Emission Characteristics and Priority Classification Control of Anthropogenic VOCs Sources in Beijing-Tianjin-Hebei Region
-
摘要: 挥发性有机物(volatile organic compounds, VOCs)是细颗粒物(PM2.5)与臭氧(O3)的重要前体物,对我国城市复合污染的形成有重要影响,京津冀区域大气污染问题严峻,VOCs排放源类别复杂,且排放量基数大,亟需形成有效的VOCs管控策略. 因此选取京津冀区域人为源VOCs排放为研究对象,建立2018年分行业分物种VOCs排放清单,并基于实测与文献调研的行业VOCs成分谱数据,获取各排放源臭氧生成潜势(ozone formation potential, OFP)与二次有机气溶胶生成潜势(secondary organic aerosol formation potential, SOAP),同时构建VOCs排放源优先控制分级技术方法,计算各排放源分级指数,明确优先控制排放源目标. 结果表明:①京津冀区域2018年人为源VOCs排放总量为214.0×104 t,其中芳香烃、烷烃与含氧有机物为主要物种. ②小型客车、工业防护涂料、重型货车、焦化行业是OFP与SOAP的最主要来源. ③工业防护涂料、小型客车、重型货车、焦化行业、钢铁行业、供暖燃烧、生物质燃烧源的分级指数均较高. 研究显示,基于行业VOCs排放量、OFP和SOAP的单一因素制定管控策略存在一定的局限性,为了实现PM2.5与O3的科学协同防控,建议加强基于综合因素研究得到的分级指数较高排放源的控制.
-
关键词:
- 挥发性有机物(VOCs) /
- 排放清单 /
- 臭氧生成潜势(OFP) /
- 二次有机气溶胶生成潜势(SOAP) /
- 优先控制分级
Abstract: Volatile organic compounds (VOCs) are important precursors of fine particulate matter and ozone, and have a significant impact on the formation of complex pollution in China. The Beijing-Tianjin-Hebei Region is suffering from serious air pollution problem, with complex VOCs sources and large amount of emissions. Thus, it is urgent to form a VOCs control strategy based on atmospheric reactivity. The anthropogenic VOCs emission sources of the Beijing-Tianjin-Hebei Region were taken as the research object, an 2018 emission inventory covering various industries and species was established. The VOCs spectra were obtained from field observations and collection of previous studies. The ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAP) of different sources were thus acquired. The VOCs emission source priority control classification technology method was constructed. The classification index of each emission source was calculated and emission sources for priority control were identified. The results showed that: (1) The total amount of anthropogenic VOCs emissions in the Beijing-Tianjin-Hebei Region in 2018 was 2.140 million tons, and main components were arranged in the order of aromatic hydrocarbons, alkanes and oxygenated organic compounds. (2) Small buses, industrial protective coatings, heavy goods vehicles, coking industry were the predominant sources of OFP and SOAP. (3) The classification index was calculated based on the emissions of various sources, industrial protective coatings, small buses, heavy goods vehicles, coking, steel, heating combustion, biomass combustion ranked in the top. It was indicated that there were certain limitations in formulating control strategies based on the single factor of industry VOCs emissions, OFP and SOAP. In order to achieve the scientific and collaborative prevention and control of PM2.5 and O3, it is suggested to strengthen the control of the emission sources obtained based on multi factors. -
表 1 VOCs排放源分类
Table 1. Classification of VOCs emission sources
一级排放源 二级排放源 排放因子 单位 一级排放源 二级排放源 排放因子 单位 工艺过程源 焦化行业 2.64[8] g/kg 移动源 — — — 炼油行业 1.82[9] g/kg 其他排放源 污水处理 0.0011[9] g/kg 基础化学品制造 0.11~6.35[7] g/kg 加油站 3.24(柴油)、
