PM2.5 Pollution Control Pathways in Beijing-Tianjin-Hebei and Surrounding Urban Areas in 2030
-
摘要: 近年来,我国大气污染物减排效果明显,空气质量也随之大幅改善. 然而,部分重点区域如京津冀及周边城市群(“2+26”城市)PM2.5年均浓度依然较高,远超GB 3095—2012《环境空气质量标准》二级标准限值(35 μg/m3). 为实现该目标值,利用京津冀温室气体-空气污染物协同控制综合评估模型(greenhouse gas-air pollution interactions and synergies, GAINS-JJJ),模拟预测了2030年不同政策情景下区域空气质量改善情况,分别量化了结构调整与末端控制(BAT)政策对不同污染物减排的贡献,为“2+26”城市制定空气质量改善路径提供参考. 结果表明:①2017—2030年,由于一系列结构调整政策,如煤改清洁能源、淘汰落后产能(如钢铁、水泥、焦化等)、氮肥减量施用和高挥发有机溶剂替代等措施的实施,以及末端控制政策,如钢铁、水泥与焦化等行业超低排放改造,重型柴油车与非道路移动机械尾气排放标准升级,标准化规模养殖与测土配方施肥技术等技术的推广,“2+26”城市的PM2.5年均浓度值达到34 μg/m3,实现了“美丽中国”的目标要求. ②2030年结构调整情景下,一次PM2.5、SO2、NOx、NH3与NMVOCs(非甲烷类挥发性有机物)的排放相比2017年分别下降了31%、44%、31%、5%和11%;结构调整+末端控制情景下,各项污染物的排放量减排比例分别达到75%、69%、77%、32%与52%. ③末端控制政策对一次PM2.5、NOx、NH3和NMVOCs减排的贡献要大于结构调整政策的贡献;而针对SO2的减排,结构调整政策则发挥了较大的作用. 研究显示,在2030年之前,“2+26”城市的末端控制政策仍具有较大的污染减排潜力,而针对SO2的控制则应将重点从过去的末端减排转向前端的结构性调整措施上.
-
关键词:
- 细颗粒物(PM2.5)污染 /
- “2+26”城市 /
- 情景分析 /
- 减排潜力 /
- 模拟分析
Abstract: In recent years, air pollutant emissions in China have reduced significantly, and the air quality has improved. However, annual average PM2.5 concentrations in some key regions such as the ‘2+26’ Cities in Beijing-Tianjin-Hebei and surrounding areas are still relatively high, far exceeding the national standard Ⅱ for ambient air quality of 35 μg/m3. To attain the target, the greenhouse gas and air pollution interactions and synergies model adapted to the ‘2+26’ Cities (GAINS-JJJ) model was applied to simulate and predict regional air quality under different policy scenarios in 2030, and contributions of structural adjustments and end-of-pipe controls (BAT) policies to the emission reduction. The results showed that: (1) Due to the structural adjustment policies, such as ‘coal to clean energy’, elimination of outdated production capacity (such as steel, cement, coking, etc.), reduction of nitrogen fertilizer application and substitution of high volatile organic solvents, and the end-of-pipe control policies, such as ultra-low emission standard transformation of steel, cement and coking industries, strengthened emission standards of heavy diesel vehicles and non-road machinery, and promotion of standardized large-scale breeding, soil testing technologies, the average annual concentration of PM2.5 in the ‘2+26’ Cities will reach 34 μg/m3, achieving the goal of ‘beautiful China’. (2) Due to structural adjustment, the emissions of PM2.5, SO2, NOx, NH3 and NMVOCs in 2030 will be reduced by 31%, 44%, 31%, 5% and 11%, respectively, compared with 2017, and they will be further reduced by 75%, 69%, 77%, 32% and 52%, respectively, due to end-of-pipe controls. (3) The contribution of the end-of-pipe controls to the emission reductions of primary PM2.5, NOx, NH3 and NMVOCs is greater than that of the structural adjustments. For SO2 emission reduction, structural adjustments has played a greater role. Research demonstrated that the control of SO2 before 2030 should shift the focus from the end-of-pipe measures to the structural adjustment measures.-
