Pollution Characteristics and Risk Assessment of Flame Retardants in Middle and Upper Reaches of Beijiang River Basin
-
摘要: 为探究北江中上游流域的阻燃剂污染状况和风险水平,采用气相色谱-串联质谱(GC-MS/MS)法测定了34个地表水样品和8个沉积物样品中31种阻燃剂的浓度,包括多溴联苯醚(PBDEs)、六溴环十二烷(HBCD)、四溴双酚A (TBBPA)这3种溴代阻燃剂和28种有机磷阻燃剂(OPFRs). 采用风险熵法评估了水体中阻燃剂的生态风险,并结合日饮用剂量评估了健康风险. 结果表明:①地表水中PBDEs和HBCD浓度范围分别为4.78~625.52、225.43~2 209.18 ng/L,未检出TBBPA;沉积物中PBDEs、HBCD和TBPPA含量范围分别为ND~11.82、121.13~395.86和ND~3.30 ng/g. ②地表水中OPFRs浓度范围为85.80~992.82 ng/L,浓度最高的3种单体分别为TCEP、TPhP和TDCIPP;沉积物中OPFRs含量范围为102.19~748.17 ng/g,含量最高的3种单体分别为TEHP、EHDPP和TCPP. ③对于地表水中已知毒性参数和健康数据的阻燃剂污染物,其生态风险总体处于中低水平,但BDE-100呈现出高风险,TTP呈现出中风险;其致癌风险和非致癌风险指数均处于可接受范围内,经饮水摄入造成的健康风险可以忽略. 研究显示,北江中上游流域阻燃剂污染程度较高,部分物质存在中高水平的生态风险,需要进一步关注.
-
关键词:
- 北江 /
- 溴代阻燃剂(BFRs) /
- 有机磷阻燃剂(OPFRs) /
- 污染特征 /
- 风险评估
Abstract: In order to investigate the pollution status and risk level of flame retardants in the middle and upper reaches of the Beijiang River, gas chromatography-tandem mass spectrometry (GC-MS/MS) was used to determine the concentrations of 31 monomers of flame retardants, including three brominated flame retardants, i.e., polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA), and 28 monomers of organophosphorus flame retardants (OPFRs). Ecological risks of flame retardants were assessed using risk entropy method and health risks were evaluated with daily drinking water. The results showed that: (1) PBDEs and HBCD concentrations in surface water ranged from 4.78-625.52 ng/L and 225.43-2209.18 ng/L, respectively, and no TBBPA was detected. The contents of PBDEs, HBCD and TBPPA in sediments ranged from ND-11.82 ng/g, 121.13-395.86 ng/g, and ND-3.30 ng/g, respectively. (2) The concentrations of OPFRs in surface water ranged from 85.80-992.82 ng/L, with TCEP, TPhP, and TDCIPP being the three most abundant monomers. The contents of OPFRs in sediment ranged from 102.19-748.17 ng/g, among which TEHP, EHDPP, and TCPP were the three most abundant monomers. (3) For flame retardants with available ecological and health risk data, the ecological risk of surface water was mainly at low and medium levels, BDE-100 was high risk, and TTP was medium level. The carcinogenic and non-carcinogenic risk indices were within acceptable range, and the health risk caused by drinking water was negligible. To sum up, flame retardant contamination in the middle and upper reaches of the Beijiang River is at a high level, and some substances have medium and high ecological risks, which deserve further attention. -
表 1 检测的BFRs和OPFRs种类
Table 1. Types of BFRs and OPFRs detected
