留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2030年京津冀及周边城市群PM2.5污染控制路径

束韫 李海生 张文杰 王洪昌 田刚 朱金伟 于瑞 杨添棋 龙红艳

束韫, 李海生, 张文杰, 王洪昌, 田刚, 朱金伟, 于瑞, 杨添棋, 龙红艳. 2030年京津冀及周边城市群PM2.5污染控制路径[J]. 环境科学研究, 2023, 36(3): 439-448. doi: 10.13198/j.issn.1001-6929.2022.11.15
引用本文: 束韫, 李海生, 张文杰, 王洪昌, 田刚, 朱金伟, 于瑞, 杨添棋, 龙红艳. 2030年京津冀及周边城市群PM2.5污染控制路径[J]. 环境科学研究, 2023, 36(3): 439-448. doi: 10.13198/j.issn.1001-6929.2022.11.15
SHU Yun, LI Haisheng, ZHANG Wenjie, WANG Hongchang, TIAN Gang, ZHU Jinwei, YU Rui, YANG Tianqi, LONG Hongyan. PM2.5 Pollution Control Pathways in Beijing-Tianjin-Hebei and Surrounding Urban Areas in 2030[J]. Research of Environmental Sciences, 2023, 36(3): 439-448. doi: 10.13198/j.issn.1001-6929.2022.11.15
Citation: SHU Yun, LI Haisheng, ZHANG Wenjie, WANG Hongchang, TIAN Gang, ZHU Jinwei, YU Rui, YANG Tianqi, LONG Hongyan. PM2.5 Pollution Control Pathways in Beijing-Tianjin-Hebei and Surrounding Urban Areas in 2030[J]. Research of Environmental Sciences, 2023, 36(3): 439-448. doi: 10.13198/j.issn.1001-6929.2022.11.15

2030年京津冀及周边城市群PM2.5污染控制路径

doi: 10.13198/j.issn.1001-6929.2022.11.15
基金项目: 国家重点研发计划项目(No.2017YFC0213000);大气重污染成因与治理攻关项目(No.DQGG0107, DQGG0209)
详细信息
    作者简介:

    束韫(1983-),男,新疆乌鲁木齐人,副研究员,博士,主要从事大气污染控制技术与政策研究,shuyun@craes.org.cn

    通讯作者:

    李海生(1964-),男,河北玉田人,研究员,博士,主要从事能源与环境政策、环境管理、环境影响评价等研究,lihs@craes.org.cn

  • 中图分类号: X24

PM2.5 Pollution Control Pathways in Beijing-Tianjin-Hebei and Surrounding Urban Areas in 2030

Funds: National Key Research and Development Program of China (No.2017YFC0213000); National Research Program for Key Issues in Air Pollution Control, China (No.DQGG0107, DQGG0209)
  • 摘要: 近年来,我国大气污染物减排效果明显,空气质量也随之大幅改善. 然而,部分重点区域如京津冀及周边城市群(“2+26”城市)PM2.5年均浓度依然较高,远超GB 3095—2012《环境空气质量标准》二级标准限值(35 μg/m3). 为实现该目标值,利用京津冀温室气体-空气污染物协同控制综合评估模型(greenhouse gas-air pollution interactions and synergies, GAINS-JJJ),模拟预测了2030年不同政策情景下区域空气质量改善情况,分别量化了结构调整与末端控制(BAT)政策对不同污染物减排的贡献,为“2+26”城市制定空气质量改善路径提供参考. 结果表明:①2017—2030年,由于一系列结构调整政策,如煤改清洁能源、淘汰落后产能(如钢铁、水泥、焦化等)、氮肥减量施用和高挥发有机溶剂替代等措施的实施,以及末端控制政策,如钢铁、水泥与焦化等行业超低排放改造,重型柴油车与非道路移动机械尾气排放标准升级,标准化规模养殖与测土配方施肥技术等技术的推广,“2+26”城市的PM2.5年均浓度值达到34 μg/m3,实现了“美丽中国”的目标要求. ②2030年结构调整情景下,一次PM2.5、SO2、NOx、NH3与NMVOCs(非甲烷类挥发性有机物)的排放相比2017年分别下降了31%、44%、31%、5%和11%;结构调整+末端控制情景下,各项污染物的排放量减排比例分别达到75%、69%、77%、32%与52%. ③末端控制政策对一次PM2.5、NOx、NH3和NMVOCs减排的贡献要大于结构调整政策的贡献;而针对SO2的减排,结构调整政策则发挥了较大的作用. 研究显示,在2030年之前,“2+26”城市的末端控制政策仍具有较大的污染减排潜力,而针对SO2的控制则应将重点从过去的末端减排转向前端的结构性调整措施上.