Key words:
- PM2.5 pollution /
- ‘2+26’ cities /
- scenario analysis /
- reduction potential /
- simulation analysis
-
表 1 情景描述与目的
Table 1. Description and purpose of scenarios
情景名称 情景描述 情景目的 基准情景 《国家环境保护“十二五”规划》;《大气污染防治行动计划》 经济持续发展情况下环境政策维持现状 结构调整情景 《国家环境保护“十二五”规划》;《大气污染防治行动计划》;逐步淘汰工业行业落后产能(如严禁新增钢铁、焦化、电解铝、铸造、水泥和平板玻璃等产能,累计关停300×104 kW以上落后煤电机组);居民全面实施煤改清洁能源政策(如城区、农村地区清洁取暖率分别达到95%、50%);推广新能源车(如新能源汽车销售占比在25%以上) 在基准情景基础上考虑结构调整政策带来的环境效益 结构调整+末端控制情景 《国家环境保护“十二五”规划》;《大气污染防治行动计划》;逐步淘汰工业行业落后产能(如严禁新增钢铁、焦化、电解铝、铸造、水泥和平板玻璃等产能,累计关停300×104 kW以上落后煤电机组);居民全面实施煤改清洁能源政策(如城区、农村地区清洁取暖率分别达到95%、50%);推广新能源车(如新能源汽车销售占比在25%以上);水泥、焦化与锅炉进一步推动超低排放改造(如T/CCAS 022—2022《水泥工业大气污染物超低排放标准》颗粒物浓度<10 mg/m3,SO2浓度<50 mg/m3,NOx浓度<100 mg/m3);实施更加严格的机动车排放标准与汽柴油质量标准(如重型柴油车实施国Ⅵ标准、非道路移动机械实施国Ⅳ标准);积极推进含VOCs原辅材料和产品的源头替代 在结构调整情景基础上考虑末端控制最佳可行技术(BAT)带来的环境效益 -
[1] SOKHI R S,MOUSSIOPOULOS N,BAKLANOV A,et al.Advances in air quality research:current and emerging challenges[J].Atmospheric Chemistry and Physics,2022,22(7):4615-4703. doi: 10.5194/acp-22-4615-2022 [2] 王文兴,柴发合,任阵海,等.新中国成立70年来我国大气污染防治历程、成就与经验[J].环境科学研究,2019,32(10):1621-1635. doi: 10.13198/j.issn.1001-6929.2019.09.15WANG W X,CHAI F H,REN Z H,et al.Process,achievements and experience of air pollution control in China since the founding of the People's Republic of China 70 years ago[J].Research of Environmental Sciences,2019,32(10):1621-1635. doi: 10.13198/j.issn.1001-6929.2019.09.15 [3] HAN B,ZHANG R,YANG W,et al.Heavy haze episodes in Beijing during January 2013:inorganic ion chemistry and source analysis using highly time-resolved measurements from an urban site[J].Science of the Total Environment,2016,544:319-329. doi: 10.1016/j.scitotenv.2015.10.053 [4] 王韵杰,张少君,郝吉明.中国大气污染治理:进展·挑战·路径[J].环境科学研究,2019,32(10):1755-1762. doi: 10.13198/j.issn.1001-6929.2019.08.22WANG Y J,ZHANG S J,HAO J M.Air pollution control in China:progress,challenges and future pathways[J].Research of Environmental Sciences,2019,32(10):1755-1762. doi: 10.13198/j.issn.1001-6929.2019.08.22 [5] 生态环境部.2017中国生态环境状况公报[R].北京:生态环境部,2018. [6] ZHANG Q,ZHENG Y X,TONG D,et al.Drivers of improved PM2.5 air quality in China from 2013 to 2017[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(49):24463-24469. doi: 10.1073/pnas.1907956116 [7] ZHENG B,TONG D,LI M,et al.Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions[J].Atmospheric Chemistry and Physics,2018,18(19):14095-14111. doi: 10.5194/acp-18-14095-2018 [8] 生态环境部.2020中国生态环境状况公报[R].北京:生态环境部,2021. [9] 李慧,王淑兰,张文杰.等.京津冀及周边地区“2+26”城市空气质量特征及其影响因素[J].