项目 种类 溴代阻燃剂(BFRs) 六溴环十二烷(HBCD) — 四溴双酚A(TBBPA) — 多溴联苯醚(PBDEs) BDE-28、BDE-47、BDE-99、BDE-100、BDE-153、BDE-154、BDE-183、BDE-209 有机磷阻燃剂(OPFRs) 烷基有机磷阻燃剂(Alkyl-OPFRs) 磷酸三甲酯(TMP)、磷酸三乙酯(TEP)、磷酸三正丙酯(TnPP)、磷酸三异丙酯(TiPP)、磷酸三正丁酯(TnBP)、磷酸三异丁酯(TiBP)、磷酸三戊酯(TPeP)、磷酸三己酯(THP)、磷酸三(2-乙基己基)酯(TEHP)、磷酸三(2-丁氧基乙基)酯(TBOEP)和磷酸二(2-乙基己基)酯(BEHP) 氯代有机磷阻燃剂(Chlorinated-OPFRs) 磷酸三(2-氯乙基)酯(TCEP)、磷酸三(2-氯异丙基)酯(TCPP)和磷酸三(1,3-二氯异丙基)酯(TDCIPP) 芳基有机磷阻燃剂(Aryl-OPFRs) 磷酸三苯酯(TPhP)、磷酸三邻甲苯酯(o-TTP)、磷酸三间甲苯酯(m-TTP)、磷酸三对甲苯酯(p-TTP)、2-乙基己基二苯基磷酸酯(EHDPP)、磷酸甲苯基二苯酯(CDPP)、磷酸异丙基二苯酯(IPDP)、磷酸叔丁基苯二苯酯(BPDP)、磷酸异癸基二苯酯(IDDP)、磷酸三(二甲苯)酯(TXP)、磷酸三(2-异丙基苯)酯(TIPPP)、磷酸三(3,5-二甲基苯基)酯(TDMPP)、磷酸二苄酯(DBPP)和三苯基氧化膦(TPPO) 表 2 4种目标化合物原始毒性数据
Table 2. Toxicity data of four target compounds
目标化合物 CAS 测试终点 浓度/
(mg/L)测试对象 BDE-28 41318-75-6 LC50 0.08217 大型溞(Daphnia magna) BDE-100 189084-64-8 LC50 0.01465 大型溞(Daphnia magna) TEHP 78-42-2 EC50 10 梨形四膜虫(Tetrahymena
pyriformis)EHDPP 1241-94-7 LC50 0.15 大型溞(Daphnia magna) 表 3 阻燃剂的生态和健康风险评估参数
Table 3. Data for ecological and health risk assessment of flame retardants
目标化合物 PNEC/(ng/L) SFO/(kg·d/ng) RfD/[ng/(kg·d)] BDE-28 82.17[29-30] na na BDE-100 14.65[29-30] na na HBCD na na 22 000[24] TEHP 10 000[29-30] 3.10×10−9[27] 100 000[27] TDCIPP 12 400[25] 3.10×10−8[27] 20 000[27] o-TTP 32[25] na 13 000[28] m-TTP 32[25] na 13 000[28] p-TTP 32[25] na 13 000[28] TCEP 5 000[25] 2.00×10–8[27] 7 000[27] TiBP 11 000[26] na na EHDPP 150[29-30] na 15 000[28] TEP 1 600 000[25] na 15 000[28] TCPP 120 000[25] na 10 000[27] TBEP 13 000[25] na 15 000[28] TnBP 66 000[25] 9.00×10−9[27] 10 000[27] TPhP 160[25] na 70 000[28] 注:na表示未查阅到相关数据. 表 4 水和沉积物中BFRs暴露水平
Table 4. Exposure level of BFRs in surface water and sediments
BFRs种类 地表水 沉积物 浓度范围/(ng/L) 平均值/(ng/L) 检出率/% 含量范围/(ng/g) 平均值/(ng/g) 检出率/% PBDEs BDE-28 1.68~11.22 5.95 73.53 0.20~0.58 0.39 25.00 BDE-47 ND ND 0.00 ND ND 0.00 BDE-99 ND ND 0.00 ND ND 0.00 BDE-100 ND~625.52 145.77 96.97 1.40~11.82 5.00 87.50 BDE-153 ND ND 0.00 ND ND 0.00 BDE-154 ND ND 0.00 ND ND 0.00 BDE-283 ND ND 0.00 ND ND 0.00 BDE-209 ND ND 0.00 ND ND 0.00 ∑PBDEs 4.78~625.52 149.03 100.00 ND~11.82 4.47 87.50 HBCD 225.43~2 209.18 950.41 100.00 121.13~395.86 266.23 100.00 TBBPA ND ND 0.00 ND~3.30 2.97 25.00 注:ND表示该种污染物浓度低于检出限. 表 5 水和沉积物中OPFRs的暴露水平
Table 5. Exposure levels of OPFRs in surface water and sediments
OPFRs 地表水 沉积物 浓度范围/(ng/L) 平均值/(ng/L) 检出率/% 含量范围/(ng/g) 平均值/(ng/g) 检出率/% TMP ND ND 0.00 ND ND 0.00 TEP 0.32 ~ 42.34 5.26 100.00 1.98 ~ 6.17 4.29 100.00 TnPP ND ~ 336.94 16.49 94.12 0.10 ~ 0.86 0.45 100.00 TiPP ND ~ 139.53 9.21 97.06 0.18 ~ 0.97 0.46 100.00 TnBP 1.42 ~ 173.14 36.03 100.00 11.79 ~ 19.01 16.57 100.00 TiBP 1.23 ~ 156.43 30.16 100.00 10.13 ~ 17.86 14.43 100.00 TPeP ND ~ 6.36 1.93 38.24 0.09 ~ 1.45 0.38 100.00 THP 0.16 ~ 31.48 6.44 100.00 ND ~ 0.22 0.09 62.50 TEHP 1.62 ~ 48.16 10.73 100.00 14.11 ~ 380.26 143.34 100.00 TBOEP 0.06 ~ 172.31 9.26 100.00 ND ND 0.00 TCEP ND ~ 356.10 61.88 85.29 3.17 ~ 20.73 11.00 100.00 TCPP 3.98 ~ 89.77 26.62 100.00 