留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波消解火焰原子吸收光谱法测定土壤中六价铬

张伟琦 谢涛 孙稚菁 王茂林 蔡喜运

张伟琦, 谢涛, 孙稚菁, 王茂林, 蔡喜运. 微波消解火焰原子吸收光谱法测定土壤中六价铬[J]. 环境科学研究, 2023, 36(1): 44-53. doi: 10.13198/j.issn.1001-6929.2022.11.27
引用本文: 张伟琦, 谢涛, 孙稚菁, 王茂林, 蔡喜运. 微波消解火焰原子吸收光谱法测定土壤中六价铬[J]. 环境科学研究, 2023, 36(1): 44-53. doi: 10.13198/j.issn.1001-6929.2022.11.27
ZHANG Weiqi, XIE Tao, SUN Zhijing, WANG Maolin, CAI Xiyun. Developments of the Method of Microwave Digestion and Flame Atomic Absorption Spectrometry for Determination of Hexavalent Chromium in Soils[J]. Research of Environmental Sciences, 2023, 36(1): 44-53. doi: 10.13198/j.issn.1001-6929.2022.11.27
Citation: ZHANG Weiqi, XIE Tao, SUN Zhijing, WANG Maolin, CAI Xiyun. Developments of the Method of Microwave Digestion and Flame Atomic Absorption Spectrometry for Determination of Hexavalent Chromium in Soils[J]. Research of Environmental Sciences, 2023, 36(1): 44-53. doi: 10.13198/j.issn.1001-6929.2022.11.27

微波消解火焰原子吸收光谱法测定土壤中六价铬

doi: 10.13198/j.issn.1001-6929.2022.11.27
基金项目: 国家重点研发计划项目(No. 2019YFC1803803)
详细信息
    作者简介:

    张伟琦(1985-),女,黑龙江五常人,252886022@qq.com

    通讯作者:

    蔡喜运(1978-),男,山东菏泽人,教授,博士,博导,主要从事土壤污染化学与修复研究,xiyuncai@dlut.edu.cn

  • 中图分类号: X53

Developments of the Method of Microwave Digestion and Flame Atomic Absorption Spectrometry for Determination of Hexavalent Chromium in Soils

Funds: National Key Research and Development Program of China (No. 2019YFC1803803)
  • 摘要: 目前用于土壤中六价铬检测的提取方法较为单一,一般是使用HJ 1082—2019《土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法》中提到的碱溶液提取法. 但该方法在进行大批量土壤检测时存在耗时长、试剂用量大、温度不易控制等问题. 因此,建立高效、准确的土壤中六价铬测试方法,对开展土壤中六价铬污染风险评价及修复工作具有十分重要的意义. 本研究提出了微波消解火焰原子吸收光谱法,用于快速、准确测试土壤中六价铬. 通过开展提取剂组成与用量、微波消解方式、消解液过滤及pH调整等参数优化研究,确定了土壤中六价铬提取与测试的优化条件:消解液组成为碱性提取液20 mL、氯化镁100 mg、磷酸氢二钾-磷酸二氢钾缓冲溶液0.2 mL,3次微波消解,消解液用中速定量滤纸过滤,待测液pH调节至7.0~8.0. 在优化条件下,土壤六价铬的有证标准样品的测量结果均在标准值范围内,土壤基体加标回收率为85.5%~88.7%,相对标准偏差为7.6%~8.0%. 与HJ 1082—2019相比,本文建立的微波消解火焰原子吸收光谱法更适用于大批量土壤样品的六价铬检测分析,所采用的微波消解技术,操作相对简单、提取效率较高,易于在不同种类实验室中普及和推广,可为土壤中六价铬的快速准确检测提供技术支持和方法补充.