环境科学研究,2021,34(1):172-184.LI H,WANG S L,ZHANG W J,et al.Characteristics and influencing factors of urban air quality in Beijing-Tianjin-Hebei and its surrounding areas (‘2+26’ Cities)[J].Research of Environmental Sciences,2021,34(1):172-184. [10] SHI X R,ZHENG Y X,LEI Y,et al.Air quality benefits of achieving carbon neutrality in China[J].Science of the Total Environment,2021,795:148784. doi: 10.1016/j.scitotenv.2021.148784 [11] RAO S,KLIMONT Z,SMITH S J,et al.Future air pollution in the shared socio-economic pathways[J].Global Environmental Change,2017,42:346-358. doi: 10.1016/j.gloenvcha.2016.05.012 [12] AMANN M,KIESEWETTER G,SCHÖPP W,et al.Reducing global air pollution:the scope for further policy interventions[J].Philosophical Transactions Series A:Mathematical,Physical,and Engineering Sciences,2020,378(2183):20190331. [13] XING J,WANG S X,CHATANI S,et al.Projections of air pollutant emissions and its impacts on regional air quality in China in 2020[J].Atmospheric Chemistry and Physics,2011,11(7):3119-3136. doi: 10.5194/acp-11-3119-2011 [14] WANG S X,ZHAO B,CAI S Y,et al.Emission trends and mitigation options for air pollutants in East Asia[J].Atmospheric Chemistry and Physics,2014,14(13):6571-6603. doi: 10.5194/acp-14-6571-2014 [15] CAI S Y,WANG Y J,ZHAO B,et al.The impact of the ‘Air Pollution Prevention and Control Action Plan’ on PM2.5 concentrations in Jing-Jin-Ji Region during 2012-2020[J].Science of the Total Environment,2017,580:197-209. doi: 10.1016/j.scitotenv.2016.11.188 [16] MADANIYAZI L,NAGASHIMA T,GUO Y M,et al.Projecting fine particulate matter-related mortality in East China[J].Environmental Science & Technology,2015,49(18):11141-11150. [17] SHU Y,HU J N,ZHANG S H,et al.Analysis of the air pollution reduction and climate change mitigation effects of the Three-Year Action Plan for Blue Skies on the ‘2+26’ cities in China[J].Journal of Environmental Management,2022,317:115455. doi: 10.1016/j.jenvman.2022.115455 [18] AMANN M,BERTOK I,BORKEN-KLEEFELD J,et al.Cost-effective control of air quality and greenhouse gases in Europe:modeling and policy applications[J].Environmental Modelling & Software,2011,26(12):1489-1501. [19] 贺克斌,薛志钢.“2+26”城市大气污染源排放清单研究[R].北京:大气重污染成因与治理攻关项目管理办公室,2019. [20] 国家统计局城市社会经济调查司.中国城市统计年鉴(2019年)[R].北京:中国统计版社,2020. [21] 国家统计局能源统计司.中国能源统计年鉴(2018年)[R].北京:中国统计版社,2019. [22] LI M,LIU H,GENG G N,et al.Anthropogenic emission inventories in China:a review[J].National Science Review,2017,4(6):834-866. doi: 10.1093/nsr/nwx150 [23] LIU J,ZHENG Y X,GENG G N,et al.Decadal changes in anthropogenic source contribution of PM2.5 pollution and related health impacts in China,1990-2015[J].Atmospheric Chemistry and Physics,2020,20(13):7783-7799. doi: 10.5194/acp-20-7783-2020 [24] KIESEWETTER G,BORKEN-KLEEFELD J,SCHÖPP W,et al.Modelling NO2 concentrations at the street level in the GAINS integrated assessment model:projections under current legislation[J].Atmospheric Chemistry and Physics,2014,14(2):813-829. doi: 10.5194/acp-14-813-2014 [25] 周成,李少洛,孙友敏,等.