Content and Risk Reduction of Polycyclic Aromatic Hydrocarbons in Deep Dewatered Sludge Aerobic Composting
-
摘要: 多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是影响污泥安全资源化的重要因素. 以无机药剂调理的深度脱水污泥有利于污泥的好氧堆肥处置,但对于该处置过程中深度脱水污泥PAHs的降解和风险削减尚缺乏认识. 主要以复合铝镁盐调理的深度脱水污泥为对象,分析不同好氧堆肥条件下污泥中PAHs的含量、来源和风险,以明确好氧堆肥工艺过程对风险有机物的削减效果及潜在影响因素. 通过气相色谱-质谱仪、特征比值法和风险熵法分析污泥中美国EPA优先控制的16种PAHs的含量、来源和风险,重点考察了深度脱水污泥在好氧堆肥前后PAHs含量和风险变化. 结果表明:①16种PAHs在6组污泥中均有检出,其总量范围为777.78~1 878.38 ng/g,组成以中高环芳烃为主,主要来源为石油污染和燃烧的混合源. ②堆肥28 d后6组污泥中PAHs的去除率分别为37.66%、54.29%、12.38%、15.40%、56.78%和34.25%,表明添加颗粒大的返混料或辅料更有利于PAHs的降解. ③污泥中的PAHs整体处于中低风险,好氧堆肥后除组1的苯并[a]芘和组2的芴由低风险上升为中风险外,其余组中PAHs的风险均保持不变或者下降. 研究显示,深度脱水污泥好氧堆肥应注重堆体的通气性,添加颗粒大的返混料或辅料能有效改善好氧堆肥过程的通气性,从而促进PAHs的降解和风险削减. 此外,堆肥过程及堆肥产品中PAHs应作为一项重要指标进行监测,以避免因长期暴露引发累积性生态风险.Abstract: Polycyclic aromatic hydrocarbons (PAHs) are important factors affecting the safety of sludge application. Deep dewatered sludge conditioned with inorganic chemicals is beneficial to the disposal of aerobic composting of sludge, but the degradation and risk reduction of PAHs in deep dewatered sludge during its aerobic composting remains unclear. Focusing on the deep dewatered sludge conditioned by aluminum magnesium salt, this study investigated the content, source and risk of PAHs in the sludge during the aerobic composting process under different conditions, to elucidate the risk reduction of organic pollutants and potentially influencing factors. By using gas chromatography-mass spectrometry, characteristic ratio and risk quotient method, the contents, potential sources and risk of 16 PAHs prioritized by the US EPA were analyzed. Especially, the changes of risk of PAHs in deep dewatered sludge before and after aerobic composting were investigated. The results showed that: (1) 16 PAHs were detected in all sludge, their total content ranged from 777.78 to 1878.38 ng/g. The detected PAHs were mainly medium and high cyclic PAHs and were mainly from mixed sources of petroleum pollution and combustion. (2) After 28 days of aerobic composting, the degradation rates of PAHs in 6 groups were 37.66%, 54.29%, 12.38%, 15.40%, 56.78% and 34.25%, respectively. It showed that the addition of back mixing and auxiliary materials with large particle sizes were conducive to the degradation of PAHs. (3) The overall risk of PAHs before composting was medium to low. Except that the risk of BaP in group 1 and Flu in group 2 increased from low level to medium level, the risk of PAHs in all other groups did not change or decreased after aerobic composting. This study proposed that the air permeability was an key impact factor for aerobic composting, and the addition of back mixing and auxiliary materials with large particles could effectively improve the air permeability to promote the degradation efficiency and risk reduction of PAHs during aerobic composting of deep dewatered sludge. Moreover, PAHs in sludge composting and the compost products should be monitored as important indicators to avoid cumulative ecological risks caused by long-term exposure.