35.92 ~ 64.67 48.25 100.00 TDCIPP 3.16 ~ 241.06 42.32 100.00 ND ~ 54.14 7.23 25.00 TPhP 4.03 ~ 246.71 46.73 100.00 3.92 ~ 82.01 14.61 100.00 o-TTP ND ~ 10.51 5.54 8.82 ND ~ 1.17 0.15 12.50 m-TTP ND ~ 124.65 22.77 82.35 ND ~ 2.07 0.79 62.50 p-TTP ND ~ 146.49 24.89 85.29 0.52 ~ 6.56 2.99 100.00 EHDPP 0.23 ~ 7.12 1.41 100.00 0.90 ~ 228.22 57.78 100.00 CDPP ND ND 0.00 ND ~ 51.36 6.42 12.50 IPDP ND ~ 65.29 23.58 41.18 ND ND 0.00 BPDP ND ~ 97.31 53.74 23.53 ND ~ 47.79 5.97 12.50 IDDP ND ~ 2.36 0.67 26.47 ND ~ 3.83 0.48 12.50 TXP ND ~ 26.25 7.72 44.12 ND ~ 3.43 1.52 25.00 TIPPP ND ~ 167.24 43.79 55.88 ND ND 0.00 TDMPP ND ~ 28.41 9.13 38.24 ND ~ 1.78 0.22 12.50 DBPP ND ~ 86.70 39.70 20.59 ND ND 0.00 TPPO 2.83 ~ 102.63 30.75 100.00 ND ~ 3.04 1.53 12.50 BEHP 0.03 ~ 0.98 0.22 100.00 0.74 ~ 19.96 7.54 100.00 ∑OPFRs 85.80 ~ 992.82 426.47 100.00 102.19 ~ 748.17 346.46 100.00 注:ND表示该种污染物浓度低于检出限,未检出. -
[1] CAO Z G,ZHAO L C,MENG X J,et al.Amplification effect of haze on human exposure to halogenated flame retardants in atmospheric particulate matter and the corresponding mechanism[J].Journal of Hazardous Materials,2018,359:491-499. doi: 10.1016/j.jhazmat.2018.07.109 [2] 薛倩倩,魏扬,田瑛泽,等.2019—2020年天津市津南区多环芳烃和有机磷阻燃剂气固分配特征及健康风险评价[J].环境科学研究,2022,35(1):30-39.XUE Q Q,WEI Y,TIAN Y Z,et al.Characteristics,gas-particle partitioning,and health risks of PM2.5-bound PAHs and OPEs from 2019 to 2020 in Jinnan district,Tianjin[J].Research of Environmental Sciences,2022,35(1):30-39. [3] 吴玉丽,肖羽堂,王冠平,等.多溴联苯醚、六溴环十二烷和四溴双酚A在环境中污染现状的研究进展[J].环境化学,2021,40(2):384-403. doi: 10.7524/j.issn.0254-6108.2020050502WU Y L,XIAO Y T,WANG G P,et al.Research progress on status of environmental pollutions of polybrominated diphenyl ethers,hexabromocyclodocane,and tetrabromobisphenol A:a review[J].Environmental Chemistry,2021,40(2):384-403. doi: 10.7524/j.issn.0254-6108.2020050502 [4] 张倩,张佳骥,李红艳,等.深圳市龙岗区大气颗粒物中多溴联苯醚的污染特征研究[J].环境科学研究,2020,33(6):1402-1408. doi: 10.13198/j.issn.1001-6929.2019.12.01ZHANG Q,ZHANG J J,LI H Y,et al.Pollution characteristics of polybrominated diphenyl ethers in atmospheric particulates of Longgang district,Shenzhen City[J].Research of Environmental Sciences,2020,33(6):1402-1408. doi: 10.13198/j.issn.1001-6929.2019.12.01 [5] 朱超飞,杨文龙,殷也筑,等.高效液相色谱-三重四极杆质谱法测定土壤和沉积物中六溴环十二烷和四溴双酚A[J].环境科学研究,2022,35(9):2120-2127.ZHU C F,YANG W L,YIN Y Z,et al.Determination of hexabromocyclododecane and tetrabromobisphenol A in soil and sediment by high performance liquid chromatography-triple quadrupole mass spectrometry[J].Research of Environmental Sciences,2022,35(9):2120-2127. [6] BLUM A,BEHL M,BIRNBAUM L,et al.Organophosphate ester flame retardants:are they a regrettable substitution for polybrominated diphenyl ethers?