Roasting and Regeneration of Spent Ozone Catalyst for Treatment of Petrochemical Wastewater Biochemical Effluent
-
摘要: 为了解决臭氧催化氧化技术中废旧催化剂处理困难的问题,对用于某石化废水生化出水处理长达5年的废旧臭氧催化剂进行了焙烧再生研究. 通过焙烧能够有效燃烧去除催化剂表面及孔隙中的有机物质,增大催化剂孔径和孔隙率,从而恢复废旧催化剂的部分活性. 单因素试验对催化剂焙烧温度和焙烧时间优化结果表明:①随着焙烧温度从200 ℃提高到500 ℃,再生催化剂用于臭氧催化对石化废水生化出水TOC(总有机碳)的去除效果逐渐提升,500 ℃时TOC去除率可达44.30%,进一步提高焙烧温度去除效果提升不明显. ②焙烧时间为2、3、4和5 h时,再生催化剂处理石化废水效能随焙烧时间增加先升高再降低,4 h时TOC去除效果最好. ③在相同运行条件下,优化焙烧条件(500 ℃、4 h)下得到的再生催化剂对石化废水生化出水的TOC去除率可达新催化剂的77.46%,相较于新催化剂,再生催化剂的颗粒尺寸和平均孔径减小,而比表面积有所增大. ④通过皮尔逊相关性分析,探索了废水中有机物和三维荧光测试结果的相关性,认为荧光区域积分体积可以间接反映石化废水中的有机物含量,也可间接反映臭氧再生催化剂的催化性能. 研究显示,直接焙烧可以作为废旧臭氧催化剂活性再生的一种有效技术手段,具有一定的应用前景.Abstract: In order to solve the problem of difficult disposal of spent catalysts in ozone catalytic oxidation technology, the roasting and regeneration of spent ozone catalyst used in the biochemical effluent treatment of a petrochemical wastewater for 5 years was studied. The calcination could effectively remove the organic matter on the surface and pore of the catalyst, increase the pore size, increase the specific surface area and porosity of the catalyst, and restore part of the activity of the spent catalyst. The catalyst calcination temperature and calcination time were optimized by single factor experiment. The results show that: (1) With the increase of the roasting temperature from 200 ℃ to 500 ℃, the removal effect of the regenerated catalyst for ozone catalysis on the biochemical effluent of petrochemical wastewater was gradually improved, and the TOC removal rate reached 44.30% at 500 ℃, further increasing the roasting temperature did not improve the TOC removal rate significantly. (2) When the roasting time was 2, 3, 4 and 5 h, the efficiency of the regenerated catalyst to treat petrochemical wastewater increased first and then decreased with the increase of the roasting time, and the TOC removal rate was the highest at 4 h. (3) Under the same operating conditions, the TOC removal rate of the regenerated catalyst obtained under the optimized roasting conditions (500 ℃, 4 h) in the biochemical effluent of petrochemical wastewater could reach 77.46% of that of the new catalyst. Compared with the new catalyst, the particle size and average pore size of the regenerated catalyst were reduced, and the specific surface area was increased. The study also explored the correlation between the organic matter in the wastewater and the results of three-dimensional fluorescence test through Pearson correlation analysis. (4) The analysis showed that the integrated volume of fluorescence area indirectly reflected the content of the organic matter in petrochemical wastewater, and can indirectly reflect the catalytic performance of ozone regeneration catalyst. The study has shown that direct roasting can be used as an effective technical means to regenerate the activity of spent ozone catalysts and has certain application prospects.