     

  • 图  1  不同消解方案对六价铬提取效率的影响

    Figure  1.  Effects of different digestion schemes on extraction efficiency of hexavalent chromium

    表  1  正交试验因素与水平设计

    Table  1.   Orthogonal test factors and horizontal design

    因素水平
    123
    碱性提取液/mL101520
    氯化镁/mg100200300
    磷酸缓冲溶液/mL0.10.20.3
    下载: 导出CSV

    表  2  正交试验方案及结果

    Table  2.   Orthogonal test scheme and results

    项目碱性提取液(A)氯化镁(B)磷酸缓冲
    溶液(C)
    土壤中六价铬的
    测量值/(mg/kg)
    试验号1101000.134.95
    2102000.240.60
    3103000.312.20
    4151000.241.45
    5152000.318.70
    6153000.124.49
    7201000.338.76
    8202000.142.58
    9203000.243.00
    K187.75115.16102.02
    K284.64101.88125.05
    K3124.3479.6969.66
    k129.25038.38734.007
    k228.21333.96041.683
    k341.44726.56323.220
    r13.23411.82418.463
    主次因素:C>A>B
    最优组合:C2A3B1
    下载: 导出CSV

    表  3  微波消解升温程序

    Table  3.   Heating procedure of microwave digestion

    步骤升温或降温时间/min目标温度/℃保持时间/min
    1109360
    210205
    3109330
    410205
    5109330
    610205
    下载: 导出CSV

    表  4  不同过滤方式下六价铬的提取效率

    Table  4.   Extraction efficiency of hexavalent chromium under different filtration methods

    过滤方式加标量为0.2 mg/L
    六价铬浓度/(mg/L)平均值/
    (mg/L)
    平均加标
    回收率/%
    标准偏
    差/(mg/L)
    相对标
    准偏差/%
    平行样1平行样2平行样3
    中速定量滤纸0.1700.1610.1680.16683.20.00472.8
    0.45 μm滤膜抽滤0.1640.1720.1730.17084.80.00492.9
    离心机分离过滤0.1660.1690.1590.16582.30.00513.1
    下载: 导出CSV

    表  5  有证标准品测试数据

    Table  5.   Test data of certified standards

    有证标准品六价铬测量值/(mg/kg)平均值/(mg/kg)相对标准偏差/%标准值及不确定度/(mg/kg)
    平行样1平行样2平行样3
    GBW(E)0702546.56.66.96.73.17.1±0.7
    GBW(E)07025563.760.761.662.02.568±7
    GBW(E)0702534.13.43.63.79.73.8±0.4
    GBW(E)0702522.73.23.13.08.82.9±0.3
    GBW(E)0702510.70.81.00.819.10.92±0.09
    下载: 导出CSV

    表  6  基体加标测试数据

    Table  6.   Test data of matrix addition

    采样区域基体六价铬测量值/(mg/kg)六价铬测量值/(mg/kg)平均值/(mg/kg)加标量/(mg/kg)加标回收率 /%
    平行样1平行样2平行样3
    瓦房店2.08.17.77.97.98.073.8
    盘锦2.18.37.57.87.98.072.1
    石灰石矿2.08.17.17.97.78.071.3
    下载: 导出CSV

    表  7  微波消解火焰原子吸收光谱法基体加标测试数据

    Table  7.   Sample marking test data of microwave digestion flame atomic absorption spectrometry

    采样区域样品值/(mg/kg)六价铬测量值/(mg/kg)平均值/(mg/kg)加标量/(mg/kg)加标回收率 /%
    平行样1平行样2平行样3
    瓦房店2.08.28.79.48.88.084.6
    盘锦2.18.38.98.58.68.080.8
    石灰石矿2.08.18.89.08.68.082.9
    下载: 导出CSV

    表  8  六价铬土壤污染样本测试结果

    Table  8.   Test of soil samples contaminated with hexavalent chromium

    检测方法六价铬测量值/(mg/kg)平均值/(mg/kg)标准偏差/(mg/kg)相对标准偏差/%
    平行样1平行样2平行样3平行样4平行样5平行样6
    HJ 1082—201934.129.129.831.734.533.532.12.37.1
    微波消解火焰原子吸收光谱法35.735.130.636.733.436.634.72.36.7
    下载: 导出CSV

    表  9  三价铬加标测试数据

    Table  9.   Trivalent chromium spiked test data

    有证标准品六价铬标准值及不确定度/(mg/kg)三价铬加标量/(mg/kg)加标后六价铬测量值/(mg/kg)
    平行样1平行样2平行样3
    GBW(E)070255-168±72063.461.766.5
    GBW(E)070255-268±75061.966.171.8
    GBW(E)070255-368±710062.465.670.4
    下载: 导出CSV