-
Key words:
- sludge /
- aerobic composting /
- PAHs /
- attenuation /
- ecological risk
-
表 1 深度脱水污泥的好氧堆肥组别设计(以污泥湿质量计)
Table 1. Group design of the aerobic composting for deep dewatered sludge (in terms of wet weight of sludge)
组别 脱水药剂 稻壳/% 返混料/% 筛分料/% 含水率/% 最高温度/℃ 高温期/d 有机质含量 组1 复合铝镁盐 0 30 0 62 73.8±0.5 8 63.3%±6.8% 组2 复合铝镁盐 0 100 0 62 73.2±1.7 6 60.8%±2.2% 组3 复合铝镁盐 0 0 15 62 62.7±1.3 10 32.1%±1.1% 组4 复合铝镁盐 7 0 28 47 60.7±3.6 6 45.6%±4.9% 组5 无药剂 14 0 50 53 63.5±0.6 11 44.0%±0.4% 组6 无药剂 14 84 0 63 55.5±0.5 8 59.3%±2.2% 注:筛分料为堆肥结束后的筛分成品;返混料为堆肥结束后的直接出槽成品;有机质含量以污泥干质量计. 表 2 深度脱水污泥好氧堆肥前后∑PAHs含量的变化情况
Table 2. Total content of 16 PAHs in deep dewatered sludge before and after aerobic composting
组别 好氧堆肥前 好氧堆肥后 ∑PAHs含量/(ng/g) HMW含量/(ng/g) LMW含量/(ng/g) HMW/LMW ∑PAHs含量/(ng/g) HMW含量/(ng/g) LMW含量/(ng/g) HMW/LMW 组1 1050.64±19.63 856.95±28.84 193.69±8.87 4.45 654.99±19.52 484.50±17.16 170.50±2.36 2.93 组2 1878.38±77.56 1586.53±71.42 291.85±6.14 5.45 858.63±37.78 613.51±36.29 245.11±1.49 2.50 组3 1 662.00±40.62 1 435.89±41.78 226.11±12.21 6.47 1456.19±137.71 1324.38±98.62 199.90±7.53 6.58 组4 777.78±18.66 513.60±16.21 250.47±11.59 1.99 658.05±23.83 493.00±26.09 165.04±2.41 3.00 组5 1506.75±112.23 1338.14±107.69 173.88±9.67 8.14 651.26±9.76 524.81±8.83 126.45±3.49 4.15 组6 823.07±3.67 705.28±4.90 118.31±1.26 5.90 541.19±21.92 392.46±16.40 148.73±11.08 2.64 注:HMW表示高分子量(4环及以上)PAHs;LMW表示低分子量(2~3环)PAHs. 表 3 深度脱水污泥好氧堆肥前后PAHs的风险值
Table 3. RQ of PAHs in deep dewatered sludge before and after aerobic composting
PAHs 好氧堆肥前RQNCs 好氧堆肥前RQMPCs 组1 组2 组3 组4 组5 组6 组1 组2 组3 组4 组5 组6 Nap 52.75 120.74 88.52 45.53 45.69 31.61 0.528 1.207 0.885 0.455 0.457 0.316 Any 13.27 16.22 13.50 15.23 7.69 6.95 0.133 0.162 0.135 0.152 0.077 0.069 Acp 12.29 17.41 13.99 17.64 11.20 7.47 0.123 0.174 0.140 0.176 0.112 0.075 Flu 0.59 0.53 0.55 1.28 0.69 0.49 0.006 0.005 0.005 0.013 0.007 0.005 Phe 7.09 7.82 6.71 20.14 7.40 5.01 0.071 0.078 0.067 0.201 0.074 0.050 Ant 30.95 22.48 13.70 15.84 19.40 15.29 0.310 0.225 0.137 0.158 0.194 0.153 Flt 42.41 44.71 55.41 38.50 56.94 31.71 0.424 0.447 0.554 0.385 0.569 0.317 Pyr 68.59 83.56 79.36 57.61 73.88 43.64 0.686 0.836 0.794 0.576 0.739 0.436 BaA 2.54 21.65 19.74 2.28 22.73 1.36 0.025 0.216 0.197 0.023 0.227 0.014 Chr 0.33 0.63 0.54 0.25 0.66 0.25 0.003 0.006 0.005 0.003 0.007 0.002 BbF 33.32 45.15 42.55 33.87 51.85 25.10 0.333 0.451 0.425 0.339 0.518 0.251 BkF 3.44 4.77 4.50 3.45 5.40 2.62 0.034 0.048 0.045 0.035 0.054 0.026 BaP 0.98 1.35 1.50 1.46 2.26 0.78 0.010 0.013 0.015 0.015 0.023 0.008 DahA 1.12 1.12 1.16 1.09 1.24 1.031 0.011 0.011 0.012 0.011 0.012 0.010 IcdP 0.50 0.54 0.60 0.67 1.12 0.352 0.005 0.005 0.006 0.007 0.011 0.004 BghiP 5.24 12.08 10.36 0.66 7.48 4.710 0.052 0.121 0.104 0.007 0.075 0.047 PAHs 好氧堆肥后RQNCs 好氧堆肥后RQMPCs 组1 组2 组3 组4 组5 组6 组1 组2 组3 组4 组5 组6 Nap 60.98 91.29 76.22 60.03 38.87 51.92 0.610 0.913 0.762 