com

    通讯作者:

    吴昌永(1980-),男,山东兰陵人,研究员,博士,博导,主要从事水污染控制技术研究,wucy@craes.org.cn

  • 中图分类号: X703

Roasting and Regeneration of Spent Ozone Catalyst for Treatment of Petrochemical Wastewater Biochemical Effluent

Funds: National Key Research and Development Program of China (No.2020YFC1806302-03)
  • 摘要: 为了解决臭氧催化氧化技术中废旧催化剂处理困难的问题,对用于某石化废水生化出水处理长达5年的废旧臭氧催化剂进行了焙烧再生研究. 通过焙烧能够有效燃烧去除催化剂表面及孔隙中的有机物质,增大催化剂孔径和孔隙率,从而恢复废旧催化剂的部分活性. 单因素试验对催化剂焙烧温度和焙烧时间优化结果表明:①随着焙烧温度从200 ℃提高到500 ℃,再生催化剂用于臭氧催化对石化废水生化出水TOC(总有机碳)的去除效果逐渐提升,500 ℃时TOC去除率可达44.30%,进一步提高焙烧温度去除效果提升不明显. ②焙烧时间为2、3、4和5 h时,再生催化剂处理石化废水效能随焙烧时间增加先升高再降低,4 h时TOC去除效果最好. ③在相同运行条件下,优化焙烧条件(500 ℃、4 h)下得到的再生催化剂对石化废水生化出水的TOC去除率可达新催化剂的77.46%,相较于新催化剂,再生催化剂的颗粒尺寸和平均孔径减小,而比表面积有所增大. ④通过皮尔逊相关性分析,探索了废水中有机物和三维荧光测试结果的相关性,认为荧光区域积分体积可以间接反映石化废水中的有机物含量,也可间接反映臭氧再生催化剂的催化性能. 研究显示,直接焙烧可以作为废旧臭氧催化剂活性再生的一种有效技术手段,具有一定的应用前景.

     

  • 图  1  不同焙烧温度制得再生催化剂对石化废水生化出水处理效果

    Figure  1.  Effect of regenerated catalyst prepared at different roasting temperatures on biochemical effluent treatment of petrochemical wastewater

    图  2  原水及不同焙烧温度(4 h)制得再生催化剂处理石化废水出水三维荧光光谱

    注:Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ分别表示类酪氨酸、类色氨酸、类富里酸、类溶解性代谢产物和类腐殖酸. 下同.

    Figure  2.  Three-dimensional fluorescence spectra of raw water and effluent from different roasting temperatures (4 h) prepared by regenerated catalysts for petrochemical wastewater treatment

    图  3  不同焙烧温度(4 h)制得再生催化剂处理石化废水进出水荧光强度积分体积及百分比

    Figure  3.  Integral volume and percentage of fluorescence intensity of influent and effluent of petrochemical wastewater treated with regenerated catalysts prepared at different roasting temperatures (4 h)

    图  4  不同焙烧时间(500 ℃)制得再生催化剂对石化废水生化出水处理效果

    Figure  4.  Effects of regenerated catalysts prepared with different roasting times (500 ℃) on the treatment of petrochemical wastewater biochemical effluent

    图  5  原水及不同焙烧时间(500 ℃)制得再生催化剂处理石化废水出水三维荧光光谱

    Figure  5.  Three-dimensional fluorescence spectra of raw water and effluent from different roasting times (500 ℃) prepared by regenerated catalysts for petrochemical wastewater treatment

    图  6  不同焙烧时间(500 ℃)制得再生催化剂处理石化废水进出水荧光强度积分体积及百分比

    Figure  6.  Integral volume and percentage of fluorescence intensity of influent and effluent of petrochemical wastewater treated with regenerated catalysts prepared at different roasting times (500 ℃)

    图  7  催化剂焙烧前后的图片及再生催化剂的SEM示意

    Figure  7.  Pictures before and after the catalyst calcination and SEM of the regenerated catalyst