[J].Environmental Science & Technology Letters,2019,6(11):638-649. [7] SYED J H,IQBAL M,BREIVIK K,et al.Legacy and emerging flame retardants (FRs) in the urban atmosphere of Pakistan:diurnal variations,gas-particle partitioning and human health exposure[J].Science of the Total Environment,2020,743:140874. doi: 10.1016/j.scitotenv.2020.140874 [8] 李晓静,李琴,周金华,等.广州人群尿液有机磷阻燃剂的暴露与健康风险[J].中国环境科学,2022,42(3):1410-1417. doi: 10.3969/j.issn.1000-6923.2022.03.047LI X J,LI Q,ZHOU J H,et al.Urinary metabolites of organophosphorus flame retardants in Guangzhou population:exposure and health risk[J].China Environmental Science,2022,42(3):1410-1417. doi: 10.3969/j.issn.1000-6923.2022.03.047 [9] 郭凌川,刘涛,肖建鹏,等.多溴联苯醚和新型阻燃剂暴露与儿童肾损伤研究[J].环境科学研究,2022,35(2):508-518.GUO L C,LIU T,XIAO J P,et al.Renal damage of polybrominated diphenyl ethers and new flame retardantsin in children[J].Research of Environmental Sciences,2022,35(2):508-518. [10] 高玉娟,谢承劼,余红,等.溴代阻燃剂在土壤中的迁移转化研究进展[J].环境科学研究,2021,34(2):479-490. doi: 10.13198/j.issn.1001-6929.2020.07.12GAO Y J,XIE C J,YU H,et al.Research progress on migration and transformation of brominated flame retardants in soil[J].Research of Environmental Sciences,2021,34(2):479-490. doi: 10.13198/j.issn.1001-6929.2020.07.12 [11] WANG X,ZHU Q Q,YAN X T,et al.A review of organophosphate flame retardants and plasticizers in the environment:analysis,occurrence and risk assessment[J].Science of the Total Environment,2020,731:139071. doi: 10.1016/j.scitotenv.2020.139071 [12] YAO C,YANG H P,LI Y.A review on organophosphate flame retardants in the environment:occurrence,accumulation,metabolism and toxicity[J].Science of the Total Environment,2021,795:148837. doi: 10.1016/j.scitotenv.2021.148837 [13] 曾佳敏,钟仕花,钱伟,等.水环境中有机磷酸酯的污染现状及其生物毒性[J].中国环境科学,2021,41(9):4388-4401. doi: 10.3969/j.issn.1000-6923.2021.09.046ZENG J M,ZHONG S H,QIAN W,et al.Pollution status and ecotoxicity of organophosphate esters(OPEs) in aquatic environment[J].China Environmental Science,2021,41(9):4388-4401. doi: 10.3969/j.issn.1000-6923.2021.09.046 [14] PAN Y F,LIU S,TIAN F,et al.Tetrabromobisphenol A and hexabromocyclododecanes in sediments from fishing ports along the coast of South China:occurrence,distribution and ecological risk[J].Chemosphere,2022,302:134872. doi: 10.1016/j.chemosphere.2022.134872 [15] REN X M,CAO L Y,YANG Y,et al.In vitro assessment of thyroid hormone receptor activity of four organophosphate esters[J].Journal of Environmental Sciences,2016,45:185-190. doi: 10.1016/j.jes.2015.12.021 [16] 朱帅,刘世东.手性多氯联苯在电子垃圾拆解地鱼类体内的分布及累积规律[J].环境科学学报,2020,40(9):3375-3381. doi: 10.13671/j.hjkxxb.2020.0137ZHU S,LIU S D.Distribution and bioaccumulation of chiral polychlorinated biphenyls in the fishes from an E-waste site[J].Acta Scientiae Circumstantiae,2020,40(9):3375-3381. doi: 10.13671/j.hjkxxb.2020.0137 [17] 李鑫,杨北辰,梁晓晖,等.