     

  • 图  1  研究区域示意

    Figure  1.  Overview of the study domain

    图  2  2017年“2+26”城市PM2.5模拟值与观测值的对比验证

    注:实线对应1∶1,上虚线对应1∶2,下虚线对应2∶1.

    Figure  2.  Comparison verification of PM2.5 simulated values and observed values in the ‘2+26’ Cities in 2017

    图  3  2017年与2030年3种情景下“2+26”城市不同行业主要大气污染物排放量的分布情况

    Figure  3.  Sectoral emissions of major air pollutants in the ‘2+26’ Cities for 2017 and three scenarios in 2030

    图  4  2017年与2030年3种情景下“2+26”城市主要空气污染物排放量情况

    注:图中2017年排放量用黑点标记,不同柱子颜色顶端表示不同情景下的排放量.

    Figure  4.  Emissions of major air pollutants in the ‘2+26’ Cities for 2017 and three scenarios in 2030 by prefectures

    图  5  2017年与2030年3种情景下“2+26”城市PM2.5浓度分布与年均值

    Figure  5.  Distribution and average annual concentration of PM2.5 for 2017 and three scenarios in 2030 in the ‘2+26’ Cities

    图  6  结构调整政策与末端控制政策对不同污染物减排的贡献

    Figure  6.  Contributions of structural adjustment and end-of-pipe control to emission reductions

    表  1  情景描述与目的

    Table  1.   Description and purpose of scenarios

    情景名称情景描述情景目的
    基准情景 《国家环境保护“十二五”规划》;《大气污染防治行动计划》 经济持续发展情况下环境政策维持现状
    结构调整情景 《国家环境保护“十二五”规划》;《大气污染防治行动计划》;逐步淘汰工业行业落后产能(如严禁新增钢铁、焦化、电解铝、铸造、水泥和平板玻璃等产能,累计关停300×104 kW以上落后煤电机组);居民全面实施煤改清洁能源政策(如城区、农村地区清洁取暖率分别达到95%、50%);推广新能源车(如新能源汽车销售占比在25%以上) 在基准情景基础上考虑结构调整政策带来的环境效益
    结构调整+末端控制情景 《国家环境保护“十二五”规划》;《大气污染防治行动计划》;逐步淘汰工业行业落后产能(如严禁新增钢铁、焦化、电解铝、铸造、水泥和平板玻璃等产能,累计关停300×104 kW以上落后煤电机组);居民全面实施煤改清洁能源政策(如城区、农村地区清洁取暖率分别达到95%、50%);推广新能源车(如新能源汽车销售占比在25%以上);水泥、焦化与锅炉进一步推动超低排放改造(如T/CCAS 022—2022《水泥工业大气污染物超低排放标准》颗粒物浓度<10 mg/m3,SO2浓度<50 mg/m3,NOx浓度<100 mg/m3);实施更加严格的机动车排放标准与汽柴油质量标准(如重型柴油车实施国Ⅵ标准、非道路移动机械实施国Ⅳ标准);积极推进含VOCs原辅材料和产品的源头替代 在结构调整情景基础上考虑末端控制最佳可行技术(BAT)带来的环境效益
    下载: 导出CSV
  • [1] SOKHI R S,MOUSSIOPOULOS N,BAKLANOV A,et al.Advances in air quality research:current and emerging challenges[J].Atmospheric Chemistry and Physics,2022,22(7):4615-4703. doi: 10.5194/acp-22-4615-2022
    [2] 王文兴,柴发合,任阵海,等.新中国成立70年来我国大气污染防治历程、成就与经验[J].环境科学研究,2019,32(10):1621-1635. doi: 10.13198/j.issn.1001-6929.2019.09.15