    图  8  优化条件再生催化剂(500 ℃、4 h)和新催化剂对石化废水生化出水的处理效果比较

    Figure  8.  Comparison of the treatment effect of the regenerated catalyst under optimized conditions (500 ℃, 4 h) and the new catalyst on the biochemical effluent of petrochemical wastewater

    表  1  再生催化剂和新催化剂的比表面积、颗粒大小和平均孔径

    Table  1.   Surface area and particle size of regenerated and new catalysts

    催化剂类型比表面积/(m2/g)颗粒尺寸/mm平均孔径/nm
    新催化剂146.62~412.79
    再生催化剂185.41~3.58.55
    下载: 导出CSV

    表  2  TOC、UV254与荧光区域积分体积的线性回归关系(n=28)

    Table  2.   Linear regression relationship between TOC, UV254 and volume integral of different area in 3D-EEMs (n=28)

    回归方程R2回归方程R2
    CTOC = 2.449×10−5Ф + 4.6430.322UV254= 1.031×10−6Ф − 0.0170.448
    CTOC = 5.849×10−6Ф + 1.0510.742UV254 = 2.240×10−7Ф − 0.1150.854
    CTOC = 1.090×10−5Ф + 7.8810.848UV254= 4.098×10−7Ф − 0.1520.940
    CTOC = 6.050×10−6Ф + 4.6930.816UV254= 2.229×10−7Ф + 0.0400.870
    CTOC = 5.901×10−6Ф + 8.9710.912UV254 = 2.161×10−7Ф + 0.1990.960
    下载: 导出CSV

    表  3  TOC去除率、UV254降低率与荧光区域积分体积变化量Pearson相关性(n=14)

    Table  3.   Pearson relationship between the removal rates of TOC, UV254 and variations of volume integral of different area in 3D-EEMs (n=14)

    项目ГTOC$ {\varGamma }_{{\mathrm{U}\mathrm{V}}_{254}} $Ф变化量Ф变化量Ф变化量Ф变化量Ф变化量
    ГTOC10.962**−0.0310.1390.4400.1370.374
    $ {\varGamma }_{{\mathrm{U}\mathrm{V}}_{254}} $1−0.0510.0950.3480.0810.290
    Ф变化量10.833**0.681**0.676**0.427
    Ф变化量10.876**0.873**0.719**
    Ф变化量10.905**0.886**
    Ф变化量10.921**
    Ф变化量1
    注:**表示在0.01级别(双尾)上显著相关.
    下载: 导出CSV
  • [1] FU L Y,WU C Y,ZHOU Y X,et al.Treatment of petrochemical secondary effluent by an up-flow biological aerated filter (BAF)[J].Water Science and Technology:a Journal of the International Association on Water Pollution Research,2016,73(8):2031-2038. doi: 10.2166/wst.2016.049
    [2] WU C Y,ZHOU Y X,SUN Q L,et al.Appling hydrolysis acidification-anoxic-oxic process in the treatment of petrochemical wastewater:from bench scale reactor to full scale wastewater treatment plant[J].Journal of Hazardous Materials,2016,309:185-191. doi: 10.1016/j.jhazmat.2016.02.007
    [3] 付丽亚,吴昌永,周鉴,等.3种一体式臭氧-BAF工艺对石化废水生化出水有机物去除特性比较研究[J].环境工程技术学报,2021,11(1):135-143.