0.08(汽油)[9]g/kg 涂料制造 15[10] g/kg 生物质燃烧 — — 水泥 0.33[9] g/kg 油品储运 0.05~1.6[9] g/kg 食品和饮料制造 0.2~16.26[11-12] g/kg或g/L 餐饮 232[22] g/(人·a) 化学纤维 10[13] g/kg 化石燃料燃烧源 供暖燃烧 0.13~0.18[9] g/kg 原油开采 0.6[14] g/kg 工业燃烧 0.02~0.18[9] g/kg 合成橡胶 7.6[11] g/kg 火电 0.15[23] g/kg 制鞋业 644[7] g/kg 溶剂使用源 工业防护涂料 367.2[7] g/kg 纺织印染 81.4[7] g/kg 包装印刷 89~607.7[7] g/kg 钢铁行业 0.02~0.25[15] g/kg 车辆制造 300~21 200[9] g/kg 玻璃 4.4[16] g/kg 家具制造 200[9] g/件 原药制造 114.14[17] g/kg 农药使用 470[9] g/kg 电子制造业 — — 汽修 950[24] g/辆 合成树脂 0.06~1.24[18] g/kg 沥青使用 2.12[9] kg/m2 合成革 163.46[17] g/kg 家用电器 200[9] g/件 塑料制品 3.01[19] g/kg 建筑涂料 1 380[25] kg/(104 m2) 橡胶制品/轮胎 101.9[20] g/条 造船 380.8[7] g/kg 造纸业 0.25[21] g/kg 干洗 34.08[26] g/人 天然气开采 0.5[14] g/kg 肥料制造 0.006[17] g/kg 注:工艺过程源中的电子制造业、移动源以及其他排放源中的生物质燃烧由于缺乏活动水平数据,标记为“—”. -
[1] 张树宪,李洋,张众志,等.基于CMAQ/ISAM空气质量模型的北京市夏季臭氧来源解析研究[J].环境科学研究,2022,35(5):1183-1192.ZHANG S X,LI Y,ZHANG Z Z,et al.Source apportionment of ozone in summer in Beijing based on CMAQ/ISAM air quality model[J].Research of Environmental Sciences,2022,35(5):1183-1192. [2] WANG R P,WANG X Q,CHENG S Y,et al.Emission characteristics and reactivity of volatile organic compounds from typical high-energy-consuming industries in North China[J].Science of the Total Environment,2022,809:151134. doi: 10.1016/j.scitotenv.2021.151134 [3] WANG X Q,DUAN W J,ZHU J X,et al.Nonlinear influence of winter meteorology and precursor on PM2.5 based on mathematical and numerical models:a COVID-19 and Winter Olympics case study[J].Atmospheric Environment,2022,278:119072. doi: 10.1016/j.atmosenv.2022.119072 [4] 张博韬,景宽,王琴,等.2018年夏季某石化工业区VOCs浓度特征及活性物种[J].环境科学研究,2021,34(6):1318-1327.ZHANG B T,JING K,WANG Q,et al.Characteristics of VOCs concentrations and active species in a petrochemical industrial area in the summer of 2018[J].Research of Environmental Sciences,2021,34(6):1318-1327. [5] 陈纯,李鹏钊,董瑞泽,等.河南省某典型垃圾焚烧发电厂的VOCs排放特征[J].环境科学研究,2022,35(5):1193-1202.CHEN C,LI P Z,DONG R Z,et al.VOCs emission characteristics of a typical domestic waste incineration power plant in Henan Province,China[J].Research of Environmental Sciences,2022,35(5):1193-1202. [6] 崔阳阳,周震,闫静,等.北京市电子工业VOCs排放特征及行业排放强度对比[J].环境科学研究,2021,34(6):1287-1294.CUI Y Y,ZHOU Z,YAN J,et al.VOCs emission characteristics of electronics industry in Beijing and emission intensity comparison with industries[J].Research of Environmental Sciences,2021,34(6):1287-1294. [7] LIANG X M,SUN X B,XU J T,et al.Improved emissions inventory and VOCs speciation for industrial OFP estimation in China[J].Science of the Total Environment,2020,745:140838. doi: 10.1016/j.scitotenv.2020.140838 [8] WANG H L,HAO R,FANG L,et al.Study on emissions of volatile organic compounds from a typical coking chemical plant in China[J].Science of the Total Environment,2021,752:141927. doi: 10.1016/j.scitotenv.2020.141927 [9] 贺克斌.城市大气污染源排放清单编制技术指南(2018)[R].北京:清华大学,2018:89-108. [10] US EPA.AP-42,compilation of air pollutant emission factors[S].Washington DC:US EPA,2016 [11] 陈颖.我国工业源VOCs行业排放特征及未来趋势研究[D].广州:华南理工大学,2011:29-40. [12] 邱凯琼.工业源挥发性有机物减排潜力及其对空气质量的影响研究[D].广州:华南理工大学,2014:13-31. [13] LI M,ZHANG Q,ZHENG B,et al.Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990-2017:drivers,speciation and ozone formation potential[J].Atmospheric Chemistry and Physics,2019,19(13):8897-8913. doi: 10.5194/acp-19-8897-2019 [14] WEI W,WANG S X,CHATANI S,et al.Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China[J].Atmospheric Environment,2008,42(20):4976-4988. doi: 10.1016/j.atmosenv.2008.02.044 [15] TSAI J H,LIN K H,CHEN C Y,et al.Volatile organic compound constituents from an integrated iron and steel facility[J].Journal of Hazardous Materials,2008,157(2/3):569-578. [16] 魏巍,王书肖,郝吉明.