    WANG W X,CHAI F H,REN Z H,et al.Process,achievements and experience of air pollution control in China since the founding of the People's Republic of China 70 years ago[J].Research of Environmental Sciences,2019,32(10):1621-1635. doi: 10.13198/j.issn.1001-6929.2019.09.15
    [3] HAN B,ZHANG R,YANG W,et al.Heavy haze episodes in Beijing during January 2013:inorganic ion chemistry and source analysis using highly time-resolved measurements from an urban site[J].Science of the Total Environment,2016,544:319-329. doi: 10.1016/j.scitotenv.2015.10.053
    [4] 王韵杰,张少君,郝吉明.中国大气污染治理:进展·挑战·路径[J].环境科学研究,2019,32(10):1755-1762. doi: 10.13198/j.issn.1001-6929.2019.08.22

    WANG Y J,ZHANG S J,HAO J M.Air pollution control in China:progress,challenges and future pathways[J].Research of Environmental Sciences,2019,32(10):1755-1762. doi: 10.13198/j.issn.1001-6929.2019.08.22
    [5] 生态环境部.2017中国生态环境状况公报[R].北京:生态环境部,2018.
    [6] ZHANG Q,ZHENG Y X,TONG D,et al.Drivers of improved PM2.5 air quality in China from 2013 to 2017[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(49):24463-24469. doi: 10.1073/pnas.1907956116
    [7] ZHENG B,TONG D,LI M,et al.Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions[J].Atmospheric Chemistry and Physics,2018,18(19):14095-14111. doi: 10.5194/acp-18-14095-2018
    [8] 生态环境部.2020中国生态环境状况公报[R].北京:生态环境部,2021.
    [9] 李慧,王淑兰,张文杰.等.京津冀及周边地区“2+26”城市空气质量特征及其影响因素[J].环境科学研究,2021,34(1):172-184.

    LI H,WANG S L,ZHANG W J,et al.Characteristics and influencing factors of urban air quality in Beijing-Tianjin-Hebei and its surrounding areas (‘2+26’ Cities)[J].Research of Environmental Sciences,2021,34(1):172-184.
    [10] SHI X R,ZHENG Y X,LEI Y,et al.Air quality benefits of achieving carbon neutrality in China[J].Science of the Total Environment,2021,795:148784. doi: 10.1016/j.scitotenv.2021.148784
    [11] RAO S,KLIMONT Z,SMITH S J,et al.Future air pollution in the shared socio-economic pathways[J].Global Environmental Change,2017,42:346-358. doi: 10.1016/j.gloenvcha.2016.05.012
    [12] AMANN M,KIESEWETTER G,SCHÖPP W,et al.Reducing global air pollution:the scope for further policy interventions[J].Philosophical Transactions Series A:Mathematical,Physical,and Engineering Sciences,2020,378(2183):20190331.
    [13] XING J,WANG S X,CHATANI S,et al.Projections of air pollutant emissions and its impacts on regional air quality in China in 2020[J].Atmospheric Chemistry and Physics,2011,11(7):3119-3136. doi: 10.5194/acp-11-3119-2011
    [14] WANG S X,ZHAO B,CAI S Y,et al.Emission trends and mitigation options for air pollutants in East Asia[J].Atmospheric Chemistry and Physics,2014,14(13):6571-6603. doi: 10.5194/acp-14-6571-2014
    [15] CAI S Y,WANG Y J,ZHAO B,et al.The impact of the ‘Air Pollution Prevention and Control Action Plan’ on PM2.5 concentrations in Jing-Jin-Ji Region during 2012-2020[J].Science of the Total Environment,2017,580:197-209. doi: 10.1016/j.scitotenv.2016.11.188
    [16] MADANIYAZI L,NAGASHIMA T,GUO Y M,et al.Projecting fine particulate matter-related mortality in East China[J].Environmental Science & Technology,2015,49(18):11141-11150.
    [17] SHU Y,HU J N,ZHANG S H,et al.Analysis of the air pollution reduction and climate change mitigation effects of the Three-Year Action Plan for Blue Skies on the ‘2+26’ cities in China[J].Journal of Environmental Management,2022,317:115455. doi: 10.1016/j.jenvman.2022.115455
    [18] AMANN M,BERTOK I,BORKEN-KLEEFELD J,et al.Cost-effective control of air quality and greenhouse gases in Europe:modeling and policy applications[J].Environmental Modelling & Software,2011,26(12):1489-1501.
    [19] 贺克斌,薛志钢.“2+26”城市大气污染源排放清单研究[R].北京:大气重污染成因与治理攻关项目管理办公室,2019.
    [20] 国家统计局城市社会经济调查司.中国城市统计年鉴(2019年)[R].北京:中国统计版社,2020.
    [21] 国家统计局能源统计司.中国能源统计年鉴(2018年)[R].北京:中国统计版社,2019.
    [22] LI M,LIU H,GENG G N,et al.Anthropogenic emission inventories in China:a review[J].National Science Review,2017,4(6):834-866. doi: 10.1093/nsr/nwx150
    [23] LIU J,ZHENG Y X,GENG G N,et al.Decadal changes in anthropogenic source contribution of PM2.5 pollution and related health impacts in China,1990-2015[J].Atmospheric Chemistry and Physics,2020,20(13):7783-7799. doi: 10.5194/acp-20-7783-2020
    [24] KIESEWETTER G,BORKEN-KLEEFELD J,SCHÖPP W,et al.Modelling NO2 concentrations at the street level in the GAINS integrated assessment model:projections under current legislation[J].Atmospheric Chemistry and Physics,2014,14(2):813-829. doi: 10.5194/acp-14-813-2014
    [25] 周成,李少洛,孙友敏,等.基于CMAQ空气质量模型研究机动车对济南市空气质量的影响[J].环境科学研究,2019,32(12):2031-2039. doi: 10.13198/j.issn.1001-6929.2019.08.07