    FU L Y,WU C Y,ZHOU J,et al.Comparison study of organics removal characteristics by three kinds of integrated ozone-BAF processes treating biochemical effluent of petrochemical wastewater[J].Journal of Environmental Engineering Technology,2021,11(1):135-143.
    [4] 环境保护部,国家质量监督检验检疫总局.石油化学工业污染物排放标准:GB 31571—2015[S].北京:中国环境科学出版社,2015
    [5] 张斯宇,吴昌永,周岳溪,等.生物絮体对臭氧催化氧化深度处理石化二级出水的影响[C].北京:中国环境科学学会,2017.
    [6] GAO S S,XU S T,WEI Y X,et al.Insight into the deactivation mode of methanol-to-olefins conversion over SAPO-34:coke,diffusion,and acidic site accessibility[J].Journal of Catalysis,2018,367:306-314. doi: 10.1016/j.jcat.2018.09.010
    [7] JIN X G,LI M,FU L Y,et al.A thorough observation of an ozonation catalyst under long-term practical operation:Deactivation mechanism and regeneration[J].Science of the Total Environment,2022,830:154803. doi: 10.1016/j.scitotenv.2022.154803
    [8] KAPKOWSKI M,SIUDYGA T,SITKO R,et al.Toward a viable ecological method for regenerating a commercial SCR catalyst:selectively leaching surface deposits and reconstructing a pore landscape[J].Journal of Cleaner Production,2021,316:128291. doi: 10.1016/j.jclepro.2021.128291
    [9] 范思强,刘东旭,崔哲,等.加氢催化剂再生技术的研究进展[J].石油化工,2021,50(12):1334-1340.

    FAN S Q,LIU D X,CUI Z,et al.Research progress of hydrogenation catalyst regeneration technology[J].Petrochemical Technology,2021,50(12):1334-1340.
    [10] KHODAYARI R,INGEMAR ODENBRAND C U.Regeneration of commercial SCR catalysts by washing and sulphation:effect of sulphate groups on the activity[J].Applied Catalysis B:Environmental,2001,33(4):277-291. doi: 10.1016/S0926-3373(01)00193-X
    [11] FOERSTER M.Method for regeneration of iron-loaded denox catalysts.US07858549B2[P].2010.
    [12] HARTENSTEIN H U,HOFFMANN T.Method of regeneration of SCR catalyst poisoned by phosphorous components in flue gas:EP,CN102026721 A[P].2009.
    [13] 吴卫红,吴华,罗佳,等.SCR烟气脱硝催化剂再生研究进展[J].应用化工,2013,42(7):1304-1307.

    WU W H,WU H,LUO J,et al.Research progress on the regeneration of SCR catalysts for flue gas denitrification[J].Applied Chemical Industry,2013,42(7):1304-1307.
    [14] SHANG X S,HU G R,HE C,et al.Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant[J].Journal of Industrial and Engineering Chemistry,2012,18(1):513-519. doi: 10.1016/j.jiec.2011.11.070
    [15] 杨佳鑫.臭氧催化氧化-移动床生物膜反应器(MBBR)组合工艺深度降解柠檬酸生化尾水研究[D].北京:北京化工大学,2021.
    [16] SHI Y,TAN S,WANG X X,et al.Regeneration of sulfur-poisoned CeO2 catalyst for NH3-SCR of NOx[J].Catalysis Communications,2016,86:67-71. doi: 10.1016/j.catcom.2016.08.004
    [17] 谭煜.石化二级出水中胞外聚合物(EPS)对臭氧催化氧化的影响与机理研究[D].北京:中国环境科学研究院,2021.
    [18] YU H B,SONG Y H,TU X,et al.Assessing removal efficiency of dissolved organic matter in wastewater treatment using fluorescence excitation emission matrices with parallel factor analysis and second derivative synchronous fluorescence[J].Bioresource Technology,2013,144:595-601. doi: 10.1016/j.biortech.2013.07.025
    [19] YANG L Y,SHIN H S,HUR J.Estimating the concentration and biodegradability of organic matter in 22 wastewater treatment plants using fluorescence excitation emission matrices and parallel factor analysis[J].Sensors (Basel,Switzerland),2014,14(1):1771-1786. doi: 10.3390/s140101771
    [20] WU J,ZHANG H,HE P J,et al.Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis[J].Water Research,2011,45(4):1711-1719. doi: 10.1016/j.watres.2010.11.022
    [21] 孙伟,胡泓,赵茜,等.达里诺尔湖水体DOM荧光特征及其来源解析[J].环境科学研究,2020,33(9):2084-2093.