    表  10  精密度测定结果

    Table  10.   Precision measurement results

    样品编号六价铬测量
    值/(mg/kg)
    加标
    回收率/%
    六价铬测量值
    平均值/(mg/kg)
    加标量/(mg/kg)加标回收率
    平均值/%
    标准偏差/(mg/kg)相对标准偏差/%
    1-131.111228.51085.52.157.6
    1-228.788.0
    1-326.162.0
    1-426.869.0
    1-530.9110
    1-627.172.0
    2-155.990.055.14088.04.317.8
    2-255.188.0
    2-352.882.3
    2-462.9107
    2-550.275.8
    2-653.684.3
    3-174.490.873.16088.75.838.0
    3-269.582.7
    3-384.3107
    3-471.686.2
    3-569.983.3
    3-668.981.7
    下载: 导出CSV

    表  11  土壤中六价铬的方法检出限

    Table  11.   Method detection limits of hexavalent chromium in soil

    六价铬含量/(mg/kg)标准偏差/(mg/kg)检出限/(mg/kg)测定下限/(mg/kg)
    样品1样品2样品3样品4样品5样品6样品7
    3.243.182.793.182.853.062.730.210.662.64
    下载: 导出CSV
  • [1] 冯明玉,韦黎华,胡清,等.固化/稳定化修复后场地中铬的环境行为和归趋:以我国中部某修复后场地为例[J].环境科学研究,2022,35(5):1131-1139. doi: 10.13198/j.issn.1001-6929.2022.03.01

    FENG M Y,WEI L H,HU Q,et al.Environmental behavior and fate of chromium in solidification/stabilization post-remediation sites:a case study of a remediation site in central China[J].Research of Environmental Sciences,2022,35(5):1131-1139. doi: 10.13198/j.issn.1001-6929.2022.03.01
    [2] TRAN H N,NGUYEN D T,LE G T,et al.Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents:a systematic in-depth review[J].Journal of Hazardous Materials,2019,373:258-270. doi: 10.1016/j.jhazmat.2019.03.018
    [3] ZHAO P D,ZHANG H,YU J,et al.Conditions for mutual conversion of Cr(Ⅲ) and Cr(Ⅵ) in aluminum chromium slag[J].Journal of Alloys and Compounds,2019,788:506-513. doi: 10.1016/j.jallcom.2019.02.093
    [4] DHAL B,THATOI H N,DAS N N,et al.Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:a review[J].Journal of Hazardous Materials,2013,250/251:272-291. doi: 10.1016/j.jhazmat.2013.01.048
    [5] 孙芳,何广平,吴宏海,等.有机配体对膨润土负载纳米零价铁还原Cr(Ⅵ)的影响[J].环境科学研究,2011,24(4):461-466. doi: 10.13198/j.res.2011.04.101.sunf.015

    SUN F,HE G P,WU H H,et al.Influence of various organic ligands on the removal of Cr(Ⅵ) by bentonite-supported nanoscale zero-valent iron[J].Research of Environmental Sciences,2011,24(4):461-466. doi: 10.13198/j.res.2011.04.101.sunf.015
    [6] 王婉华,陈丽红,方征,等.土壤铬(Ⅵ)对赤子爱胜蚓的生态毒性效应[J].环境科学研究,2013,26(6):653-657. doi: 10.13198/j.res.2013.06.74.wangwh.004

    WANG W H,CHEN L H,FANG Z,et al.Ecotoxicity of chromium (Ⅵ) to Eisenia fetida in soil[J].Research of Environmental Sciences,2013,26(6):653-657. doi: 10.13198/j.res.2013.06.74.wangwh.004
    [7] 刘美丽,牛其建,俞洋洋,等.碳基材料负载纳米零价铁去除六价铬的研究进展[J].环境科学研究,2022,35(3):768-779. doi: 10.13198/j.issn.1001-6929.2021.07.13