    ZHOU C,LI S L,SUN Y M,et al.Influence of motor vehicles on air quality in urban areas based on the CMAQ model[J].Research of Environmental Sciences,2019,32(12):2031-2039. doi: 10.13198/j.issn.1001-6929.2019.08.07
    [26] LIU J,KIESEWETTER G,KLIMONT Z,et al.Mitigation pathways of air pollution from residential emissions in the Beijing-Tianjin-Hebei Region in China[J].Environment International,2019,125:236-244. doi: 10.1016/j.envint.2018.09.059
    [27] 国务院.国务院关于印发国家环境保护“十二五”规划的通知[EB/OL].北京:国务院公报,(2011-12-15)[2022-08-16].http://www.gov.cn/govweb/gongbao/content/2012/content_2034724.htm
    [28] 国务院.国务院关于印发大气污染防治行动计划的通知[EB/OL].北京:国务院办公厅,(2013-09-10)[2022-08-16].http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm.
    [29] 国务院.国务院关于印发打赢蓝天保卫战三年行动计划的通知[EB/OL].北京:国务院办公厅,(2018-06-27)[2022-08-16].http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm.
    [30] ZHI G R,PENG C H,CHEN Y J,et al.Deployment of coal briquettes and improved stoves:possibly an option for both environment and climate[J].Environmental Science & Technology,2009,43(15):5586-5591.
    [31] 闫祯,金玲,陈潇君,等.京津冀地区居民采暖“煤改电”的大气污染物减排潜力与健康效益评估[J].环境科学研究,2019,32(1):95-103. doi: 10.13198/j.issn.1001-6929.2018.10.16

    YAN Z,JIN L,CHEN X J,et al.Assessment of air pollutants emission reduction potential and health benefits for ‘residential heating coal changing to electricity’ in the Beijing-Tianjin-Hebei Region[J].Research of Environmental Sciences,2019,32(1):95-103. doi: 10.13198/j.issn.1001-6929.2018.10.16
    [32] GU B J,ZHANG L,van DINGENEN R,et al.Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution[J].Science,2021,374(6568):758-762. doi: 10.1126/science.abf8623
    [33] LI M,ZHANG Q,ZHENG B,et al.Persistent growth of anthropogenic NMVOC emissions in China during 1990-2017:dynamics,speciation,and ozone formation potentials[J].Atmospheric Chemistry and Physics,2019.doi: https://doi.org/10.5194/acp-2019-125.
    [34] CHENG J,TONG D,ZHANG Q,et al.Pathways of China's PM2.5 air quality 2015-2060 in the context of carbon neutrality[J].National Science Review,2021,8(12):nwab078. doi: 10.1093/nsr/nwab078
    [35] TONG D,ZHANG Q,LIU F,et al.Current emissions and future mitigation pathways of coal-fired power plants in China from 2010 to 2030[J].Environmental Science & Technology,2018,52(21):12905-12914.
    [36] BO X,JIA M,XUE X D,et al.Effect of strengthened standards on Chinese ironmaking and steelmaking emissions[J].Nature Sustainability,2021,4(9):811-820. doi: 10.1038/s41893-021-00736-0
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  52
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-20
  • 修回日期:  2022-10-18

目录

    /

    返回文章
    返回