    SUN W,HU H,ZHAO Q,et al.Fluorescence characteristics and source analysis of dissolved organic matter in Dali-nor Lake[J].Research of Environmental Sciences,2020,33(9):2084-2093.
    [22] 何嘉莉,张晓娜,陈卓华,等.三维荧光技术分析南方某深度处理净水厂有机物去除效果[J].城镇供水,2018(6):20-24.

    HE J L,ZHANG X N,CHEN Z H,et al.Three-dimensional fluorescence analysis of organics removal in a deep-treatment water purification plant in South China[J].City and Town Water Supply,2018(6):20-24.
    [23] 胡映明,王盼新,付丽亚,等.不同制备方法对铝基催化剂臭氧催化氧化的效果研究[J].环境科学研究,2022.doi: 10.13198/j.issn.1001-6929.2022.07.01.

    HU Y M,WANG P X,FU L Y,et al.Effects of different preparation methods on catalytic ozonation of alumina-based catalysts[J].Research of Environmental Sciences,2022.doi: 10.13198/j.issn.1001-6929.2022.07.01.
    [24] 国家环境保护总局.HJ 501-2009,水质.总有机碳的测定.燃烧氧化-非分散红外吸收法[S].北京:中国环境科学出版社,2009.
    [25] SHI Z N,CHOW C W K,FABRIS R,et al.Evaluation of the impact of suspended particles on the UV absorbance at 254 nm (UV254) measurements using a submersible UV-Vis spectrophotometer[J].Environmental Science and Pollution Research,2021,28(10):12576-12586. doi: 10.1007/s11356-020-11178-0
    [26] 付丽亚.石化废水臭氧/曝气生物滤池深度处理工艺与机理研究[D].北京:清华大学,2018.
    [27] MENG F G,ZHOU Z B,NI B J,et al.Characterization of the size-fractionated biomacromolecules:tracking their role and fate in a membrane bioreactor[J].Water Research,2011,45(15):4661-4671. doi: 10.1016/j.watres.2011.06.026
    [28] NI B J,RITTMANN B E,YU H Q.Soluble microbial products and their implications in mixed culture biotechnology[J].Trends in Biotechnology,2011,29(9):454-463. doi: 10.1016/j.tibtech.2011.04.006
    [29] 李敏,付丽亚,谭煜,等.Mn-Ce/γ-Al2O3催化臭氧氧化深度处理石化废水中试研究[J].环境科学研究,2021,34(10):2380-2388.

    LI M,FU L Y,TAN Y,et al.Pilot study of advanced treatment of petrochemical wastewater by Mn-Ce/γ-Al2O3 catalytic ozonation[J].Research of Environmental Sciences,2021,34(10):2380-2388.
    [30] 张道萍,张铃松,孟凡生,等.黑龙江流域典型断面水体DOM荧光特性分析[J].环境科学研究,2021,34(5):1099-1110.

    ZHANG D P,ZHANG L S,MENG F S,et al.Fluorescence characteristics analysis of DOM in typical section of Heilongjiang River Basin[J].Research of Environmental Sciences,2021,34(5):1099-1110.
    [31] LAWAETZ A J,STEDMON C A.Fluorescence intensity calibration using the raman scatter peak of water[J].Applied Spectroscopy,2009,63(8):936-940. doi: 10.1366/000370209788964548
    [32] 智国铮.三维荧光光谱技术在水环境中的研究与应用进展[J].四川环境,2021,40(5):257-261.