基于CMAQ空气质量模型研究机动车对济南市空气质量的影响[J].环境科学研究,2019,32(12):2031-2039. doi: 10.13198/j.issn.1001-6929.2019.08.07ZHOU C,LI S L,SUN Y M,et al.Influence of motor vehicles on air quality in urban areas based on the CMAQ model[J].Research of Environmental Sciences,2019,32(12):2031-2039. doi: 10.13198/j.issn.1001-6929.2019.08.07 [26] LIU J,KIESEWETTER G,KLIMONT Z,et al.Mitigation pathways of air pollution from residential emissions in the Beijing-Tianjin-Hebei Region in China[J].Environment International,2019,125:236-244. doi: 10.1016/j.envint.2018.09.059 [27] 国务院.国务院关于印发国家环境保护“十二五”规划的通知[EB/OL].北京:国务院公报,(2011-12-15)[2022-08-16].http://www.gov.cn/govweb/gongbao/content/2012/content_2034724.htm [28] 国务院.国务院关于印发大气污染防治行动计划的通知[EB/OL].北京:国务院办公厅,(2013-09-10)[2022-08-16].http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm. [29] 国务院.国务院关于印发打赢蓝天保卫战三年行动计划的通知[EB/OL].北京:国务院办公厅,(2018-06-27)[2022-08-16].http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm. [30] ZHI G R,PENG C H,CHEN Y J,et al.Deployment of coal briquettes and improved stoves:possibly an option for both environment and climate[J].Environmental Science & Technology,2009,43(15):5586-5591. [31] 闫祯,金玲,陈潇君,等.京津冀地区居民采暖“煤改电”的大气污染物减排潜力与健康效益评估[J].环境科学研究,2019,32(1):95-103. doi: 10.13198/j.issn.1001-6929.2018.10.16YAN Z,JIN L,CHEN X J,et al.Assessment of air pollutants emission reduction potential and health benefits for ‘residential heating coal changing to electricity’ in the Beijing-Tianjin-Hebei Region[J].Research of Environmental Sciences,2019,32(1):95-103. doi: 10.13198/j.issn.1001-6929.2018.10.16 [32] GU B J,ZHANG L,van DINGENEN R,et al.Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution[J].Science,2021,374(6568):758-762. doi: 10.1126/science.abf8623 [33] LI M,ZHANG Q,ZHENG B,et al.Persistent growth of anthropogenic NMVOC emissions in China during 1990-2017:dynamics,speciation,and ozone formation potentials[J].Atmospheric Chemistry and Physics,2019.doi: https://doi.org/10.5194/acp-2019-125. [34] CHENG J,TONG D,ZHANG Q,et al.Pathways of China's PM2.5 air quality 2015-2060 in the context of carbon neutrality[J].National Science Review,2021,8(12):nwab078. doi: 10.1093/nsr/nwab078 [35] TONG D,ZHANG Q,LIU F,et al.Current emissions and future mitigation pathways of coal-fired power plants in China from 2010 to 2030[J].Environmental Science & Technology,2018,52(21):12905-12914. [36] BO X,JIA M,XUE X D,et al.Effect of strengthened standards on Chinese ironmaking and steelmaking emissions[J].Nature Sustainability,2021,4(9):811-820. doi: 10.1038/s41893-021-00736-0 -