-
Key words:
- waste catalysts /
- regeneration /
- roast /
- ozone /
- catalytic oxidation
-
表 1 再生催化剂和新催化剂的比表面积、颗粒大小和平均孔径
Table 1. Surface area and particle size of regenerated and new catalysts
催化剂类型 比表面积/(m2/g) 颗粒尺寸/mm 平均孔径/nm 新催化剂 146.6 2~4 12.79 再生催化剂 185.4 1~3.5 8.55 表 2 TOC、UV254与荧光区域积分体积的线性回归关系(n=28)
Table 2. Linear regression relationship between TOC, UV254 and volume integral of different area in 3D-EEMs (n=28)
回归方程 R2 回归方程 R2 CTOC = 2.449×10−5ФⅠ + 4.643 0.322 UV254= 1.031×10−6ФⅠ − 0.017 0.448 CTOC = 5.849×10−6ФⅡ + 1.051 0.742 UV254 = 2.240×10−7ФⅡ − 0.115 0.854 CTOC = 1.090×10−5ФⅢ + 7.881 0.848 UV254= 4.098×10−7ФⅢ − 0.152 0.940 CTOC = 6.050×10−6ФⅣ + 4.693 0.816 UV254= 2.229×10−7ФⅣ + 0.040 0.870 CTOC = 5.901×10−6ФⅤ + 8.971 0.912 UV254 = 2.161×10−7ФⅤ + 0.199 0.960 表 3 TOC去除率、UV254降低率与荧光区域积分体积变化量Pearson相关性(n=14)
Table 3. Pearson relationship between the removal rates of TOC, UV254 and variations of volume integral of different area in 3D-EEMs (n=14)
项目 ГTOC $ {\varGamma }_{{\mathrm{U}\mathrm{V}}_{254}} $ ФⅠ变化量 ФⅡ变化量 ФⅢ变化量 ФⅣ变化量 ФⅤ变化量 ГTOC 1 0.962** −0.031 0.139 0.440 0.137 0.374 $ {\varGamma }_{{\mathrm{U}\mathrm{V}}_{254}} $ 1 −0.051 0.095 0.348 0.081 0.290 ФⅠ变化量 1 0.833** 0.681** 0.676** 0.427 ФⅡ变化量 1 0.876** 0.873** 0.719** ФⅢ变化量 1 0.905** 0.886** ФⅣ变化量 1 0.921** ФⅤ变化量 1 注:**表示在0.01级别(双尾)上显著相关. -
[1] FU L Y,WU C Y,ZHOU Y X,et al.Treatment of petrochemical secondary effluent by an up-flow biological aerated filter (BAF)[J].Water Science and Technology:a Journal of the International Association on Water Pollution Research,2016,73(8):2031-2038. doi: 10.2166/wst.2016.049 [2] WU C Y,ZHOU Y X,SUN Q L,et al.Appling hydrolysis acidification-anoxic-oxic process in the treatment of petrochemical wastewater:from bench scale reactor to full scale wastewater treatment plant[J].Journal of Hazardous Materials,2016,309:185-191. doi: 10.1016/j.jhazmat.2016.02.007 [3] 付丽亚,吴昌永,周鉴,等.3种一体式臭氧-BAF工艺对石化废水生化出水有机物去除特性比较研究[J].环境工程技术学报,2021,11(1):135-143.FU L Y,WU C Y,ZHOU J,et al.Comparison study of organics removal characteristics by three kinds of integrated ozone-BAF processes treating biochemical effluent of petrochemical wastewater[J].Journal of Environmental Engineering Technology,2021,11(1):135-143. [4] 环境保护部,国家质量监督检验检疫总局.石油化学工业污染物排放标准:GB 31571—2015[S].北京:中国环境科学出版社,2015 [5] 张斯宇,吴昌永,周岳溪,等.生物絮体对臭氧催化氧化深度处理石化二级出水的影响[C].北京:中国环境科学学会,2017. [6] GAO S S,XU S T,WEI Y X,et al.Insight into the deactivation mode of methanol-to-olefins conversion over SAPO-34:coke,diffusion,and acidic site accessibility[J].Journal of Catalysis,2018,367:306-314. doi: 10.1016/j.jcat.2018.09.010 [7] JIN X G,LI M,FU L Y,et al.A thorough observation of an ozonation catalyst under long-term practical operation:Deactivation mechanism and regeneration[J].Science of the Total Environment,2022,830:154803. doi: 10.1016/j.scitotenv.2022.154803 [8] KAPKOWSKI M,SIUDYGA T,SITKO R,et al.Toward a viable ecological method for regenerating a commercial SCR catalyst:selectively leaching surface deposits and reconstructing a pore landscape[J].Journal of Cleaner Production,2021,316:128291. doi: 10.1016/j.jclepro.2021.128291 [9] 范思强,刘东旭,崔哲,等.加氢催化剂再生技术的研究进展[J].石油化工,2021,50(12):1334-1340.FAN S Q,LIU D X,CUI Z,et al.Research progress of hydrogenation catalyst regeneration technology[J].Petrochemical Technology,2021,50(12):1334-1340. [10] KHODAYARI R,INGEMAR ODENBRAND C U.Regeneration of commercial SCR catalysts by washing and sulphation:effect of sulphate groups on the activity[J].Applied Catalysis B:Environmental,2001,33(4):277-291. doi: 10.1016/S0926-3373(01)00193-X [11] FOERSTER M.Method for regeneration of iron-loaded denox catalysts.US07858549B2[P].2010. [12] HARTENSTEIN H U,HOFFMANN T.Method of regeneration of SCR catalyst poisoned by phosphorous components in flue gas:EP,CN102026721 A[P].2009. [13] 吴卫红,吴华,罗佳,等.SCR烟气脱硝催化剂再生研究进展[J].