0.600 0.389 0.519 Any 7.92 10.88 9.37 8.55 6.15 6.51 0.079 0.109 0.094 0.085 0.061 0.065 Acp 13.22 11.10 13.35 14.52 5.82 11.29 0.132 0.111 0.134 0.145 0.058 0.113 Flu 0.38 1.45 0.50 0.36 0.45 0.43 0.004 0.014 0.005 0.004 0.004 0.004 Phe 5.54 5.94 5.86 5.18 5.12 4.75 0.055 0.059 0.059 0.052 0.051 0.048 Ant 18.26 18.66 19.23 17.07 16.60 16.11 0.183 0.187 0.192 0.171 0.166 0.161 Flt 47.16 43.53 48.16 40.07 41.77 38.05 0.472 0.435 0.482 0.401 0.418 0.380 Pyr 58.49 68.97 62.88 54.49 50.02 43.76 0.585 0.690 0.629 0.545 0.500 0.438 BaA 10.60 3.02 17.58 10.85 11.20 7.95 0.106 0.030 0.176 0.108 0.112 0.079 Chr 0.25 0.43 0.48 0.26 0.27 0.16 0.002 0.004 0.005 0.003 0.003 0.002 BbF 28.87 45.66 37.61 32.27 33.41 23.52 0.289 0.457 0.376 0.323 0.334 0.235 BkF 2.95 4.65 3.89 3.29 3.39 2.34 0.029 0.047 0.039 0.033 0.034 0.023 BaP 1.01 1.50 1.38 1.11 1.12 0.75 0.010 0.015 0.014 0.011 0.011 0.008 DahA 0.95 1.03 1.05 0.92 0.99 0.88 0.010 0.010 0.011 0.009 0.010 0.009 IcdP 0.50 0.45 0.63 0.49 0.54 0.38 0.005 0.004 0.006 0.005 0.005 0.004 BghiP 0.690 0.65 9.81 0.60 0.74 0.55 0.007 0.007 0.098 0.006 0.007 0.006 -
[1] LI G C,XIA X H,YANG Z F,et al.Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River,China[J].Environmental Pollution,2006,144(3):985-993. doi: 10.1016/j.envpol.2006.01.047 [2] YU H Y,LIU Y F,HAN C X,et al.Polycyclic aromatic hydrocarbons in surface waters from the seven main river basins of China:spatial distribution,source apportionment,and potential risk assessment[J].Science of the Total Environment.2021,752:141764. [3] ZHANG L F,DONG L,REN L J,et al.Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta,China[J].Journal of Environmental Sciences,2012,24(2):335-342. doi: 10.1016/S1001-0742(11)60782-1 [4] KIM K H,JAHAN S A,KABIR E,et al.A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects[J].Environment International,2013,60:71-80. doi: 10.1016/j.envint.2013.07.019 [5] 张晗,陆少游,刘凯,等.某生活垃圾焚烧发电厂周边农田土壤中PAHs生态安全评价[J].环境科学研究,2019,32(12):2124-2131.ZHANG H,LU S Y,LIU K,et al.Ecological safety evaluation of the polycyclic aromatic hydrocarbons (PAHs) in surface soil of farmland around a municipal solid waste incineration power plant[J].Research of Environmental Sciences,2019,32(12):2124-2131. [6] 孙伟,匡科,严兴,等.污泥好氧堆肥对PAHs的处理效果和抗生素及抗性基因消解效果[J].环境科学研究,2021,34(7):1757-1763.SUN W,KUANG K,YAN X,et al.Sludge aerobic composting to treat PAHs,antibiotics and resistance genes[J].Research of Environmental Sciences,2021,34(7):1757-1763. [7] ZHANG Y,ZHANG L F,HUANG Z P,et al.Pollution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of China:composition,distribution and influencing factors[J].Ecotoxicology Environmental Safaty,2019,177:108-116. doi: 10.1016/j.ecoenv.2019.03.119 [8] 徐倩茹.污水再生过程中微量有机污染物的去除及生态风险评价[D].青岛:青岛理工大学,2021. [9] 杨清书,麦碧娴,罗孝俊,等.珠江澳门水域水柱多环芳烃初步研究[J].