    ZHI G Z.Research progress and application of three dimensional fluorescence spectra technique in water environment[J].Sichuan Environment,2021,40(5):257-261.
    [33] CHEN W,WESTERHOFF P,LEENHEER J A,et al.Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J].Environmental Science & Technology,2003,37(24):5701-5710.
    [34] FU L Y,WU C Y,ZHOU Y X,et al.Ozonation reactivity characteristics of dissolved organic matter in secondary petrochemical wastewater by single ozone,ozone/H2O2,and ozone/catalyst[J].Chemosphere,2019,233:34-43. doi: 10.1016/j.chemosphere.2019.05.207
    [35] MOLJORD K,MAGNOUX P,GUISNET M.Coking,aging and regeneration of zeolites:XVI.Influence of the composition of HY zeolites on the removal of coke through oxidative treatment[J].Applied Catalysis A:General,1995,121:245-259. doi: 10.1016/0926-860X(94)00211-8
    [36] 种轲李尧.废铂催化剂综合回收工艺研究[D].常州:江苏理工学院,2021.
    [37] 李尚蛟,王银叶,马爽,等.斜发沸石的改性及吸附机理及其对高氟水的去除[J].环境工程学报,2015,9(7):3288-3292.

    LI S J,WANG Y Y,MA S,et al.Modification and adsorption mechanism of clinoptilolite and its fluoride removal from high fluoride water[J].Chinese Journal of Environmental Engineering,2015,9(7):3288-3292.
    [38] JIA L Y,FAROUHA A,PINARD L,et al.New routes for complete regeneration of coked zeolite[J].Applied Catalysis B:Environmental,2017,219:82-91. doi: 10.1016/j.apcatb.2017.07.040
    [39] ZHOU J B,ZHAO J P,ZHANG J L,et al.Regeneration of catalysts deactivated by coke deposition:a review[J].Chinese Journal of Catalysis,2020,41(7):1048-1061. doi: 10.1016/S1872-2067(20)63552-5
    [40] PIECK C L,VERDERONE R J,JABLONSKI E L,et al.Burning of coke on Pt Re/Al2O3 catalyst:activation energy and oxygen reaction order[J].Applied Catalysis,1989,55(1):1-10. doi: 10.1016/S0166-9834(00)82312-X
    [41] 朱雁风,刘维良,武安华.溶胶-凝胶自蔓延法合成六方相ZnTiO3粉体[J].中国陶瓷,2011,47(12):23-26.

    ZHU Y F,LIU W L,WU A H.Synthesis of hexagonal zntio3 Nan crystalline powders by self-propagating combustion method of Sol-gel[J].China Ceramics,2011,47(12):23-26.
    [42] WANG D,XU H,MA J,et al.Morphology control studies of MnTiO3 nanostructures with exposed (0001) facets as a high-performance catalyst for water purification[J].ACS Applied Materials & Interfaces,2018,10(37):31631-31640.
    [43] WANG H C,LIANG H S,CHANG M B.Chlorobenzene oxidation using ozone over iron oxide and manganese oxide catalysts[J].Journal of Hazardous Materials,2011,186(2/3):1781-1787.
    [44] 蔡先磊,任万忠,房德仁,史亚琪,李彦君.焙烧温度对选择氧化制甲基丙烯酸催化剂性能的影响[J].现代化工,2019,39(12):186-190.

    CAI X L,REN W Z,FANG D R,et al.Effect of calcination temperature on performance of catalyst for selective oxidation of methacrolein to methacrylic acid[J].Modern Chemical Industry,2019,39(12):186-190.
    [45] ALI A E,SINA M,JIMMY Y,et alPromoting surface oxygenvacancies on ceria via light pretreatment to enhance catalytic ozonation[J].Catalysis Science & Technology,2019,9:5979-5990.
    [46] 吴静,崔硕,谢超波,等.好氧处理后城市污水荧光指纹的变化[J].光谱学与光谱分析,2011,31(12):5. doi: 10.3964/j.issn.1000-0593(2011)12-3302-05

    WU J,CUI S,XIE C B,et al.Changes of fluorescent fingerprint of municipal sewage after aerobic treatment[J].Spectroscopy and Spectral Analysis,2011,31(12):5. doi: 10.3964/j.issn.1000-0593(2011)12-3302-05
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  36
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-13
  • 修回日期:  2022-10-21

目录

    /

    返回文章
    返回