中国人为源VOC排放清单不确定性研究[J].环境科学,2011,32(2):305-312.WEI W,WANG S X,HAO J M.Uncertainty analysis of emission inventory for volatile organic compounds from anthropogenic sources in China[J].Environmental Science,2011,32(2):305-312. [17] 梁小明,孙西勃,徐建铁,等.中国工业源挥发性有机物排放清单[J].环境科学,2020,41(11):4767-4775.LIANG X M,SUN X B,XU J T,et al.Industrial volatile organic compounds (VOCs) emission inventory in China[J].Environmental Science,2020,41(11):4767-4775. [18] 马怡然,高松,王巧敏,等.合成树脂行业挥发性有机物排放成分谱及影响[J].中国环境科学,2020,40(8):3268-3274.MA Y R,GAO S,WANG Q M,et al.Source profiles and impact of volatile organic compounds in the synthetic resin industry[J].China Environmental Science,2020,40(8):3268-3274. [19] 代伶文,孟晶,李倩倩,等.长江经济带湖北省人为源VOCs排放清单及变化特征[J].环境科学,2021,42(3):1039-1052.DAI L W,MENG J,LI Q Q,et al.VOCs emission inventory and variation characteristics of artificial sources in Hubei Province in the Yangtze River Economic Belt[J].Environmental Science,2021,42(3):1039-1052. [20] 白红祥,魏巍,王雅婷,等.基于扩散模式反演的橡胶轮胎制造行业VOCs排放特征[J].环境科学,2019,40(7):2994-3000.BAI H X,WEI W,WANG Y T,et al.Characteristics of VOCs emitted from the rubber tire manufacturing industry based on the inverse-dispersion calculation method[J].Environmental Science,2019,40(7):2994-3000. [21] 杨利娴.我国工业源VOCs排放时空分布特征与控制策略研究[D].广州:华南理工大学,2012:11-24. [22] 梁小明,陈来国,沈国锋,等.中国生活源挥发性有机物排放清单[J].环境科学,2021,42(11):5162-5168.LIANG X M,CHEN L G,SHEN G F,et al.Volatile organic compounds (VOCs) emission inventory from domestic sources in China[J].Environmental Science,2021,42(11):5162-5168. [23] YAN Y L,YANG C,PENG L,et al.Emission characteristics of volatile organic compounds from coal-,coal gangue-,and biomass-fired power plants in China[J].Atmospheric Environment,2016,143:261-269. doi: 10.1016/j.atmosenv.2016.08.052 [24] 王文秀,王永敏,郑幸成,等.天津市汽修行业VOCs排放清单与排放特征研究[J].广州化工,2017,45(22):123-126.WANG W X,WANG Y M,ZHENG X C,et al.Study on VOCs emission inventory and characteristics of vehicle maintenance industry in Tianjin[J].Guangzhou Chemical Industry,2017,45(22):123-126. [25] LIANG X M,SUN X B,LU Q,et al.VOC emission inventory of architectural coatings and adhesives for new buildings in China based on investigated and measured data[J].Atmospheric Environment,2021,245:118014. doi: 10.1016/j.atmosenv.2020.118014 [26] 李洁,谢放尖,牟莹莹.南京市干洗行业VOCs污染现状及控制对策[J].安徽农学通报,2017,23(10):102-103.LI J,XIE F J,MOU Y Y.VOCs pollution status and control measures of dry cleaning in Nanjing City[J].Anhui Agricultural Science Bulletin,2017,23(10):102-103. [27] 生态环境部.中国移动源环境管理年报[R].北京:生态环境部,2019:1-19. [28] ZHOU Y,XING X F,LANG J L,et al.A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China[J].Atmospheric Chemistry and Physics,2017,17(4):2839-2864. doi: 10.5194/acp-17-2839-2017 [29] 赵胜豪.南京市沥青铺路VOCs排放现状及其控制对策[J].中国环境管理干部学院学报,2018,28(2):91-93.ZHAO S H.The status of asphalt paving VOCs emissions and countermeasures for Nanjing[J].Journal of Environmental Management College of China,2018,28(2):91-93. [30] WU X C,ZHAO L J,ZHANG Y X,et al.Primary air pollutant emissions and future prediction of iron and steel industry in China[J].Aerosol and Air Quality Research,2015,15(4):1422-1432. doi: 10.4209/aaqr.2015.01.0029 [31] 王瑞鹏,王晓琦,程水源,等.