    LIU M L,NIU Q J,YU Y Y,et al.Progress in removal of hexavalent chromium by carbon-based materials loaded with nano zero-valent iron[J].Research of Environmental Sciences,2022,35(3):768-779. doi: 10.13198/j.issn.1001-6929.2021.07.13
    [8] RAGER J E,SUH M,CHAPPELL G A,et al.Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis[J].Toxicology Letters,2019,305:40-50. doi: 10.1016/j.toxlet.2019.01.011
    [9] ZHAO Y,YAN J,LI A P,et al.Bone marrow mesenchymal stem cells could reduce the toxic effects of hexavalent chromium on the liver by decreasing endoplasmic reticulum stress-mediated apoptosis via SIRT1/HIF-1α signaling pathway in rats[J].Toxicology Letters,2019,310:31-38. doi: 10.1016/j.toxlet.2019.04.007
    [10] NOGUEIRA T A R,MELO W J,FONSECA I M,et al.Fractionation of Zn,Cd and Pb in a tropical soil after nine-year sewage sludge applications[J].Pedosphere,2010,20(5):545-556. doi: 10.1016/S1002-0160(10)60044-6
    [11] 生态环境部,国家市场监督管理总局.土壤环境质量 建设用地土壤污染风险管控标准:GB 36600—2018[S].北京:中国标准出版社,2018.
    [12] 生态环境部.土壤和沉积物的测定碱溶液提取:火焰原子吸收分光光度法:HJ 1082-2019[S].北京:中国环境出版集团,2019.
    [13] 薛浩,孟凡生,王业耀,等.酸化-电动强化修复铬渣场地污染土壤[J].环境科学研究,2015,28(8):1317-1323. doi: 10.13198/j.issn.1001-6929.2015.08.20

    XUE H,MENG F S,WANG Y Y,et al.Remediation of chromium residue-contaminated soil by preacidification electrokinetic remediation[J].Research of Environmental Sciences,2015,28(8):1317-1323. doi: 10.13198/j.issn.1001-6929.2015.08.20
    [14] YOSHIZAKI S,TOMIDA T.Principle and process of heavy metal removal from sewage sludge[J].Environmental Science & Technology,2000,34(8):1572-1575.
    [15] BARTLETT R J,KIMBLE J M.Behavior of chromium in soils:Ⅱ.hexavalent forms[J].Journal of Environmental Quality,1976,5(4):383-386.
    [16] 朱月珍.土壤中六价铬的吸附与还原[J].环境化学,1982,1(5):359-364.
    [17] ANDERSON R A.Chromium as an essential nutrient for humans[J].Regulatory Toxicology and Pharmacology,1997,26(1):S35-S41. doi: 10.1006/rtph.1997.1136
    [18] CHEN C P,JUANG K W,LIN T H,et al.Assessing the phytotoxicity of chromium in Cr(Ⅵ)-spiked soils by Cr speciation using XANES and resin extractable Cr(Ⅲ) and Cr(Ⅵ)[J].Plant and Soil,2010,334(1/2):299-309.
    [19] DING W X,STEWART D I,HUMPHREYS P N,et al.Role of an organic carbon-rich soil and Fe(Ⅲ) reduction in reducing the toxicity and environmental mobility of chromium(Ⅵ) at a COPR disposal site[J].Science of the Total Environment,2016,541:1191-1199. doi: 10.1016/j.scitotenv.2015.09.150
    [20] GARG U K,KAUR M P,GARG V K,et al.Removal of hexavalent chromium from aqueous solution by agricultural waste biomass[J].Journal of Hazardous Materials,2007,140(1/2):60-68.
    [21] DAI J,BECQUER T,HENRI ROUILLER J,et al.Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils[J].Soil Biology and Biochemistry,2004,36(1):91-98. doi: 10.1016/j.soilbio.2003.09.001
    [22] 曾静.土壤和沉积物中六价铬提取方法的改进[J].四川环境,2021,40(5):218-221. doi: 10.14034/j.cnki.schj.2021.05.033