华南电子垃圾拆解区室内灰尘中HBCDs和TBBPA的组成特征及人体暴露风险[J].生态毒理学报,2022,17(2):392-401.LI X,YANG B C,LIANG X H,et al.Composition characteristics and human exposure risk of HBCDs and TBBPA in indoor dust of South China's E-waste recycling sites[J].Asian Journal of Ecotoxicology,2022,17(2):392-401. [18] 杨艳艳,青宪,谢丹平,等.电子废弃物拆解区二噁英污染特征及暴露风险评估[J].环境科学学报,2022,42(3):441-449.YANG Y Y,QING X,XIE D P,et al.Pollution characteristics and exposure risk assessment of PCDD/Fs in the ewaste dismantling region[J].Acta Scientiae Circumstantiae,2022,42(3):441-449. [19] ZHOU S Q,FU M R,LUO K L,et al.Fate and toxicity of legacy and novel brominated flame retardants in a sediment-water-clam system:bioaccumulation,elimination,biotransformation and structural damage[J].Science of the Total Environment,2022,840:156634. doi: 10.1016/j.scitotenv.2022.156634 [20] STRUZINA L,PINEDA-CASTRO M A,KUBWABO C,et al.Occurrence of legacy and replacement plasticizers,bisphenols,and flame retardants in potable water in Montreal and South Africa[J].The Science of the Total Environment,2022,840:156581. doi: 10.1016/j.scitotenv.2022.156581 [21] 卢燕.北江清远段多氯代烃和有机磷阻燃剂的污染特征研究[D].广州:广东工业大学,2021. [22] CHEN M Q,GAN Z W,QU B,et al.Temporal and seasonal variation and ecological risk evaluation of flame retardants in seawater and sediments from Bohai Bay near Tianjin,China during 2014 to 2017[J].Marine Pollution Bulletin,2019,146:874-883. doi: 10.1016/j.marpolbul.2019.07.049 [23] VERBRUGGEN E M J,RILA J P,TTAAS T P,et al.Environmental risk limits for several phosphate esters,with possible application as flame retardant:milieurisicogrenzen voor enkele fosfaatesters,met mogelijke toepassing als brandvertrager[R].Bilthoven,the Netherlands:Rijksinstituut voor Volksgezondheid en Milieu RIVM,2006. [24] DOU W K,ZHANG Z M,HUANG W,et al.Contaminant occurrence,spatiotemporal variation,and ecological risk of organophosphorus flame retardants (OPFRs) in Hangzhou Bay and East China sea ecosystem[J].Chemosphere,2022,303:135032. doi: 10.1016/j.chemosphere.2022.135032 [25] HOU R,LIN L,LI H X,et al.Occurrence,bioaccumulation,fate,and risk assessment of novel brominated flame retardants (NBFRs) in aquatic environments:a critical review[J].Water Research,2021,198:117168. doi: 10.1016/j.watres.2021.117168 [26] 张振飞,吕佳佩,裴莹莹,等.北京某污水处理厂及受纳水体中典型有机磷酸酯的污染特征和风险评估[J].环境科学,2020,41(3):1368-1376. doi: 10.13227/j.hjkx.201908040ZHANG Z F,LÜ J P,PEI Y Y,et al.Pollution characteristics and risk assessment of typical organophosphate esters in Beijing municipal wastewater treatment plant and the receiving water[J].Environmental Science,2020,41(3):1368-1376. doi: 10.13227/j.hjkx.201908040 [27] US EPA.Regional screening levels (RSLs)[M].Washington DC:US EPA,2022. [28] DING J J,SHEN X L,LIU W P,et al.Occurrence and risk assessment of organophosphate esters in drinking water from eastern China[J].Science of the Total Environment,2015,538:959-965. doi: 10.1016/j.scitotenv.2015.08.101 [29] European Commission.Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No 1488/94 on risk assessment for existing substances.Part Ⅱ [M].Helsinki:Publications Office,1996:99-101 [30] US EPA.ECOTOX home[EB/OL].Washington DC:US EPA,(2022-05-01)[2022-05-01].https://cfpub.epa.gov/ecotox. [31] 陈宇,王涌涛,黄天寅,等.骆马湖水体中药品及个人护理品的污染特征及风险评估[J].环境科学研究,2021,34(4):902-909. doi: 10.13198/j.issn.1001-6929.2020.10.13CHEN Y,WANG Y T,HUANG T Y,et al.Pollution characteristics and risk assessment of pharmaceuticals and personal care products (PPCPs) in Luoma Lake[J].Research of Environmental Sciences,2021,34(4):902-909. doi: 10.13198/j.issn.1001-6929.2020.10.13 [32] 环境保护部编著.中国人群暴露参数手册(成人卷)[M].北京:中国环境出版社,2014. [33] 段小丽编著.中国人群暴露参数手册(儿童卷)[M].北京:中国环境出版社,2016. [34] ZHANG Y Q,BANINLA Y,YU J,et al.Occurrence,spatial distribution and health risk of hexabromocyclododecane (HBCD) in source water in the Lower Yangtze River,China[J].Bulletin of Environmental Contamination and Toxicology,2022,109:93-948. [35] CRISTALE J,KATSOYIANNIS A,SWEETMAN A J,et al.Occurrence and risk assessment of organophosphorus and brominated flame retardants in the River Aire (UK)[J].Environmental Pollution,2013,179:194-200. doi: 10.1016/j.envpol.2013.04.001 [36] LING S Y,LU C,PENG C,et al.Characteristics of legacy and novel brominated flame retardants in water and sediment surrounding two e-waste dismantling regions in Taizhou,Eastern China[J].Science of the Total Environment,2021,794:148744. doi: 10.1016/j.scitotenv.2021.148744 [37] WANG J,YAN Z G,ZHENG X,et al.Health risk assessment and development of human health ambient water quality criteria for PBDEs in China[J].Science of the Total Environment,2021,799:149353. doi: 10.1016/j.scitotenv.2021.149353 [38] CHEN L G,HUANG Y M,PENG X C,et al.PBDEs in sediments of the Beijiang River,China:levels,distribution,and influence of total organic carbon[J].Chemosphere,2009,76(2):226-231. doi: 10.1016/j.chemosphere.2009.03.033 [39] SUTTON R,da CHEN,SUN J,et al.Characterization of brominated,chlorinated,and phosphate flame retardants in San Francisco Bay,an urban estuary[J].Science of the Total Environment,2019,652:212-223. doi: 10.1016/j.scitotenv.2018.10.096 [40] 张嘉雯,魏健,吕一凡,等.衡水湖沉积物中典型持久性有机污染物污染特征与风险评估[J].