环境科学研究,2004,17(3):28-33. doi: 10.3321/j.issn:1001-6929.2004.03.009YANG Q S,MAI B X,LUO X J,et al.Preliminary study of polycyclic aromatic hydrocarbons of water column in Macau Coastal waters[J].Research of Environmental Sciences,2004,17(3):28-33. doi: 10.3321/j.issn:1001-6929.2004.03.009 [10] CAI Q Y,MO C H,WU Q T,et al.Occurrence of organic contaminants in sewage sludges from eleven wastewater treatment plants,China[J].Chemosphere,2007,68(9):1751-1762. doi: 10.1016/j.chemosphere.2007.03.041 [11] 李泽文,王海燕,孔秀琴,等.松花江表层沉积物中16种多环芳烃空间分布特征及生态风险评价[J].环境科学研究,2020,33(1):163-173.LI Z W,WANG H Y,KONG X Q,et al.Spatial distribution characteristics and ecological risk assessment of 16 PAHs in surface sediment of Songhua River[J].Research of Environmental Sciences,2020,33(1):163-173. [12] 杨喆程,杜子文,孙德智,等.城市污泥产品林地施用效果与风险评价[J].环境工程学报,2021,15(4):1432-1443. doi: 10.12030/j.cjee.202005079YANG Z C,DU Z W,SUN D Z,et al.Application effect and risk assessment of urban sludge products in forestland[J].Chinese Journal of Environmental Engineering,2021,15(4):1432-1443. doi: 10.12030/j.cjee.202005079 [13] CUCINA M,DE-NISI P,SORDI S,et al.Sewage sludge as N-fertilizers for crop production enabling the circular bioeconomy in agriculture:a challenge for the New EU Regulation 1009/2019[J].Sustainability,2021,13(23):132313165. [14] MENG X Z,VENKATESAN A K,NI Y L,et al.Organic contaminants in Chinese cewage sludge:a meta-analysis of the literature of the past 30 years[J].Environmental Science & Technology,2016,50(11):5454-5466. [15] ZHANG X Y,YU T,LI X,et al.The fate and enhanced removal of polycyclic aromatic hydrocarbons in wastewater and sludge treatment system:a review[J].Critical Reviews in Environmental Science and Technology,2019,49(16):1425-1475. doi: 10.1080/10643389.2019.1579619 [16] 石守业.污泥堆肥过程中多环芳烃降解及转化的研究[D].青岛:中国海洋大学,2008. [17] 付融冰,杨海真,甘明强.中国城市污水处理厂污泥处理现状及其进展[J].环境科学与技术,2004,27(5):108-110. doi: 10.3969/j.issn.1003-6504.2004.05.044FU R B,YANG H Z,GAN M Q.Sludge disposal in Chinese urban wastewater treatment plant:present status and future[J].Enuivonmental Science & Technology (China),2004,27(5):108-110. doi: 10.3969/j.issn.1003-6504.2004.05.044 [18] 查金,贾宇锋,刘政洋,等.市政污泥堆肥对矿山废弃地生态恢复影响的研究进展[J].环境科学研究,2020,33(8):1901-1910.ZHA J,JIA Y F,LIU Z Y,et al.Research advances on effect of municipal sewage sludge compost applied for abandoned mine ecological remediation[J].Research of Environmental Sciences,2020,33(8):1901-1910. [19] OLESZCZUK P.Influence of different bulking agents on the disappearance of polycyclic aromatic hydrocarbons (PAHs) during sewage sludge composting[J].Water Air and Soil Pollution,2006,175(1/2/3/4):15-32. [20] DING A,ZHANG R R,NGO H H,et al.Life cycle assessment of sewage sludge treatment and disposal based on nutrient and energy recovery:a review[J].Science of the Total Environment,2021. doi: 10.1016/j.scitotenv.2020.144451 [21] CAI L,CHEN T B,GAO D,et al.Time domain reflectometry measured moisture content of sewage sludge compost across temperatures[J].Waste Management,2013,33(1):12-17. doi: 10.1016/j.wasman.2012.09.014 [22] 陈丹丹,窦昱昊,卢平,等.