    ZENG J.Method improvement of hexavalent chromium extraction from soil and sediment[J].Sichuan Environment,2021,40(5):218-221. doi: 10.14034/j.cnki.schj.2021.05.033
    [23] US EPA.Method 3060A-1996,alkaline digestion for hexavalent chromium[S].Washington DC:US Government Printing Office,1996.
    [24] 冷远鹏,薛晓康,章明洪.土壤碱消解检测六价铬的铬还原问题及质控结果分析[J].安徽农业科学,2019,47(21):206-208. doi: 10.3969/j.issn.0517-6611.2019.21.062

    LENG Y P,XUE X K,ZHANG M H.Determination of chromium reduction of hexavalent chromium by soil alkaline digestion and analysis of quality control results[J].Journal of Anhui Agricultural Sciences,2019,47(21):206-208. doi: 10.3969/j.issn.0517-6611.2019.21.062
    [25] VITALE R J,MUSSOLINE G R,PETURA J C,et al.Hexavalent chromium extraction from soils:evaluation of an alkaline digestion method[J].Journal of Environmental Quality,1994,23(6):1249-1256.
    [26] JAMES B R,PETURA J C,VITALE R J,et al.Hexavalent chromium extraction from soils:a comparison of five methods[J].Environmental Science & Technology,1995,29(9):2377-2381.
    [27] 梁娜.土壤六价铬的碱液提取和分析方法探究[J].绿色科技,2021,23(24):54-56. doi: 10.3969/j.issn.1674-9944.2021.24.015
    [28] SALIHU S O,BAKAR N K A.A simple method for chromium speciation analysis in contaminated water using APDC and a pre-heated glass tube followed by HPLC-PDA[J].Talanta,2018,181:401-409. doi: 10.1016/j.talanta.2018.01.041
    [29] US EPA.Method 218.6.de-termination of dissolved hexavalent chromium in drinking water,groundwater,and industrial wastewater effluents by ion chromatography Revision 3.3[S].Washington DC:US EPA,1991.
    [30] 炼晓璐,魏洪敏,甄长伟,等.碱消解-火焰原子吸收光谱法测定土壤中六价铬[J].中国无机分析化学,2021,11(3):23-27. doi: 10.3969/j.issn.2095-1035.2021.03.005

    LIAN X L,WEI H M,ZHEN C W,et al.Determination of hexavalent chromium in soil by alkali digestion flame atomic absorption spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry,2021,11(3):23-27. doi: 10.3969/j.issn.2095-1035.2021.03.005
    [31] 秦婷,董宗凤,吕晓华,等.碱消解-电感耦合等离子体发射光谱(ICP-OES)法测定土壤中六价铬[J].中国无机分析化学,2019,9(6):10-13. doi: 10.3969/j.issn.2095-1035.2019.06.003