环境科学,2020,41(3):1357-1367. doi: 10.13227/j.hjkx.201908036ZHANG J W,WEI J,LÜ Y F,et al.Occurrence and ecological risk assessment of typical persistent organic pollutants in Hengshui Lake[J].Environmental Science,2020,41(3):1357-1367. doi: 10.13227/j.hjkx.201908036 [41] CRISTALE J,GARCÍA VÁZQUEZ A,BARATA C,et al.Priority and emerging flame retardants in rivers:occurrence in water and sediment,Daphnia magna toxicity and risk assessment[J].Environment International,2013,59:232-243. doi: 10.1016/j.envint.2013.06.011 [42] SCHENKER U,SOLTERMANN F,SCHERINGER M,et al.Modeling the environmental fate of polybrominated diphenyl ethers (PBDEs):the importance of photolysis for the formation of lighter PBDEs[J].Environmental Science & Technology,2008,42(24):9244-9249. [43] 叶磊.西安市城区大气中PBDEs和PCBs的污染特征、气粒分配及来源研究[D].西安:西安建筑科技大学,2020. [44] OH J K,KOTANI K,MANAGAKI S,et al.Levels and distribution of hexabromocyclododecane and its lower brominated derivative in Japanese riverine environment[J].Chemosphere,2014,109:157-163. doi: 10.1016/j.chemosphere.2014.01.074 [45] HARRAD S,DRAGE D S,SHARKEY M,et al.Perfluoroalkyl substances and brominated flame retardants in landfill-related air,soil,and groundwater from Ireland[J].Science of the Total Environment,2020,705:135834. doi: 10.1016/j.scitotenv.2019.135834 [46] CHOKWE T B,OKONKWO O J,SIBALI L L,et al.Occurrence and distribution pattern of alkylphenol ethoxylates and brominated flame retardants in sediment samples from Vaal River,South Africa[J].Bulletin of Environmental Contamination and Toxicology,2016,97(3):353-358. doi: 10.1007/s00128-016-1886-4 [47] LI H R,la GUARDIA M J,LIU H H,et al.Brominated and organophosphate flame retardants along a sediment transect encompassing the Guiyu,China e-waste recycling zone[J].Science of the Total Environment,2019,646:58-67. doi: 10.1016/j.scitotenv.2018.07.276 [48] YU G,BU Q W,CAO Z G,et al.Brominated flame retardants (BFRs):a review on environmental contamination in China[J].Chemosphere,2016,150:479-490. doi: 10.1016/j.chemosphere.2015.12.034 [49] LI F,JIN J,TAN D Q,et al.Hexabromocyclododecane and tetrabromobisphenol A in sediments and paddy soils from Liaohe River Basin,China:levels,distribution and mass inventory[J].Journal of Environmental Sciences,2016,48:209-217. doi: 10.1016/j.jes.2016.03.018 [50] GANCI A P,VANE C H,ABDALLAH M A E,et al.Legacy PBDEs and NBFRs in sediments of the tidal River Thames using liquid chromatography coupled to a high resolution accurate mass Orbitrap mass spectrometer[J].Science of the Total Environment,2019,658:1355-1366. doi: 10.1016/j.scitotenv.2018.12.268 [51] MARVIN C H,TOMY G T,ARMITAGE J M,et al.Hexabromocyclododecane:current understanding of chemistry,environmental fate and toxicology and implications for global management[J].Environmental Science & Technology,2011,45(20):8613-8623. [52] de WIT C A.An overview of brominated flame retardants in the environment[J].Chemosphere,2002,46(5):583-624. doi: 10.1016/S0045-6535(01)00225-9 [53] LI F J,WANG J J,NASTOLD P,et al.Fate and metabolism of tetrabromobisphenol A in soil slurries without and with the amendment with the alkylphenol degrading bacterium Sphingomonas sp. strain TTNP3[J].Environmental Pollution,2014,193:181-188. doi: 10.1016/j.envpol.2014.06.030 [54] 孙国新,王杰琼,周成智,等.