污泥深度脱水技术研究进展[J].化工进展,2019,38(10):4722-4746.CHEN D D,DOU Y H,LU PING,et al.A review on sludge deep dewatering technology[J].Chemical Industry and Engineering Progress,2019,38(10):4722-4746. [23] 邹艳梅,李沅蔚,纪灵,等.渤海龙口湾沉积物中烃类物质的分布特征、来源解析及风险评价[J].环境科学研究,2020,33(9):2138-2147.ZOU Y M,LI Y W,JI L,et al.Distribution,source and risk assessment of hydrocarbons in sediments of Longkou Bay,Bohai Sea[J].Research of Environmental Sciences,2020,33(9):2138-2147. [24] MEN B,HE M C,TAN L,et al.Distributions of polycyclic aromatic hydrocarbons in the Daliao River Estuary of Liaodong Bay,Bohai Sea (China)[J].Marine Pollution Bulletin,2009,58(6):818-826. doi: 10.1016/j.marpolbul.2009.01.022 [25] ROCHER V,AZIMI S,MOILLERON R,et al.Hydrocarbons and heavy metals in the different sewer deposits in the Te Marais' catchment (Paris,France):stocks,distributions and origins[J].Science of the Total Environment,2004,323(1/2/3):107-122. [26] PERRA G,POZO K,GUERRANTI C,et al.Levels and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in superficial sediment from 15 Italian marine protected areas (MPA)[J].Marine Pollution Bulletin,2011,62(4):874-877. doi: 10.1016/j.marpolbul.2011.01.023 [27] YUNKERA M B,MACDONALD R W,VINGARZAN R,et al.PAHs in the Fraser River Basin:a critical appraisal of PAH ratios as indicators of PAH source and composition[J].Organic Geochemistry,2002,33(4):489-515. doi: 10.1016/S0146-6380(02)00002-5 [28] ZHANG X L,TAO S,LIU W X,et al.Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios:a multimedia approach[J].Environmental Science & Technology,2005,39:9109-9114. [29] 郝智能,胡鹏,于泳,等.天津大沽排水河沉积物典型持久性有机污染物的分布特征与来源解析[J].农业环境科学学报,2011,30(10):2106-2112.HAO Z N,HU P,YU Y,et al.Distribution and source analysis of classic persistent organic pollutants in sediments from Dagu Drainage Canal,Tianjin,China[J].Journal of Agro-Environment Science,2011,30(10):2106-2112. [30] FENG C L,XIA X H,SHEN Z Y,et al.Distribution and sources of polycyclic aromatic hydrocarbons in Wuhan section of the Yangtze River,China[J].Environmental Monitoring and Assessment,2007,133(1-3):447-458. doi: 10.1007/s10661-006-9599-5 [31] LIU F,LIU J,CHEN Q,et al.Pollution characteristics,ecological risk and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediment from Tuhai-Majia River system,China[J].Procedia Environmental Sciences,2012,13:1301-1314. doi: 10.1016/j.proenv.2012.01.123 [32] KALF D F,CROMMENTUJIN T,VANDEPLASSCHEL E J.Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs)[J].Ecotoxicology and Environmental Safety,1997,36(1):89-97. doi: 10.1006/eesa.1996.1495 [33] CAO Z G,LIU J L,LUAN Y,et al.Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River,China[J].Ecotoxicology,2010,19(5):827-837. doi: 10.1007/s10646-010-0464-5 -