应用化工,2013,42(7):1304-1307.WU W H,WU H,LUO J,et al.Research progress on the regeneration of SCR catalysts for flue gas denitrification[J].Applied Chemical Industry,2013,42(7):1304-1307. [14] SHANG X S,HU G R,HE C,et al.Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant[J].Journal of Industrial and Engineering Chemistry,2012,18(1):513-519. doi: 10.1016/j.jiec.2011.11.070 [15] 杨佳鑫.臭氧催化氧化-移动床生物膜反应器(MBBR)组合工艺深度降解柠檬酸生化尾水研究[D].北京:北京化工大学,2021. [16] SHI Y,TAN S,WANG X X,et al.Regeneration of sulfur-poisoned CeO2 catalyst for NH3-SCR of NOx[J].Catalysis Communications,2016,86:67-71. doi: 10.1016/j.catcom.2016.08.004 [17] 谭煜.石化二级出水中胞外聚合物(EPS)对臭氧催化氧化的影响与机理研究[D].北京:中国环境科学研究院,2021. [18] YU H B,SONG Y H,TU X,et al.Assessing removal efficiency of dissolved organic matter in wastewater treatment using fluorescence excitation emission matrices with parallel factor analysis and second derivative synchronous fluorescence[J].Bioresource Technology,2013,144:595-601. doi: 10.1016/j.biortech.2013.07.025 [19] YANG L Y,SHIN H S,HUR J.Estimating the concentration and biodegradability of organic matter in 22 wastewater treatment plants using fluorescence excitation emission matrices and parallel factor analysis[J].Sensors (Basel,Switzerland),2014,14(1):1771-1786. doi: 10.3390/s140101771 [20] WU J,ZHANG H,HE P J,et al.Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis[J].Water Research,2011,45(4):1711-1719. doi: 10.1016/j.watres.2010.11.022 [21] 孙伟,胡泓,赵茜,等.达里诺尔湖水体DOM荧光特征及其来源解析[J].环境科学研究,2020,33(9):2084-2093.SUN W,HU H,ZHAO Q,et al.Fluorescence characteristics and source analysis of dissolved organic matter in Dali-nor Lake[J].Research of Environmental Sciences,2020,33(9):2084-2093. [22] 何嘉莉,张晓娜,陈卓华,等.三维荧光技术分析南方某深度处理净水厂有机物去除效果[J].城镇供水,2018(6):20-24.HE J L,ZHANG X N,CHEN Z H,et al.Three-dimensional fluorescence analysis of organics removal in a deep-treatment water purification plant in South China[J].City and Town Water Supply,2018(6):20-24. [23] 胡映明,王盼新,付丽亚,等.不同制备方法对铝基催化剂臭氧催化氧化的效果研究[J].环境科学研究,2022.doi: 10.13198/j.issn.1001-6929.2022.07.01.HU Y M,WANG P X,FU L Y,et al.Effects of different preparation methods on catalytic ozonation of alumina-based catalysts[J].Research of Environmental Sciences,2022.doi: 10.13198/j.issn.1001-6929.2022.07.01. [24] 国家环境保护总局.HJ 501-2009,水质.总有机碳的测定.燃烧氧化-非分散红外吸收法[S].北京:中国环境科学出版社,2009. [25] SHI Z N,CHOW C W K,FABRIS R,et al.Evaluation of the impact of suspended particles on the UV absorbance at 254 nm (UV254) measurements using a submersible UV-Vis spectrophotometer[J].Environmental Science and Pollution Research,2021,28(10):12576-12586. doi: 10.1007/s11356-020-11178-0 [26] 付丽亚.石化废水臭氧/曝气生物滤池深度处理工艺与机理研究[D].北京:清华大学,2018. [27] MENG F G,ZHOU Z B,NI B J,et al.Characterization of the size-fractionated biomacromolecules:tracking their role and fate in a membrane bioreactor[J].Water Research,2011,45(15):4661-4671. doi: 10.1016/j.watres.2011.06.026 [28] NI B J,RITTMANN B E,YU H Q.Soluble microbial products and their implications in mixed culture biotechnology[J].Trends in Biotechnology,2011,29(9):454-463. doi: 10.1016/j.tibtech.2011.04.006 [29] 李敏,付丽亚,谭煜,等.Mn-Ce/γ-Al2O3催化臭氧氧化深度处理石化废水中试研究[J].环境科学研究,2021,34(10):2380-2388.LI M,FU L Y,TAN Y,et al.Pilot study of advanced treatment of petrochemical wastewater by Mn-Ce/γ-Al2O3 catalytic ozonation[J].Research of Environmental Sciences,2021,34(10):2380-2388. [30] 张道萍,张铃松,孟凡生,等.