四溴双酚A在近岸海水中的光降解动力学研究[J].环境化学,2018,37(8):1683-1690. doi: 10.7524/j.issn.0254-6108.2018010602SUN G X,WANG J Q,ZHOU C Z,et al.Photodegradation kinetics of tetrabromobisphenol A in coastal water[J].Environmental Chemistry,2018,37(8):1683-1690. doi: 10.7524/j.issn.0254-6108.2018010602 [55] XING L Q,TAO M,ZHANG Q,et al.Occurrence,spatial distribution and risk assessment of organophosphate esters in surface water from the Lower Yangtze River Basin[J].Science of the Total Environment,2020,734:139380. doi: 10.1016/j.scitotenv.2020.139380 [56] XING L Q,ZHANG Q,SUN X,et al.Occurrence,distribution and risk assessment of organophosphate esters in surface water and sediment from a shallow freshwater lake,China[J].Science of the Total Environment,2018,636:632-640. doi: 10.1016/j.scitotenv.2018.04.320 [57] 吴迪,印红玲,李世平,等.成都市锦江表层水和沉积物中有机磷酸酯的污染特征[J].环境科学,2019,40(3):1245-1251. doi: 10.13227/j.hjkx.201808038WU D,YIN H L,LI S P,et al.Pollution characteristics of OPEs in the surface water and sediment of the Jinjiang River in Chengdu City[J].Environmental Science,2019,40(3):1245-1251. doi: 10.13227/j.hjkx.201808038 [58] ZHANG S W,YANG C,LIU M Y,et al.Occurrence of organophosphate esters in surface water and sediment in drinking water source of Xiangjiang River,China[J].Science of the Total Environment,2021,781:146734. doi: 10.1016/j.scitotenv.2021.146734 [59] KIM U J,KANNAN K.Occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters,tap water,and rainwater:implications for human exposure[J].Environmental Science & Technology,2018,52(10):5625-5633. [60] LEE S,CHO H J,CHOI W,et al.Organophosphate flame retardants (OPFRs) in water and sediment:occurrence,distribution,and hotspots of contamination of Lake Shihwa,Korea[J].Marine Pollution Bulletin,2018,130:105-112. doi: 10.1016/j.marpolbul.2018.03.009 [61] ZHONG M Y,WU H F,MI W Y,et al.Occurrences and distribution characteristics of organophosphate ester flame retardants and plasticizers in the sediments of the Bohai and Yellow Seas,China[J].Science of the Total Environment,2018,615:1305-1311. doi: 10.1016/j.scitotenv.2017.09.272 [62] GIULIVO M,CAPRI E,KALOGIANNI E,et al.Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins[J].Science of the Total Environment,2017,586:782-791. doi: 10.1016/j.scitotenv.2017.02.056 [63] LI J F,HE J H,LI Y N,et al.Assessing the threats of organophosphate esters (flame retardants and plasticizers) to drinking water safety based on US EPA oral reference dose (RfD) and oral cancer slope factor (SFO)[J].Water Research,2019,154:84-93. doi: 10.1016/j.watres.2019.01.035 -