    QIN T,DONG Z F,LYU X H,et al.Determination of hexavalent chromium in soil by alkaline digestion-inductively coupled plasma optical emission spectrometry(ICP-OES)[J].Chinese Journal of Inorganic Analytical Chemistry,2019,9(6):10-13. doi: 10.3969/j.issn.2095-1035.2019.06.003
    [32] JIA X Y,GONG D R,XU B,et al.Development of a novel,fast,sensitive method for chromium speciation in wastewater based on an organic polymer as solid phase extraction material combined with HPLC-ICP-MS[J].Talanta,2016,147:155-161. doi: 10.1016/j.talanta.2015.09.047
    [33] VACCHINA V,de la CALLE I,SÉBY F.Cr(Ⅵ) speciation in foods by HPLC-ICP-MS:investigation of Cr(Ⅵ)/food interactions by size exclusion and Cr(Ⅵ) determination and stability by ion-exchange on-line separations[J].Analytical and Bioanalytical Chemistry,2015,407(13):3831-3839. doi: 10.1007/s00216-015-8616-3
    [34] CATALANI S,FOSTINELLI J,GILBERTI M E,et al.Application of a metal free high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the determination of chromium species in drinking and tap water[J].International Journal of Mass Spectrometry,2015,387:31-37. doi: 10.1016/j.ijms.2015.06.015
    [35] HEITLAND P,BLOHM M,BREUER C,et al.Application of ICP-MS and HPLC-ICP-MS for diagnosis and therapy of a severe intoxication with hexavalent chromium and inorganic arsenic[J].Journal of Trace Elements in Medicine and Biology:Organ of the Society for Minerals and Trace Elements (GMS),2017,41:36-40. doi: 10.1016/j.jtemb.2017.02.008
    [36] LEESE E,MORTON J,GARDINER P H E,et al.Development of a method for the simultaneous detection of Cr(Ⅲ) and Cr(Ⅵ) in exhaled breath condensate samples using μLC-ICP-MS[J].Journal of Analytical Atomic Spectrometry,2016,31(4):924-933. doi: 10.1039/C5JA00436E
    [37] KOTAS J,STASICKA Z.Chromium occurrence in the environment and methods of its speciation[J].Environmental Pollution,2000,107(3):263-283. doi: 10.1016/S0269-7491(99)00168-2
    [38] ZATKA V J.Speciation of hexavalent chromium in welding fumes interference by air oxidation of chromium[J].American Industrial Hygiene Association Journal,1985,46(6):327-331. doi: 10.1080/15298668591394914
    [39] JAMES B R,BARTLETT R J.Behavior of chromium in soils:Ⅶ.adsorption and reduction of hexavalent forms[J].Journal of Environmental Quality,1983,12(2):177-181.
    [40] JAMES B R.Hexavalent chromium solubility and reduction in alkaline soils enriched with chromite ore processing residue[J].Journal of Environmental Quality,1994,23(2):227-233.
    [41] VU H C,DWIVEDI A D,le T T,et al.Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(Ⅵ) and As(Ⅴ) from aqueous solutions:role of crosslinking metal cations in pH control[J].Chemical Engineering Journal,2017,307:220-229. doi: 10.1016/j.cej.2016.08.058
    [42] 丁井井.Method 3060A:碱消解法提取六价铬的影响因素分析[J].标准科学,2021(4):119-124. doi: 10.3969/j.issn.1674-5698.2021.04.021

    DING J J.Method 3060A:analysis of the influencing factors of alkaline digestion for hexavalent chromium[J].Standard Science,2021(4):119-124. doi: 10.3969/j.issn.1674-5698.2021.04.021
    [43] 姚江.水浴振荡碱消解-火焰原子吸收法测定土壤中六价铬[J].云南化工,2022,49(1):44-47. doi: 10.3969/j.issn.1004-275X.2022.01.14

    YAO J.Determination of hexavalent chromium in soil by water bath oscillating alkali digestion and flame atomic absorption method[J].Yunnan Chemical Industry,2022,49(1):44-47. doi: 10.3969/j.issn.1004-275X.2022.01.14
    [44] 安茂国,赵庆令,谭现锋,等.化学还原-稳定化联合修复铬污染场地土壤的效果研究[J].岩矿测试,2019,38(2):204-211. doi: 10.15898/j.cnki.11-2131/td.201806040068

    AN M G,ZHAO Q L,TAN X F,et al.Research on the effect of chemical reduction-stabilization combined remediation of Cr-contaminated soil[J].Rock and Mineral Analysis,2019,38(2):204-211. doi: 10.15898/j.cnki.11-2131/td.201806040068
    [45] 林海兰,谢沙,文卓琼,等.碱消解-火焰原子吸收法测定土壤和固体废物中六价铬[J].分析实验室,2017,36(2):198-202.

    LIN H L,XIE S,WEN Z Q,et al.Determination of chromium(Ⅵ) in soil and solid waste by alkaline digestion-flame atomic absorption spectrometry[J].Chinese Journal of Analysis Laboratory,2017,36(2):198-202.
    [46] 张杰芳,闫玉乐,夏承莉,焦发存,张海侠.微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J].岩矿测试,2017,36(1):46-51. doi: 10.15898/j.cnki.11-2131/td.2017.01.007

    ZHANG J F,YAN Y L,XIA C L,et al.Determination of Cr(Ⅵ) in coal ash by microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis,2017,36(1):46-51. doi: 10.15898/j.cnki.11-2131/td.2017.01.007
  • 加载中
图(1) / 表(11)
计量
  • 文章访问数:  266
  • HTML全文浏览量:  93
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 修回日期:  2022-11-15

目录

    /

    返回文章
    返回