黑龙江流域典型断面水体DOM荧光特性分析[J].环境科学研究,2021,34(5):1099-1110.ZHANG D P,ZHANG L S,MENG F S,et al.Fluorescence characteristics analysis of DOM in typical section of Heilongjiang River Basin[J].Research of Environmental Sciences,2021,34(5):1099-1110. [31] LAWAETZ A J,STEDMON C A.Fluorescence intensity calibration using the raman scatter peak of water[J].Applied Spectroscopy,2009,63(8):936-940. doi: 10.1366/000370209788964548 [32] 智国铮.三维荧光光谱技术在水环境中的研究与应用进展[J].四川环境,2021,40(5):257-261.ZHI G Z.Research progress and application of three dimensional fluorescence spectra technique in water environment[J].Sichuan Environment,2021,40(5):257-261. [33] CHEN W,WESTERHOFF P,LEENHEER J A,et al.Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J].Environmental Science & Technology,2003,37(24):5701-5710. [34] FU L Y,WU C Y,ZHOU Y X,et al.Ozonation reactivity characteristics of dissolved organic matter in secondary petrochemical wastewater by single ozone,ozone/H2O2,and ozone/catalyst[J].Chemosphere,2019,233:34-43. doi: 10.1016/j.chemosphere.2019.05.207 [35] MOLJORD K,MAGNOUX P,GUISNET M.Coking,aging and regeneration of zeolites:XVI.Influence of the composition of HY zeolites on the removal of coke through oxidative treatment[J].Applied Catalysis A:General,1995,121:245-259. doi: 10.1016/0926-860X(94)00211-8 [36] 种轲李尧.废铂催化剂综合回收工艺研究[D].常州:江苏理工学院,2021. [37] 李尚蛟,王银叶,马爽,等.斜发沸石的改性及吸附机理及其对高氟水的去除[J].环境工程学报,2015,9(7):3288-3292.LI S J,WANG Y Y,MA S,et al.Modification and adsorption mechanism of clinoptilolite and its fluoride removal from high fluoride water[J].Chinese Journal of Environmental Engineering,2015,9(7):3288-3292. [38] JIA L Y,FAROUHA A,PINARD L,et al.New routes for complete regeneration of coked zeolite[J].Applied Catalysis B:Environmental,2017,219:82-91. doi: 10.1016/j.apcatb.2017.07.040 [39] ZHOU J B,ZHAO J P,ZHANG J L,et al.Regeneration of catalysts deactivated by coke deposition:a review[J].Chinese Journal of Catalysis,2020,41(7):1048-1061. doi: 10.1016/S1872-2067(20)63552-5 [40] PIECK C L,VERDERONE R J,JABLONSKI E L,et al.Burning of coke on Pt Re/Al2O3 catalyst:activation energy and oxygen reaction order[J].Applied Catalysis,1989,55(1):1-10. doi: 10.1016/S0166-9834(00)82312-X [41] 朱雁风,刘维良,武安华.溶胶-凝胶自蔓延法合成六方相ZnTiO3粉体[J].中国陶瓷,2011,47(12):23-26.ZHU Y F,LIU W L,WU A H.Synthesis of hexagonal zntio3 Nan crystalline powders by self-propagating combustion method of Sol-gel[J].China Ceramics,2011,47(12):23-26. [42] WANG D,XU H,MA J,et al.Morphology control studies of MnTiO3 nanostructures with exposed (0001) facets as a high-performance catalyst for water purification[J].ACS Applied Materials & Interfaces,2018,10(37):31631-31640. [43] WANG H C,LIANG H S,CHANG M B.Chlorobenzene oxidation using ozone over iron oxide and manganese oxide catalysts[J].Journal of Hazardous Materials,2011,186(2/3):1781-1787. [44] 蔡先磊,任万忠,房德仁,史亚琪,李彦君.焙烧温度对选择氧化制甲基丙烯酸催化剂性能的影响[J].现代化工,2019,39(12):186-190.CAI X L,REN W Z,FANG D R,et al.Effect of calcination temperature on performance of catalyst for selective oxidation of methacrolein to methacrylic acid[J].Modern Chemical Industry,2019,39(12):186-190. [45] ALI A E,SINA M,JIMMY Y,et alPromoting surface oxygenvacancies on ceria via light pretreatment to enhance catalytic ozonation[J].Catalysis Science & Technology,2019,9:5979-5990. [46] 吴静,崔硕,谢超波,等.好氧处理后城市污水荧光指纹的变化[J].光谱学与光谱分析,2011,31(12):5. doi: 10.3964/j.issn.1000-0593(2011)12-3302-05WU J,CUI S,XIE C B,et al.Changes of fluorescent fingerprint of municipal sewage after aerobic treatment[J].Spectroscopy and Spectral Analysis,2011,31(12):5. doi: 10.3964/j.issn.1000-0593(2011)12-3302-05 -