末端治理对工业涂装行业VOCs排放的影响[J].中国环境科学,2022,42(2):593-600.WANG R P,WANG X Q,CHENG S Y,et al.Influence of end-of-pipe treatment on VOCs emission in industrial coating industries[J].China Environmental Science,2022,42(2):593-600. [32] CHENG S Y,WANG G,LANG J L,et al.Characterization of volatile organic compounds from different cooking emissions[J].Atmospheric Environment,2016,145:299-307. doi: 10.1016/j.atmosenv.2016.09.037 [33] WU R R,XIE S D.Spatial distribution of secondary organic aerosol formation potential in China derived from speciated anthropogenic volatile organic compound emissions[J].Environmental Science & Technology,2018,52(15):8146-8156. [34] WU R R,XIE S D.Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds[J].Environmental Science & Technology,2017,51(5):2574-2583. [35] ZHENG J Y,YU Y F,MO Z W,et al.Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta,China[J].Science of the Total Environment,2013,456/457:127-136. doi: 10.1016/j.scitotenv.2013.03.055 [36] CHENG N N,JING D J,ZHANG C,et al.Process-based VOCs source profiles and contributions to ozone formation and carcinogenic risk in a typical chemical synthesis pharmaceutical industry in China[J].Science of the Total Environment,2021,752:141899. doi: 10.1016/j.scitotenv.2020.141899 [37] SHI J W,DENG H,BAI Z P,et al.Emission and profile characteristic of volatile organic compounds emitted from coke production,iron smelt,heating station and power plant in Liaoning Province,China[J].Science of the Total Environment,2015,515/516:101-108. doi: 10.1016/j.scitotenv.2015.02.034 [38] YANG H H,GUPTA S K,DHITAL N B,et al.Comparative investigation of coal- and oil-fired boilers based on emission factors,ozone and secondary organic aerosol formation potentials of VOCs[J].Journal of Environmental Sciences,2020,92:245-255. doi: 10.1016/j.jes.2020.02.024 [39] WANG Q L,LI S J,DONG M L,et al.VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan[J].Atmospheric Environment,2018,182:234-241. doi: 10.1016/j.atmosenv.2018.03.034 [40] 李亚林,郭秀锐,程水源,等.邯郸市大气污染源排放清单建立及总量校验[J].环境科学研究,2020,33(1):1-8.LI Y L,GUO X R,CHENG S Y,et al.Establishment and verification of air pollution source emission inventory in Handan City[J].Research of Environmental Sciences,2020,33(1):1-8. [41] 焦姣,罗锦洪,杨锦锦,等.山西省城市地区近年来环境空气臭氧污染特征及来源解析[J].环境科学研究,2022,35(3):731-739.JIAO J,LUO J H,YANG J J,et al.Pollution characteristics and source apportionment of ground-level ozone in Shanxi urban region in recent years[J].Research of Environmental Sciences,2022,35(3):731-739. [42] ZHENG B,ZHANG Q,GENG G N,et al.Changes in China's anthropogenic emissions and air quality during the COVID-19 pandemic in 2020[J].Earth System Science Data,2021,13(6):2895-2907. doi: 10.5194/essd-13-2895-2021 [43] 吕大器,陆思华,谭鑫,等.典型地方炼化企业VOCs排放特征及其对二次污染生成的贡献[J].环境科学研究,2021,34(1):103-113.LU D Q,LU S H,TAN X,et al.Emission characteristics of VOCs from typical local refineries and associated contributions to secondary pollution[J].Research of Environmental Sciences,2021,34(1):103-113. [44] 齐一谨,倪经纬,赵东旭,等.邢台市典型行业VOCs排放特征研究[J].环境科学研究,2021,34(10):2339-2349.QI Y J,NI J W,ZHAO D X,et al.Emission characteristics of volatile organic compounds (VOCs) from typical industrial sectors in Xingtai City[J].Research of Environmental Sciences,2021,34(10):2339-2349. -